Appendix

A Gaussian process

Gaussian process (GP) is a typical choice for the surrogate model because of its model capacity for complicated
black-box functions and uncertainty quantification. Consider, for the time being, a simplified scenario in which
we have noise-contaminated observations {y; = g(x;) + ei}fil. In a GP model, a prior distribution is placed
over f(x), indexed by x:

1(x)|0 ~ GP (m(x), k(x,x'0)) , (A1)
with mean and covariance functions:

mo(x = E[f(x)],
k(x(,x)’|0) ZE o (A2)

where E[] is the expectation and 0 are the hyperparameters that control the kernel function. By centering the
data, the mean function may be assumed to be an equal constant, mg(x) = my. Alternative options are feasible,
such as a linear function of x, but they are rarely used until previous knowledge of the shape of the function is
provided. The covariance function can take several forms, with the automated relevance determinant (ARD)
kernel being the most popular.

k(x,x'|0) = 6o exp (—(x —x)diag(6;2,...,60, %) (x — x/)) . (A3)

From this point on, we eliminate the explicit notation of k(x, z")’s reliance on . In this instance, the hyper-
parameters 01, . . ., 0; are referred to as length-scales. For constant parameter x, f(x) is its random variable.
In contrast, a collection of values, f(x;), ¢ = 1,..., N, is a partial realization of the GP. GP’s realizations
are functions of z that are deterministic. The primary characteristic of GPs is that the joint distribution of
eta(xi),i = 1, hdots, N is multivariate Gaussian.

Assuming the model deficiency e ~ N(0, o?) is likewise Gaussian, we can derive the model likelihood using
the prior (A.1) and available data.

£2p(ylx.0) = [(f60+)df = N(ylmol, K +0°D)

1 _
=-3 (y —mol)” (K+o°1) " (y — mo1) (A4)
Lkt ot - Mioglam),
2 2
where K = [Kj;] is the covariance matrix, in which K;; = k(x;,x;), 4,7 = 1,..., N. The hyperparameters

is often derived from point estimations using the maximum likelihood (MLE) of Eq. (A.4) w.r.t. 6. The joint
distribution of y and f(x) is also a joint Gaussian distribution with mean value mo1 and covariance matrix.

K+ 071 | k(x)

/ j—

K= kK'(x) | k(x,x)+0° |’ (A3)
where k(x) = (k(x1,X),...,k(xn,x))T. Conditioning on y, the conditional predictive distribution at x is
obtained. R

F&)y ~ N (u(x),v(x,x)),
u(x) =mol +k(x)" (K+0°T) " (y — mol), (A6)

0(x) = 02 + k(x,x) — kT (x) (K + 0°I) " k(x).

The expected value E[f(x)] is given by p(x) and the predictive variance by v(x). From Eq. (A.5) to Eq. (A.6)
is crucial since the prediction posterior of this wake is based on a comparable block covariance matrix.

B Proof of Theorem

Lemma 1. /6] If X" c X!, the joint likelihood of AR can be decomposed into two independent likelihoods of
the low- and high-fidelity.

16

This lemma has been proven by [[15]. However, the notation and derivation is not easy to follow. To layout the
foundations of GAR, we prove it using a clearer way with friendly notations.

Proof. Following Eq. (2), the inversion of the covariance matrix is

0 0 0
-1 _
» 1= (K) + (0 pZ(Kr)fl) (p(Kr)—l)
(0 p(K"H™) (K™
We can write down the log-likelihood for all the low- and high-fidelity observations as,
logp(Y', Y")
N+ N? 1 1, T~sl T 1 Y!
= - Sy los(2m) — G log B - S(YpETY' 4 Y)'S T b

1 N" + N!

= Diogpm - T rogom) - Loyt) v (v (o)Y’

= p(Y)TE(0, p(K"))Y = (0, (Y)p(K"))Y = (Y) oK, (pE"Y' +Y7)
+pY'EK)T ETY +Y") + Y (K) T (pETY' +Y")

h l
= 5 log |8~ T tog(am) — (V)R Y (0, ()T p(K))Y
+ Y (K" ' pETY + Y (K") Y]
l h
= %log IK'| — %log K- MV J;N log(2m) — %(YZ)T(KZ)’IYL - %Y’”(KT)’IYT
L h
= _Nilog(27{-) _ 1 log |KZ‘ _ E(YZ)T(KZ)lel —N—log(27r) _ 1 lOg ‘KT| _ E(YT)T(KT)leT
2 2 2 2 2 2
Ll Lr
(A7)
=

where Y™ = Y" — pETY?, £! is the log-likelihood of the low-fidelity data with the lower fidelity kernel, and
L is the log-likelihood of the residual data with the residual kernel; £" and £" are independent and thus can be
trained in parallel.

Based on the joint probability Eq. (2), we can similarly derive the predictive posterior distribution of the high-

fidelity using the standard GP posterior derivation. Condltlonlng on Y" and Y?, the predictive high-fidelity

posterior for a new input x.. is also a Gaussian N (u*, o?):

ho_ l l 29 1 h r h -1 Y!
,u’**(pk(xhx)v pk(X*,X)-Fk(X*,X))K (pETYl—FYT)
:pkl(X,HXI)KL(Xl,Xl)_lYl
+ pSkZ(X*, Xl)E(K’r)flETYl _ pi’)l(l()(*7 Xh)(KT)flETYl

_ ka(X*7 Xh)(Kr)flETYl _ p2kl (X*, Xl)E(KT)71 [pETYZ + Yr:|

+ 7K e, XY (KT [pBTY 4+ Y] K (e, XK [pETY 4 Y] (A8)
W XK ¥ XY
= [k e XHED)] BY 4+ [k (XKD EY
= [pkl(x*, 1] Y4 K (%, XK YT
and
P (K) K ()) — ok K (X)) TR (kK (X))
= (e) 1)) = (00T (K)ol) (0,006 TR) gl

— (D)7 (K >”kl< > (k)T (KK
=" (K (e, x.) = (k)" (K (e x) = (KD (K7) 'K

17

where, k! (X") = k'(x., X") is the covariance vector between the new inputs x.. and X". Notice that the
predictive posterior is also decomposed into two independent parts that related to the low-fidelity GP and the
residual GP, which is convenient for parallel computing and saving computational resources.

Lemma 2. Given tensor GP priors for Yl(x,x') and Y (x,x") and the Tucker transformation of Eq. (3), the
joint probability for y = [vec(Y)T, vec(Y") | isy ~ N(0,X), where & =
K/(X!, X)) ® (®M:1 sh) K'(X,X") & (@M., ShWr)
K'(X", X) @ (@M, WnSh) K/(X"X") & (@4 WnSL, W) + K (X", X") @ (@), Sh)

Proof. Since the X is the covariance matrix of y, it can be expressed in block form as:

_(cov(vec(Y"),vec(Y')) cov(vec(Y'), vec(Y"))
2= (cov(vec(Y"), vec(Y")) cov(vec(Y"), vec(Y"))) ’

where cov(vec(Y!), vec(Y")) = cov(vec(Y!), vec(Y™))T is the cross covariance between Y' and Y". Assum-

ing Y' € RV xdix..xdiy gnq W g RNV xdixxdiy together with the property of the Tucker operator in
Eq. (3), the high-fidelity data and low-fidelity data have the following transformation,

h l
Y'=Y X1 E X9 W1 X3 ... XM WMfl XM+1 W]w

E® (@W >:| vec()—i—vec(YT),

A.10
vee(Y") = ()

where Vi = 1,2,.... M, W, € Rdébmé, and ET = (0,Iy4) € RV"*N" s the selection matrix such that
X" = ETX!. By definition our GP prior, the low-fidelity data has the joint probability:

vec(Y) ~ N (0 K'(X', X <® s!))

Thus the covariance matrix of low-fidelity data is cov(vec(Y"), vec(Y")) = K/(X!, X)) ® (®%:1 Sin) . After

that, we can derive the other part of the X. Firstly, assuming the residual information vec(Y") is independent
from vec(Y'), the covariance between vec(Y") and vec(Y') is

cov(vec(Y"), vec(Y")) =cov <vec Yh,

E® (@w ﬂ vec(vl)+vec(v’)>

= (@)
(&)
[oes(gen) | [re (@)

KX, X") @ <® sinW,Tn> .
e (A.11)

Since cov(vec(Y'), vec(Y")) is the transpose of cov(vec(Y"), vec(Y")), so the upper right part of 3 is

=cov (vec(Yl)7 Vec(Y")) + cov (vec Yh,

vec Yl))

=cov(vec(Y'), vec(Y")

cov(vec(Y"), vec(Y")) = cov(vec(YH), vec(Y")T =K' (X", X (® W,,S! > (A.12)

18

For the lower and right part of X, the covariance between cov(vec(Y"), vec(Y")) is
cov(vec(Y™), vec(Y"))

M
=cov (E® <® Wm>] vee(Y') 4 vec(Y

—cov< E® (@W >]Vec
+cov(E® <®w ﬂ vec(Y'), Vec(Yr)> + cov (vec

M
E® <® Wm)] (cov vee(Y'), vec(Yh)) E® <® Wm>

=K'(x",x" <®W s WT>+KT (X" xM <®s)

m=1

E® <® Wm)] vee(Y) + vec(YT)>
E® <® W, >:| vec()) + cov (vec(Y"), vec(Y"))

E®<®W ﬂv)>

T

+ cov (vec(Y"), vec(Y"))

(A.13)
Assembling the several parts together, we have the joint covariance matrix 3:
K (X', X)) ® (®M 15%) K/ (X', X") ® (®]\/I s! WT)
K'(X", X) @ (@), WnSh) K/(X"X") & (@4 WnS, W) + K (X", X") @ (@), Sh)
(A.14)
O

Before we move on to the next proof, we introduce the matrix inversion property, which will become handy later.

A B
BT C

have(BT,C)(P’f} 2)1—(0,I)and< P‘f} 2)1(g) = < (1])

Proof. The inversion of a block matrix (if it is invertible) following the Sherman-Morrison formula is

A B\ ' P! ~-P'BC~ (A1)

B” ¢) ~\ -c'B'P?' cl+c'BTPBC?) '
where P = A — BC!'B7, we can then derive the multiplication in Property by the rule of block matrix
multiplication:

T A B
@0 g o)
T P! -P~'BC™!
_(B 70)(7C_1BTP_1 C—1+C—1BTP—1B0—1

- (BTP’l —c(c'BTP 1Y), -BTP'BC '+ CC! + C(C’lBTP’lBC’l))

Property 1. For any invertible block matrixes (), where the sub-matrixes are also invertible, we

(A.16)

- (BTP’l —BTP !, _BTP BC ' 4+1I+ BTP’lBC’l)
=(0,I).
Similarly, the other part of the conclusion can also be derived

A B\ '/B
BT C C
—-P'BC™ B
1BTP—1 c'+c'B'P'BC? C

(e
(P 'B - P—lBC—lc 4o) (A17)
(
(

“'BTP'B+ (C' +C'BTP'BC™
-C~

P 'B-P'B
1BTP IB+I1+C'BTP !B

- O

19

which seems quite obvious and intuitive if we assume that the matrix is symmetric.

Lemma 3. Generalization of Lemma |l I in GAR. If X" < X! the joint likelihood L for y =
[vec(YNT, vec(Y") 1T admits two independent separable likelihoods £ = L' + L7, where

N'D!
2

v 1 AT el 1—1 1 1 ool
L —fivec(Y) (K'®S) vec(Y)7510g|K ® S| — log(27),

\T . h yh
L= —%Vec (Yh - Y x W) (K" ®8") 'vec (Yh —Y' x W) - llog|KT ®8S"| — N D

log(2n),

where W = [E, W] is the original weight tensor concatenated with an selection matrix X" = ETXZ

Proof. Let the kernel matrix be partitioned into four blocks. We again make use of the matrix inversion of
Sherman-Morrison formula in Property [1] with a slight modification as follows:

T U\ ' /(T'+T'UQ'VT! —T'UQ!
V M — 7Q71VT71 Q71

where
Q=M-VT 'U.

We begin this proof with the matrix VT ' U within Property which gives us:
K X" xHk'(x', xH 'k (X', X" = (0,1) K' (X', X") = K/ (X", X").
Therefore, the last part VT~ 'U of matrix Q is
vT~'U
- [KI(X}L, xXH ® Wsl} [KZ(XZ, XH ® s’] o [KZ(XZ, X" ® S’WT]

- [Kl(Xh,Xl)®WSl] [KZ(XI,XZ)_l @(sl)‘l] [Kl(Xl,Xh)Q@SlWT}

M
:[KZ(Xh,XZ)KZ(XZ,XZ)_IKZ(XI,Xh] ®W St ® NQSmWo) | (als)
m=1 m=1
M
= [KZ(Xh,XZ)KZ(XZ,XZ)’lKZ(Xl,Xh)] ® | Q) (WS, (S),) 'S, Wr)]
m=1
M
=K' X", X" @ ®(Wmsinwf,;)} .
m=1

Substltutmg Eq. - [A-T8) back 1nto the matrix inversion, we can derive matrix Q *, —T'UQ ™, Q'VT !,
and T' +T71UQ VT~

Q—l
=M-VvT'u)!

= (K'(x", ") o WS'W + K" (X", X") @8 - K'(X", X") e WS'W") (A.19)
= (KX X" es)
-T'uQ™!
_ |:KZ(XZ7XZ)—1 ® (Sl)_l] [KZ(XZ,Xh) ® S'WT |:Kr(Xh7Xh)—l ® (Sr)—l]
Kl lKl Xl X Kr Xh Xh -1 Sl 7lleT S’!‘ —1
-- [K'x (XL X"K (X" XM @ [(8) (s7)7] A0,

K)K (X", X)—1] [WT(ST)_l]
— (g xS oW)

20

Q_IVT_l
_ [Kr(Xh’Xh)—l(Sr)—l] [KZ(Xh,XZ) ®WSZ] [KZ(XZ,XZ)_l ® (Sl)_l]

s h hy—1g-1 h l l l \—1 ry—1 1 IN—1 (AZI)
— [xR XK (X, XD T @ (877 ws'(sh)

— (0’ KT(Xh,Xh)71 ® (ST)71W) ,
and

T '+T 'UQ 'VT '
=K', x) e)]+ K X) e)] KX X @ 8'WT]
x K (x"xM e)] KX XD e ws'] [KI(XX) T e (s)
= K, x) e (sh)]+ [KUR XD TR X XK (R X KX, XK (XX

® [(Sl)—lsl(sr)—lsl(sl)—l}

sl ~ely—1 I—1 0 0

=K (X7X) ®(S) +(0 KT(Xh,Xh)_l ®WTSTW)
(A.22)

Putting all these elements together, we get the inversion of joint kernel matrix 71 =

In—1 In—1 0 0 0
(K) ® (S) + (0 (Kr)fl ®WT(ST)—1W) - < (KT)71 ®WT(Sr)—1) ,
= (0,(K") T ®(8")7'W) (K)o

(A.23)

where 8' = QY_ 8!, 8" =QY_ 8, W=QY_ W, K =K (X' X'),ad K" = K"(X",X")
as defined in the main paper. With the property in Eq. (A.10), and defining y = [vec(Y")”, vec(Y")"]", we
can substitute Eq. (A.23) into the joint likelihood to derive the data fitting part of the joint likelihood
y'=ly
= (vee(¥)T vee(¥) (B W) + vee(Y)) 57 oy vee(Y')
’ (E* @ W)vec(Y') + vec(Y")
-1
—vec(YH)T (Kl ® sl) vee(Y!) + vec(Y)TE ((KT)_l ® WT(ST)‘IW) E vec(Y!)
~ vee(YHT (E ® WT) ("R g (sr)*lw) vec(Y)
—vee(Y)T (K" 'E” @ (87)’1W) vec(YH)

T

—vec(YH” (E(K") '@ WT(S")™) [(ET ® W) vee(Y') + vec(YT)]

+ vec(YHT (E QW) (K" ®S")™" [(ET ® W) vee(Y') + Vec(Yr)]
+vee(Y)T (K" ® 7)™ [(E ® W) vec(Y') + Vec(Yr)]
—1
=vec(YH)T (Kl) vee(Y) + vee(Y)T (K™ @ S™) ! vec(Y")
~ vee(Y")T ((NET @ (sr)*lw) vee(Y!) + vee(Y)T (K™ @ 87) ! (ET ® w) vec(Y)
-1
=vec(YH)T (KZ ® Sl) vec(YH) + vee(Y) T (K™ @ S™) ™" vec(Y").
(A24)
With the block matrix’s determinant formula, we can also derive the determinant of joint kernel matrix,

|E|:)K1®sl) ><|Q|:‘Kl®Sl‘ x |K" @S] (A.25)

21

where we do not decompose them further with the purpose of forming to independent GPs for the low- and
high-fidelity. With the conclusion of Eq. (A.24)), the full joint log-likelihood is

logp(Y',Y")
1 B 1 lNl hNh
= vy Liog[z) - P og(an)

1 14l
= —%vec(Yl)T (Kl ® Sl) vec(Y') — %log ‘KZ ® Sl‘ _Nd log(2m)
— (A.26)
TGP for low— fidelity data
h gh
,%vec(w)T (K" ®8™) ! vee(Y") — %log K ®S"| - NQd log(27)

TGP for residual information

=logp(Y') +log p(Y"|Y')

The meaning of S!, S, W, and K" remain the same as defined in Eq

B.1 Posterior distribution

For the posterior distribution we compute the mean function and covariance matrix with the assumption that the
low- and high-fidelity data have a very strict subset requirement, X C X'. With the conclusion in Lemma
and rule of block matrix multiplication, the mean function and covariance matrix have the following expression,

vec(ZM)

_ (1l U, xch InwT 4 17 N\ w1 [vec(Yh)
= (K ows KX e WS'W + Kk @s") = <Vec(Yh)

= (K ows') (K'es') vee(¥) + (K. o Ws') (BEK) BT @ W(8") "W) vee(¥)
- (ki(xh) ® Wsle) (K’"ET ® (s*)—lw) vec(Y")
~ K ®8") (K’“ET ® (s’“)—lw) vee(Y)
- (ki ® WSl) (E(KT)_I ® WT(ST)‘l) vee(Y")
+ (K (X" @ WS'WT) (K" @ (87) ") vee(Y") + (KL © 87) (K @ (S7)) vec(¥")
= (K ows') (K'es') T ec(Y) — (K- @ 87) (K'B” ® (87) "W) vee(Y)
+ (K ®ST) (K (")) (ET ® w) vee(Y!) + (K @ 87) (K" @ (87) 1) vec(Y")
- (ki(Kl)—1 ® W) vee(Y) + (KI(K™) ™ @ I,,) vec(Y"),
(A.27)

22

sh = (kl(x*,x*) ® WS'WT 4 K" (x.,%.) ® ST) -
(ko WS, KL(X") 0 WS'WT 4 kKl 0 87) 57! < (XM ék;\);;%vs‘l,vﬁkw -)
= (kl(x*,x*) @ WS'WT 4 K (x.,x.) ® sr)
(kl ® WS) (Kl ®S) ((ki)T ® S‘WT)
- (K ews) (B&)E @ (s) ") ()" @s'WT)
(k) ® WS WT) (K’“ET ® (S’“)‘lw) ((ki)T ® SZWT)
(K ©S") (KTET (sr)*lw) ((ki)T ® sle)
(k ® WS) ((KN '® WT(ST)’I) (ki(xh)T @ WIS'W + (k)T ® sr) %)
(k) © WS WT) (K" @ (s")7) (ki(Xh)T 2 WIS'W + (k)" ® sr)
— (K. ®S") (K" @ (8" (ki(X”)T®WTSlW+(kI)T®S’")
- (kl(x*,x*) @ WS'WT + K (x,, %) ® sr)
K @ Wsl) (Kl ® sl)_1 ((ki)T ® SZWT)
) (KTET ® (ST)’1W) ((ki)T ® SZWT)
(K ®8") (K @ (")) (K" e Ws'W)
~ (Kl ®8") (K @ (")) ((k:)T ®S")
- (ki* _ (kL)T(Kl)‘lki) ® WS'WT + (k - (k:)T(K*)‘lkI) ®S",

where the W, S! and S” have the same meaning with the main paper.

B.2 Joint Likelihood for Non-Subset Multi-Fidelity Data

In the main paper and the subset section, we decompose the joint likelihood log p(Y", Y*) into two parts as
1 yh 1 vt vy vt vy v
log (¥, ¥") = logp(¥') + log | p(V" V', ¥)p(¥[¥)a¥

where p(Y" WZ, Y!) is the derived predictive posterior probability if the high-fidelity data are subset to the
low-fidelity data.

h gh

p(YMY YY) =27 "2 X K" @872

1 vec(Yh) i [vee(Y!) ! "o @ry—1 vec(Yh) « vec(Y)
" exp [_2 [(vec(?h) > _W< vec(vl) >:| K ®s) [(Vec(?h) > _W< vec(?l))]]
(A.29)

ol
where we define W = E ® ®m . Wi.. Based on the low-fidelity training data, we also have p(Y [Y') ~

N(Y .S' ® S') being a Gaussian.
ol
p(Y'[Y")
o

m gl . -1 _ T . N _
—or— 3t x’Sl®Sl’ 2 % exp {—% (vec(Y)—vec(Yl)) §'osh)! (Vec(Yl)—Vec(Yl)) ,

(A.30)

23

N ol
where the S! ® S' is the posterior covariance matrix of the Y . We can combine Eq. (A.29) and Eq. (A.30) to
derive the integral part of the joint likelihood

log / p(Y IV, YOp(Y' [Y))aY'

_ N'd" 4 N™d!
2

(
1 vec(?h) T VeC(Yl) ’ T8 L
+10g/eXP{2 {(Vec(vh) > a (E" ®W) (Vec(Yl) >} sy (A3

1 1 N
log 2ﬂ)—§10g|Kr®S7"|—ilog‘SZ(X)Sl‘

where the X" = ET[X', Xh] Since we know that X" = ETX" and we assume that X" = ETX", we can
derive

() () ()W ()

in which the W = Iyrn ® W, and Y' denotes the corresponding part of the Y". For convenience, we choose to
. oh
compute the exponential part in Eq. (A.31) as our first step. We try to decompose it into the subset part, i.e., (Y

and Yl) and the non-subset part, i.e., (Vh and Vl). Eq. (A.32) will become handy for the later derivation. Let’s
first consider the data fitting part by substituting Eq. (A.32) into Eq. (A.31),

v) W < vee(Y))]T(m@sr)_l [(vee(¥")) W (o(¥) >
Y) Vec(Y) vec(Y) (Y)
=3 [vec(" (ET ® Ih) ~ vee(Y)T (ET ® WT)] (K" ®8")~" [(E ®1y) vee(Y") — (B @ W) vee(Y)}
- [vec(Y)r (E ® Ih) - Vec(Yl)T (ET ® WT)] (K'®8")™" [(E ® Ih) Vec(?h) - (E ® W) vec(]
_ % [Vec(?h)T (ET ® Ih) ~ vee(YHT (ET ® w)] (K" ©8")" [(E ® Ih) vee(Y") — (E ® W) vee(Y)]

(A.33)

24

which gives us the decomposition as the subset part, the non-subset part, and the interaction part between them.
Now we can substitute Eq. (A.33) into the integral part in Eq. (A.31),

log / exp[—% [Vec(vh)T (ET ® Ih> ~ vee(YHT (ET ® WT)] (K" ®8")~ [(E ® 1) ve — (E® W) vec(Y")]
- [vec(vh)T (ET ® Ih) ~ vee(YHT (ET ® WT)] (K @8~ [(E ® Ih) vee(Y") — (E ® W) vec(?l)]
- % [vec(?h)T (ET ® Ih) — vec(Y)T (ET ® W)] (K" @8")! [(E ® Ih) vee(Y") — (E ® W) vec(?l)]

- %vec(vl)T(gl ®SH vec(Y') — %vec(vl)T(Sl ® 8H vec(Y') + vee(Y)T(S' @ 8" vee(Y')]dvec(¥)

h .

— % [vee(¥") (B @1,.) — vee(¥)" (E" @ WT)| (K" 0 8") 7" [(B@ 1) vee(¥") - (E & W) vec(¥")]
- [vec(vh)T (ET ® Ih) ~vec(YH)T (ET ® WT)] (K" ®8")! (E ® Ih) vee(Y")

- %Vec(?h)T (ET ® Ih> (K" ®8")~" (E ® Ih) vee(Y") — %Vec(vl)T(Sl ® 8" " Lvec(Y)

+ log / exp[[vec(vh

+ vec(?h)T (ET ® Ih) (K"® ST)_l (E b2 W) Vec(?l)

)T (ET ® Ih) ~ vee(YHT (ET ® WT)] (K ®8")~" (E ® W) vee(Y)

- %Vec(?l)T (B" e W) (K" ©8) " (Be W) vee(Y)

- %Vec(?l)T(gl 28D vee(Y') + vee(Y)T (8 © 81~ vec(Y' Y]dvec(Y)
= ST (KT ®87) g~ Svee(Y)T(8' ©8) vee(Y)

+ % (\IIT(KT ®8) o+ (S'® Sl)_lvec(vl))T (\IIT(KT ®8) o+ (S'® Sl)‘l)f1
(xpT(K’" ©8) o+ (8w sl)—lvec(vl))

m gl

+ 10g27‘r+%log‘\IlT(Kr(X)ST)_l‘Il—l—(Sl®Sl)_1

m gl

:de log 27 + %log ‘@T(K’“ ®8) '+ (8@ s’)*l(

— %djT |:(KT ® S’r)fl _ (K’r ® ST)71@ (\I,T(K'r ® ST)71T + (Sl ® Sl)71)71 \IJT(KT ® Sr)71:| d)

part 1

- %Vec(vl)T {(Sl o8 - (S'esh! (\IIT(Kr @S+ (8w sl)—l)f1 S'® s’)—l] vec(Y')

part 2

1o (K s e (WK @8) e+ (S e sl)*l)f1 (8" ® ") vee(Y)

part 3
(A34)
where ¢ is defined by Eq. (A.35),
h ~
= ((vec(Y")T,vec(Y)T vec(Y)T,0)W7T
¢(<<><>><<>>) A3,
T=EW
With Sherman-Morrison formula, we can further simplify part 1 in Eq. (A.34)) as
. -1
(Kr ® ST)71 _ (K'r ® ST)71W (\I,T(Kr ® ST)71‘1J + (Sl ® Sl)fl) \I’T(KT ® ST)71
(A.36)

(Ko +u@E oshw’)
()

25

part 2 in Eq. (A.34) as
N ~ N -1 .
(Sl ® Sl)fl _ (Sl ® Sl)fl (‘IJT(K7 ® S7.)71\Il + (Sl ® Sl)fl) (Sl ® Sl)fl
S - S T — S S -1
=S'osh™! - ((Sl ®8) oK ©8)'w(S' @8+ (S ®Sl)) (A37)
:(Sl ® Sl)71 _ (Sl ® Sl)fl + \IIT(KT ® ST + ‘I’T(Sl ® SL)WT)71T
=0T (K @8 +¥(S'osH e’ 1w,
and part 3 in Eq. as

~ -1 .
(Kr ® Sr)—l‘I, (‘I,T(K'r ® ST)_I\I' + (Sl ® Sl)—l) (Sl ® Sl)—l

K ©S")'® (s ®s' — l®sl)\1:T(KT®ST+xI:(S’®sl)\11T)*1\1f(Sl®s’)) (§'@sh)?

((
(K'®S) "0 — (K o8) '¥(S' osHo"(K 08" +¥(S o she”)'w
(K ©8) ¥~ (K @8) " (K'os)+ ¥ es)e’ - (K s
()
(K)

K" ®sr+\11(sl®5) vl
S - (K'®S" 1((K" ®8") (KT®ST+\II(Sl®Sl)\IIT)’1)\II

—1
—(K"®S")"'W — (K" @S") '® + (K*@Sww(s ®Sl)\IIT) 7

N -1
- (KT®ST+\1:(S’®SZ)\IIT) v
(A38)

With the simplifications for part 1, 2, and 3 we get in Eq. (A.36)), Eq. (A.37) and Eq. (A.38), the integral part
will be more compact by substituting Eq. (A.36)), Eq. (A.37) and Eq. (A.38) back to Eq. (A.34) which is equal to

m gl

N N —1
1og2n+%1og]~pT(K*®sr)—1\p+(sl®sl)-1 —%QST (KT®ST+\II(S’®Sl)\IIT) o

_ %vec(YZ)T‘IIT(KT ©S" + (S ©8H)TT) Tyec(Y)

“ —1 _
+ o (K 9s +¥S © sl)xpT) Tvec(Y)
m gl

:N L log2m + 1 log"l’ (K ©8) 0+ (§' 08!

—1 _
_ 5(4, — Wyec(Y)” (K 2SS +¥(S' ®S)\IIT) (¢ — Bvec(Y')).
(A.39)
The determinant part of Eq. (A.31)) of the matrix can also be decomposed in the following way,

- %10g|KT 8| - %log ‘Sl ® sl‘ ¥ %log ‘\IIT(KT ©8) '+ (8 e s’)*l‘

__ %log|KT®ST| _ %loglsl o8|
2 2 X) (A.40)
+ 3 log |K @S| + §log‘Sl ®sl‘ - §log‘KT 98 + ¢S @ Sl)\I!T’

= %log K ®S" + (S ®Sl)\IJT‘.

Putting everything we have derived up to this point, the joint likelihood for the non-subset data is:
log p(Y',Y")

hdh 1 ” . R
3 log(2m) — 5 log ‘K @8 +¥(S' e Sl)\I'T’ (A.41)

=logp(Y') -
~ %(tﬁ ~ Wvee(Y)" (K" 08"+ ¥(8' 08w) " (¢ — Bvece(YY))

S !
vee(Y)) -W (VeC(Yl;),and K ©S +¥S'@8)o’ =K' ®8S" +

where ¢ — \Ilvec(vl) = < ")
vec

ES'ET @ WTS'W.

26

B.3 Posterior Distribution for Non-Subset Multi-Fidelity Data

We then explore the posterior distribution of this non-subset data structure. For the first, we use the integration to
express the posterior distribution,

p(v*\vl,vh = [pY*, YY", Yhay'
(A.42)

(YY", Y Y)p(YaY!

ol ol

We try to express the integral by different parts. Once Y is decided, the predictive posterior p(Y*|Y", Y', ¥')
ol

can be described using the standard subset way, which is p(Y*|[Y" YL Y') ~ A (vec(Z), Sf) where the

mean function and covariance matrix are

o . vec(Y! gy —1) T
vec(Z,) = (kl*(Kl) ®W) (vecg?l; > + (k*(K) el) vee(Y"), (A.43)

sh (ki* (ki)T(KZ)’lki) o WS'WT 4 (k - (kI)T(KT)’lkZ> ®S".

We further simplify the situation and introduce definitions:

K. =kl — (k)"(K) 'K,
K. =kl — (kD)"(K") 'kl

Which simplify Eq. (A.43) as

sh =K' o WS'W!T 1 KT ®8".

ol
At the same time, since Y is the sample from Y', so it also follows the posterior distribution in subset way,
which means Y' ~ A/ (vec(?l), S'® Sl) where the Vec(vl) and S\ ® S'are

Therefore the posterior distribution of non-subset data structure is

p(|Yl Yh)
:/p Yve Yhay'

ol

:/p VYL (Y ay!

X eXp [—; <veC(Y*) - (ki(f(l)_l ®) < XEZEY%) (kT(KT) ®Ih> Vec(YT))T

(8" <vec(Y*) B (kl*(f{l) ®W < vec Yi) kr K') ®Ih) Vec(YT)>]
Y

_1
2

ve C

N™ gl

x2r T2 x ‘Sl ® Slri X exp[—%(vec(?) — vec(l)) (S'wsh” 1(vec(?l) — vec(vl))}d?l

_ NPah T
2

h
X |Sy

2

]s ®s] X exp {—5? (s~ 1Y—%Vec(Y) (SZ®SZ)_1vec(7l)}
x /exp[ﬂT(sf:)—lrvec(?l) +vee(Y)T (8 @ 1) vece(Y)

_ %vec(?l)TFT(SZ)_lrveC(?l) - %vec(?Z)T(Sl © 8" vec(Y))aY'

pah m 1 _1 . _1 - - _ N _
—or T st]s’ ®sl] ® X exp {févT(sf:)*lvf %vec(Yl)T(Sl ®sl)*1vec(v’)}
m gl -1 ~ _ N
x 2T X ‘rT)T+ (8 ®sl)*1] 2 % exp B (YT(sf)*erec(Y’)T(s’®sl)*1)

(FT(Si‘)‘IF T es)) (VST 4 vee(V) (8 & Sl)_l)T]

Pdh

=2n"

§

x]Sl ® sl]_ X]rT(sf:)—lr +(§'esh)

o1

¥ (s (078 T+ (8w sl)*l)f1 (§' 8" vee(Y)

partc

(A.44)

28

where Y and T is defined by the following equation,

- (vec(v*) - (&) ew) (VeCéYl)) - (KE) et (vec(Yh) - (VeC(()Yl>))) :
r— ([kI(KT)’lEZ ~KL(EKHY e w) E, oI
(A45)

We then utilize the Sherman-Morrison formula to simplify part a, b, and ¢ in Eq. (A.44) as follows. For part a in
Eq. (AZ4),

(817 = (87T (P78l T + (8 s) rT(sh)

. 1 (A.46)
— (Si} +T(8'® SZ)FT) ,
for part b in Eq. (A-44),
~ ~ ~ -1 .
(Sl ® Sl)fl . (Sl ® Sl)71 (FT(SiL)AP + (Sl ® Sl)fl) (Sl ® Sl)71
&l I\—1 &l l T hy—1 &l ! &l ! -1
= —_— F
(8'ws) ™~ (' esHr (sl TS es) + (8 es)) A
—(§' @St - ((Sl ©sH) ' —TT(s TS ® SZ)FT)—lr)
=r7(s" + it o shrt)'r,
and for part ¢ in Eq. (A.44),
~ -1 .
(7T (Pl T+ (8 es)) (8'es)
—(s"~'r ((Sl ©8) — (§'esHr’(s" + (¢ e sHr’)'rS' @ sl)) (§'@shH!
=(S"H'r—sH 't @ sHrrst + st @ sHrH)y-'r
=(s)7'T — (sh) " (St + T8 @ SrT — sl (st + T8 @ sHr”) T (A.48)

(sh)7'T - ()~ (1-8l(st + (8" @S TT))T
=SH'r—(H'r— (s + (St o sHrhyT'r
=—("+rEteshr’) .

And the determinant (part d in Eq. (A.44)) can also use the Sherman-Morrison formula to derive a more compact
version,

=

1 -1 .
S]: 7 ‘SZ®SZ‘ e ‘FT(S]:)—1F+(SZ®SZ)—1

1
2

X ‘(sﬁ)*l + TS osH T ? (A49)

N|=

1
2

Sh

«|ses|

IS

_ ‘(s’:)*l +rS'e sl)*ertf
Taking part a, b, c, and d back into Eq. (A.44), we have the compact form
p(YIY,¥")

—or M ((sf:)*l N sl)*erﬁ X exp[—%vT (s’: +rES'e sl)rT) Y
_ %Vec(vl)TI‘T (si} i ® sl)rT) ~ pvee(Y) - Y7 (si} i e sl)rT)
o MR ((sﬁ:)—l +78 ® sl)—er]_%
x exp[—% (V- Fvec(vl))T (82 +T(8' @8Hr™) " (V- Tvec(Y))]
—or % x ‘Sf} +T(8' s’) FTV%
X exp {—% (vec(z’:) - vec(z))T (sf +T (S’ ® sl) rT) o (vec(zf:) - vec(Z))} .

(A.50)
We can see the joint likelihood ends up with a elegant formulation about the low-fidelity TGP and residual TGP.

29

B4 CIGAR

As we mentioned in the Secuon- we assume the output covariance matrixes S”, and S!,, are identical matrixes
and orthogonal Welght matrixes, i.e., W2 W,, = I. Substituting these assumptions into (A.41), we get the
simplified covariance matrix,

K @I’ + ES'ET g WTI'W
K" oI" + ES'E" o W'W
=K oI' +ES'E" o 1"
(K +BS'ET) 9 1"
where I" is a identical matrix of size d” x d"; the same rules apply to I"; and I" = I". The joint likelihood of
non-subset data becomes

(AS])

h jh

logp(Y', Y") =logp(Y') — log(2m) — & 5 log

(K" + ES'ET) © Ih‘
X (A.52)
— (¢ — Tvec(¥)" ((+ ES

E”
o) () ()

We can see that the complexity of kernel matrix inversion is reduced to O((N")?).

) ® Ih)71 (¢ — \Ilvec(vl))

B.5 7-Fidelity Autoregression Model

As we mentioned in Section@ we can apply the AR to more levels of fidelity, so the GAR does. In this section,
we try to expand the GAR into more levels of fidelity. Assuming the F™(x) = F771(x) x1 W]~ ! X2 -+ xs
Wi, Ty F’ (x), we can derive the joint covariance matrix,
s Krfl(x7—717x7—71)®s7-71 Kﬂ—fl(xfflyxf)®S7—71(W7—71)T
- KT—I(XT7XT—1)®WT—1ST—1 KT—l(XT’XT)®WT—IST—1(WT—1)T+K:(XT,XT)®S:)
where S ' = @M_ ST tand W = QM_ Wi
As same as the proof of GAR, we can derive the inversion of the joint covariance matrix, (X7)~! =

T—1 T—1 1 0 0 0
(K) (S) + (0 (K:)71®W7—71T(S;)71W7—71) ((K:.)71 ®WT*1T(S:)71)
—(0,(K)) "' @ (S7)TtWTY) (K)o (sy)
Therefore, we have shown here that building an s-level TGP is equivalent to building s independent TGPs. We
present the mean function and covariance matrix of the posterior distribution,

vec(Zy) = (kI_l(KT_l)_1 @W™ M) vec(YT 1) + ((k:)*(K:)_1 ® 1) vec(Y7)
ST= (k" = (7)) T) @ WISTTHWTTT (k) — (0T (K7) TN (0.) @87

(A.53)

C Summary of the SOTA methods

We compare and conclude the capability and complexity of the SOTA methods, GAR, and CIGAR in Table|l]

D Implementation and Complexity

We now present the training and prediction algorithm for GAR and CIGAR using tensor algebra so that the
full covariance matrix is never assembled or explicitly computed to improve computational efficiency. We

use a normal TGP as example, given the dataset (X,Y), vec(Y) ~ N (0, KX, X)® (®Mf Sm)). The

m=1
inference needs to estimate all the covariance matrix ®ff:1 S and K(X, X). For compactness, we use S and

K to denote @_, S, and K(X,X),and & = K ® S + ¢~ 'I. We estimate parameters by minimizing the
negative log likelihood of the model,

L= % log(2m) + %log || + %vec(Y)TEflvec(Y).

30

Table 1: Comparison of SOTA multi-fidelity fusion for high-diemsnosional problems

Model | Arbitrary outputs? | Non-subset data? Complexity
NAR [16] Yes No O(X_;(N%?)
ResGP[9] No No O(Y_;(NH?)
MF- BNN [13] Yes Yes O(Y (N (A2 + w))*

C [12) Yes No OLZ(V))

AR [31 No No O(Y_;(Nd")3)

GAR Yes Yes o, Z _(di)3+ (ND)3)

CIGAR Yes Yes o, (NZ)S)

* A, is the total weight size of NN for i-th fidelity and w is the number of all parameters

However, since the S is a matrix of size Nd x Nd, when the size of outputs is large, it will be unable to
compute the inversion of K ® S. So for the TGP, we exploit the Kronecker product in K ® S to calculate
the negative log-likelihood efficiently. Firstly, we use eigendecomposition to denote the joint kernel matrix,
K = U”diag(\)U and S, = UZL diag(Am)U,,. Then we use 3 to denote the joint kernel matrix, 3 =

K®S+e'lI = (Uldiag(\)U) ® (Uf diag(\)U1) ® -+ @ (Up,diag(Av)Unr) + e 'I. With the
Kronecker product property, we can have that

T=P'AP +¢'I (A.54)
where P=UQ®U; ®---® Uy and A = diag(A ® A1 ® - - ® Aar) since U and U, is eigenvectors and
orthogonal, so PTP = PPT = I. Therefore, we can have that

log || = log [PTAP + ¢ 1| = log ‘PT(A + e_lI)Pl —log [A +€1]. (A.55)

Therefore, we only need to compute Nd diagonal elements to calculate part of the negative log-likelihood.

After that, we compute the vec(Y)T =" 'vec(Y) part in the negative log likelihood. First, we have A =
AoXjo---0dpm + 671]., where 1 is a tensor of full ones and o is the Kruskal operator. Then we have

vee(Y)" S vec(Y) = vec(Y) 272 8 2 vec(Y)

vec(Y)"PT(A + ¢ 'T) 2PP(A + ¢ ') 2 P vec(Y) (A.56)
T

=nnmn

where n = P(A + ¢ 'I)™ 3 P7vec(Y). Since P is a Kronecker product matrix, we can apply the property of
Tucker operator [19] to compute b.

T T T
T1=Y><1U ><2U1 X3 XM+1 UM

To=T.0A "2
Ts=Tax1 Ux2U; X3+ xpy41 Un

(A.57)

n = vec(Ts)

. 1 .
where ® means element-wise product, and () 2 means take power of f% element wisely. Therefore the

complexity of negative log likelihood is O(3"M_, (dym)® + (N)?).
Based on the above conclusions, we can also calculate the GAR more efficiently. According to Lemmal3} the
joint likelihood admits two separable llkehhoods L' and L7 For each of these two, we can use the tricks to

reduce the complexity to O(3"M_ (d%,)® + (N')®) + O(XM_ (d5,)® + (N7)?). Since,
log ’Kl ® Sl’ = log ’Al + 67111’ , log| K" ® S"| = log lAT + eflITl ,
vee(YNT (KL @ SH) " Lvec(Y!) = (1) 7rt; vee(Y) (K" @8") " vee(Y') = (") 0",

in which ", n' and A", A" are low-fidelity data and residuals corresponding vectors and eigenvalues. Therefore,
the joint log-likelihood will be,

L=CL 47

(A.58)

1 1 R T (A.59)
)" = Slog[A” + 7| — S (n") "

= const — %log ‘Al + 67111‘ —-3

Given a new input X., the prediction of the output tensorized as vec(Z") is a conditional Gaussian distribution
vec(Z,) ~ N (vec(Z.),S.), where

vec(Z.) = (k. (K) ' I) vec(Y)
S

- (k — (k)" (K)™ k*> ®S8. (A.60)

31

We can use the Tucker operator to compute the predictive mean vec(Z,) and S. in a more efficient way.
Using the eigendecomposition of kernel matrix, we can derive that S, = k.. ® S — LLT, where L =
(k)" (K) ' URU1®- - -@Up) (A(A+e 'T)"2). Therefore, the diag(S.) = ky. @diag(S) —diag(LLT).
We can also use tensor algebra to calculate the predictive covariance matrix

diag(S.) = vec(M),

-2
where M = k... (diag(S1)o- - -odiag(Sas))+ ((/\ 0A10---0An) @ A‘*%> x1 (ke K7'U) 2 x2(U1) 2 x5

-+ Xm+1 (Unr) 2. Therefore, we can also compute the predictive covariance matrix S’ in GAR efficiently.
diag(S”) = vec(M") 4 vec(M") (A.61)

where the vec(M') and vec(M™) are vectors for low-fidelity and residual data. When we calculate the vec(M'),
we need to be careful that the output kernel matrix should be WS'W7 ',

E Experiment in Detail

E.1 Canonical PDEs

We consider three canonical PDEs: Poisson’s equation, the heat equation, and Burger’s equation, These PDEs
have crucial roles in scientific and technological applications [62} 156} |66]. They offer common simulation
scenarios, such as high-dimensional spatial-temporal field outputs, nonlinearities, and discontinuities, and are
frequently used as benchmark issues for surrogate models [12,|51H53]. = and y denote the spatial coordinates,
and t specifies the time coordinate, which contradicts the notation in the main paper. This notation in the
appendix serves merely to make the information clear; it has no bearing on or connections to the main article.

Burgers’ equation is regarded as a standard nonlinear hyperbolic PDE; it is commonly used to represent a
variety of physical phenomena, including fluid dynamics [56], nonlinear acoustics [S7], and traffic flows [58]. It
serves as a benchmark test case for several numerical solvers and surrogate models [S9H61] since it can generate
discontinuities (shock waves) based on a normal conservation equation. The viscous version of this equation is
given by

du ou _ 0u

at " "or Vo2
where u indicates volume, x represents a spatial location, ¢ indicates the time, and v denotes the viscosity. We
setz € [0,1], ¢t € [0, 3], and u(x,0) = sin(z7/2) with homogeneous Dirichlet boundary conditions. We
uniformly sampled viscosities v € [0.001, 0.1] as the input parameter to generate the solution field.

In the space and time domains, the problem is solved using finite elements with hat functions and backward
Euler, respectively. For the first (lowest-fidelity) solution, the spatial-temporal domain is discretized into 16 x 16
regular rectangular mesh. Higher-fidelity solvers double the number of nodes in each dimension of the mesh, e.g.,
32 x 32 for the second fidelity and 64 x 64 for the third fidelity. The result fields (i.e., outputs) are calculated
using a 128by128 regular spatial-temporal mesh.

Poisson’s equation is a typical elliptic PDE in mechanical engineering and physics for modeling potential fields,
such as gravitational and electrostatic fields [62]. Written as

Pu | 0u 0

ox2 oy
It is a generalization of Laplace’s equation [63]. Despite its simplicity, Poisson’s equation is commonly
encountered in physics and is regularly used as a fundamental test case for surrogate models [51} 64]. In our
experiments, we impose Dirichlet boundary conditions on a 2D spatial domain with x € [0, 1] x [0, 1]. The input
parameters consist of the constant values of the four borders and the center of the rectangular domain, which
vary from 0.1 to 0.9 each. We sample the input parameters equally in order to create the matching potential
fields as outputs. Using the finite difference approach with a first-order center differencing scheme and regular
rectangular meshes, the PDE is solved. For the coarsest level solution, we utilized an 8 x 8 mesh. The improved
solver employs a finer mesh with twice as many nodes in each dimension. The resultant potential fields are
estimated using a spatial-temporal regular grid of 32 x 32 cells.

Heat equation is a fundamental PDE that defines the time-dependent evolution of heat fluxes. Despite having
been established in 1822 to describe just heat fluxes, the heat equation is prevalent in many scientific domains,
including probability theory [65/166] and financial mathematics [67]. Consequently, it is commonly utilized as a
stand-in model. This is the heat equation:

oz "oz) Tay "oy) T 92 \"ar) T T Py

32

2
50 \.\‘_ —— ResGP 0.08 % 0.150
LarGP
200 0.125
: 006 _’_‘ 0.100
E 0 - ué % 0.0
Z 100 — 2 0.04 E .075

0.050
0.02
50 .\
& 0.025
0 4 8 16 32 0.00 4 8 16 32 0.000 4 8 16 32
#HF Samples #HF Samples #HF Samples
(a) Poisson’s (b) Burger’s (c) Heat’s

Figure 6: RMSE against increasing number of high-fidelity training samples with training samples
increased using Sobol sequence and aligned (interpolated) outputs.

0.150

—4— NAR 0.08
~&— DC_cigp
~i— dmfal 0.06
== SGAR
-@- GAR

0.125

0.100

0.075

0.050

RMSE
< o
o
5

RMSE

0.025

P mmmgmmm—————— -
0 4 8 16 32 0.000 4 8 16 32
#HF Samples #HF Samples #HF Samples
(a) Poisson’s (b) Burger’s (c) Heat’s

Figure 7: RMSE against increasing number of high-fidelity training samples with training samples
increased using Sobol sequence and unaligned outputs.

where k is the materials conductivity qv is the rate at which energy is generated per unit volume of the medium
p is the density and c,, is the specific heat capacity. The input parameters are the flux rate of the left boundary at
x = 0 (ranging from O to 1), the flux rate of the right boundary at z = 1 (ranging from -1 to 0), and the thermal
conductivity (ranging from 0.01 to 0.1).

We establish a 2D spatial-temporal domain = € [0, 1], ¢ € [0, 5] with the Neumann boundary condition atz = 0
and z = 1, and u(z,0) = H(x — 0.25) — H(xz — 0.75), where H (-) is the Heaviside step function.

The equation is solved using the finite difference in space and backward Euler in time domains. The spatial-
temporal domain is discretized into a 16 x 16 regular rectangular mesh for the first (lowest) fidelity solver.
A refined solver uses a 32 x 32 mesh for the second fidelity. The result fields are computed on a 100 x 100
spatial-temporal grid.

The equation is solved using a finite difference in the spatial domain and reverse Euler in the temporal domain.
The spatial-temporal domain is discretized into an 8 X 8 regular rectangular mesh for the first (least accurate)
solution. The second fidelity of an improved solver’s mesh is a 32 x 32 grid. On a 100 x 100 spatial-temporal
grid, the result fields are calculated.

E.2 Multi-Fidelity Fusion for Canonical PDEs

We use the same experimental setup as in Section [5.1]for these experiments with the only difference being
that the training data is generated using a Sobol sequence. We generated 256 data samples for testing and 32
samples for training. We increased the number of high-fidelity training data gradually from 4 to 32 with the
high-fidelity training data fixed to 32. Fig.|6|and Fig.|7|show the RMSE statistical results for aligned outputs
using interpolated and original unaligned outputs. GAR and CIGAR outperform the competitors with a large
margin with scarce high-fidelity training data as in the main paper. Similarly, the advantage of GAR and CIGAR
are more obvious when dealing with non-aligned outputs, where GAR and CIGAR demonstrate a 5x reduction
in RMSE with 4 and 8 high-fidelity training samples, surpassing the competitors by a wide margin.

E.3 Multi-Fidelity Fusion for Topology Optimization
We use GAR in a topology structure optimization problem, where the output is the best topology structure (in

terms of maximum mechanical metrics like stiffness) of a layout of materials, such as alloy and concrete, given
some design parameters like external force and angle. Topology structure optimization is a significant approach

33

E

N

Figure 8: Geometry, boundary conditions, and simulation parameters for cantilever beam

in mechanical designs, such as airfoils and slab bridges, especially with recent 3D printing processes in which
material is deposited in minute quantities. However, it is well known that topology optimization is computation-
ally intensive due to the gradient-based optimization and simulations of the mechanical characteristics involved.
A high-fidelity solution, which necessitates a huge discretization mesh and imposes a significant computing
overhead in space and time, makes matters worse.

Utilizing data-driven ways to aid in the process by offering the appropriate structures [68 [13]] is subsequently
gaining popularity. Here, we investigate the topology optimization of a cantilever beam (shown in the ap-
pendix). We employ the rapid implementation [69] to carry out density-based topology optimization by reducing
compliance C' subject to volume limitations V' < V.

The SIMP scheme [70] is used to convert continuous density measurements to discrete, optimal topologies. We
set the position of point load P1, the angle of point load P2, and the filter radius P3 [55]] as system input. We
solve this challenge for low-fidelity with a 40 x 80 regular mesh and high-fidelity with a 40 x 80 regular mesh.
This experiment only includes techniques that can process arbitrary outputs.

0.5 0.5 i
—— ResGP i —— NAR
) AR —e— DC
1
0.4} —— NAR 0.41 1 ~B— MF-BNN
—— —— CIGAR
w - w —-o- GAR
Lo3 -~ Lo3
o - o
02 02 e -~\-h"'"'"—_-
0.1—— ; y " 0.1—— v y "
4816 32 64 128 4816 32 64 128
#HF Samples #HF Samples
(a) Aligned outputs (b) Raw outputs

Figure 9: RMSE against increasing number of high-fidelity training samples for topology optimization
using Sobol sequence.

As with the early experiments, we generate 128 testing samples and 64 training samples using a Sobol sequence
to approximately assess the ance in active learning. The results are shown in Figure[9] We can see that all
available methods show similar performance for both raw outputs that are not aligned by interpolation and the
aligned outputs. Nevertheless, GAR consistently outperforms the competitors with a clear margin. CIGAR, in
contrast, performs better for the raw outputs.

E.4 Multi-Fidelity Fusion for Solid Oxide Fuel Cell

In this test problem, a steady-state 3-D solid oxide fuel cell model is considered. Figillustrates the geometry.
The model incorporates electronic and ionic charge balances (Ohm’s law), flow distribution in gas channels
(Navier-Stokes equations), flow in porous electrodes (Brinkman equation), and gas-phase mass balances in both
gas channels and porous electrodes (Maxwell-Stefan diffusion and convection). Butler-Volmer charge transfer
kinetics is assumed for reactions in the anode (Hz + 0>~ — H2O + 2e7) and cathode (O2 + 4~ — 2027).
The cell functions in a potentiostat manner (constant cell voltage). COMSOL Multiphysicsﬂ (Application ID:
514), which uses the finite-element approach, was used to solve the model.

7 https://www.comsol.com/model/current-density-distribution-in-a-solid-oxide-fuel-cell-514

34

https://www.comsol.com/model/current-density-distribution-in-a-solid-oxide-fuel-cell-514

Figure 10: The cathode is at the top of the computational domain for the SOFC example, which
consists of gas channels, electrodes, and electrolyte. The layers are, from top to bottom, a channel,
an electrode, an electrolyte, an electrode, and a channel. The dimensions of the channel are (x *y *
z) 1 cm * 0.5 mm * 0.5 mm, the dimensions of the electrode are 1 cm * 1 mm * 0.1 mm, and the
dimensions of the electrolyte are 1 cm * 1 mm * 0.1 mm. The cathode intake is placed at x = 1 cm
while the anode inlet is located at x = 0 cm.

The assumed inputs are the electrode porosities € € [0.4,0.85], the cell voltage E. € [0.2,0.85] V, the
temperature 7' € [973,1273] K, and the channel pressure P € [0.5,2.5] atm. A Sobol sequence is used to
choose 60 inputs within the ranges specified for the low-fidelity and high-fidelity simulations. 40 high-fidelity
test points are chosen at random (from the ranges above) to complete the test. The low-fidelity F1 model used
3164 mapped elements and relative tolerance of 0.1, while the high-fidelity model employed 37064 elements
and relative tolerance of 0.001. Additionally, the COMSOL model employs a V cycle geometric multigrid. The
quantities of interest are profiles of electrolyte current density (A m—2) and ionic potential (V) in the z — z
plane centered on the channels (Fig. . In both instances, d = 100 x 50 = 5000 points are captured, and both
profiles are vectorized to provide the training and test outputs.

500 AR 500 500

}i\‘?{ o [S il L
* 400 T Y 400 T ¥ —
<0~ DC-I
“mJ ‘-‘mJ 300 UmJ 300
s s A s
e © 200 © 200k
100 100 + +
¥t=g===-, ________ P hg: [S ————
%% 16 32 64 0816 32 64 128
#HF Samples #HF Samples #HF Samples

Figure 11: RMSE against increasing number of high-fidelity training samples for SOFC with low-
fidelity training sample number fixed to {32,64,128}.

We add the classic experiment where the number of low-fidelity training samples was fixed to {32,64,128} and
the high-fidelity training samples are gradually increased from 4 to {32,64,128}. The outputs are aligned using
interpolation, and the experimental results are shown in Fig. We can see that the GAR and CIGAR methods
always perform better than the other methods, especially when only a few high-fidelity training data are used.
This is consistent with the previous experiment. We can also see that AR also performs well indicating that these
data are not highly nonlinear and complex, making it relatively easy to solve. However, both AR and MF-BNN
converge to a higher error whereas GAR and CIGAR converge to a lower error bound.

To investigate the prediction error in detail, we define the average RMSE field Z(AED) by

Z(AEF) _

where Z; is the prediction, Z; is the ground true value, and the square root is element-wise operation. Fig. @
shows the average RMSE field of NAR, MF-BNN, and DC methods on the ECD in SOFC data with 32 low-
fidelity training samples, 16 high-fidelity training samples, and 128 test samples. To highlight the advantage of
GAR and CIGAR, Fig. shows the average RMSE field of the same setup with only 4 high-fidelity training
samples. It can be seen clearly that GAR and CIGAR have a smaller error field even with only 4 high-fidelity

35

NAR _error MF-BNN_error DC-I_error
400 _

0o 10 20 30 40 20 30 40 o 10 20 30 40
(a) NAR (b) MF-BNN (c) DC

Figure 12: RMSE fields of ECD for 128 testing samples, using 32 low-fidelity and 16 high-fidelity
training samples.

CIGAR _error GAR_error
400

20 30 40 20 30 40

(a) CIGAR (b) GAR

Figure 13: RMSE fields of ECD for 128 testing samples, using 32 low-fidelity and 4 high-fidelity
training samples.

training samples compared to NAR, MF-BNN, and DC with 16 high-fidelity training samples. Also note that
GAR seems to have some checkerboard artifacts, which might be caused by the over-parameterization using a
full transfer matrix. We leave this issue to our further work to resolve. CIGAR have fewer checkerboard artifacts
with the price of a slight increase in the RMSE.

MF-BNN_error DC-I_error

NAR_error
— 0.016

0.016 0.016

0.014 0.014

0.014

0.012 0.012 0.012

0010 60 0.010 0.010

0.008 0.008 0.008

0.006 0.006 0.006

0.004 0.004 0.004

0.002 0.002 0.002

0.000 0 0.000
0 10 20 30 40 10 20 30 40 0 10 20 30 40

0.000

(a) NAR (b) MF-BNN (c) DC

Figure 14: RMSE fields of IP for 128 testing samples, using 32 low-fidelity and 16 high-fidelity
training samples.

In Fig.|14|and Fig.|15] similar to the previous experimental setup, we draw the average RMSE with 128 testing
samples on the IP fields from the SOFC dataset. The NAR, MF-BNN and DC are trained with 16 high-fidelity
samples, while GAR and CIGAR are trained with only 4 high-fidelity samples. We can see that our methods
outperform other methods by a clear margin. However, the checkerboard artifact is even worse for GAR in this
case, whereas CIGAR successfully reduces such an artifact with also low error.

E.5 Plasmonic Nanoparticle Arrays Simulations
In the final example, we calculate the extinction and scattering efficiencies Qes+ and Qs for plasmonic systems

with varying numbers of scatterers using the Coupled Dipole Approximation (CDA) approach. CDA is a method
for mimicking the optical response of an array of similar, non-magnetic metallic nanoparticles with dimensions

36

CIGAR _error GAR_error
0.016 0.016

0.014 0.014

0.012 0.012
0.010 0.010
0.008 0.008
0.006 0.006
0.004 0.004

0.002 0.002

0.000 0.000

0 10 20 30

(a) CIGAR (b) GAR

40

Figure 15: RMSE fields of IP for 128 testing samples, using 32 low-fidelity and 4 high-fidelity
training samples.

y (nm)
y (nm)

~y(m)
y (nm)

-2000

-500 0 500 -2000 -1000 0 1000 2000
x (nm) x (nm)

Figure 16: Sample configurations of Vogel spirals with {2, 25, 50, 500} particles.

far smaller than the wavelength of light (here 25 nm). Qcz+ and Qs are defined as the Qols in this document.
We construct surrogate models for efficiency with up to three fidelities using our proposed method. We examine
particle arrays resulting from Vogel spirals. Since the number of interactions of incident waves from particles
influences the magnetic field, the number of nanoparticles in a plasmonic array has a substantial effect on the
local extinction field caused by plasmonic arrays. The configurations of Vogel spirals with particle numbers in
the set {2, 25, 50} that define fidelities F1 through F3 are depicted in Fig. A € [200, 800] nm, s € [0, 27]
rad, and a,s € (1,1500) are determined to be the parameter space. These are, respectively, the incidence
wavelength, the divergence angle, and the scaling factor. A Sobol sequence is utilized to choose inputs. The
computing time requires to execute CDA increases exponentially as the number of nanoparticles increases.
Consequently, the proposed sampling approach results in significant reductions in computational costs.

The response of a plasmonic array to electromagnetic radiation is calculable using the solution of the local
electric fields, Ejo¢(r;), for each nano-sphere. Considering N metallic particles defined by the same volumetric
polarizability a(w) and situated at vector coordinates r;, it is possible to calculate the local field Ejo.(r;) by
solving the corresponding linear equation.

37

-0.4
= -06

c

-0.8

-1.0

4816 32 64 128
#HF Samples #HF Samples #HF Samples

Figure 17: NLL with low-fidelity training sample number fixed to {32,64,128} for topology structure
predictions.

10.0 10.0 10.0
—4— NAR
9.5 —& CIGAR 9.5 T - — 9.5
4+
R e ——— PO e — g m—F— +——
8.5 8.5 8.5
z 8.0 Z 80 z 8.0
75 75 7.5
o ——t————— L S = 1 -
7.0 10t fe=f=————tk========555 A Sy S -+
L 3 I’ 3 e L T TP E \\; *
651 §——= 651 §——¢= 6.5 | e e——===—————— -
603 16 32 603 8 16 32 603 16 32
#HF Samples #HF Samples #HF Samples
(a) ECD+IP (b) ECD () IP

Figure 18: NLL for SOFC with low-fidelity training sample number fixed to 32.

ak? L -

. > GijEie(ry) (A.62)
J=1,5#i

in which Eo(r;) is the incident field, k is the wave number in the background medium, €, denotes the dielectric

permittivity of vacuum (ep = 1 in the CGS unit system), and~(~}ij is constructed from 3 X 3 blocks of the

overall 3V x 3N Green’s matrices for the ith and jth particles. G; is a zero matrix when j = 4, and otherwise

calculated as
= exp(ikri;) T 1 1 T
where T;; denotes the unit position vector from particles j to ¢ and r;; = |r;;|. By solving Egs. and[A.63]
the total local fields Ejo.(r;), and as a result the scattering and extinction cross-sections, are computed. Details
of the numerical solution can be found in [[72].

Eioc(r;) = Eo(r;) —

Qe and Q. are derived by normalizing the scattering and extinction cross-sections relative to the array’s entire
projected area. We considered the Vogel spiral class of particle arrays, which is described by [[73]

Pn =+v/Mnays and 0, = nays, (A.64)

where p,, and 6, represent the radial distance and polar angle of the n-th particle in a Vogel spiral array,
respectively. Therefore, the Vogel spiral configuration may be uniquely defined by the incidence wavelength A,
the divergence angle v, s, the scaling factor a,s, and the number of particles n.

E.6 Metircs for the Predictive Uncertainty

Despite that RMSE has been used as a standard metric for evaluating the performance of a multi-fidelity fusion
algorithm [9,112} |13} [16]], a metric that considers the predictive uncertainty is also important [47], particularly
when the downstream applications rely heavily on the quality of the predictive confidence, e.g., in MFBO [23]].
To assess the proposed method more comprehensively, we evaluate the quality of the predictive posterior using
the most commonly used metric, negative-log-likelihood (nll).

We repreduce Figs. [2|and|5|using exactly the same experimental setups but with the nll metric, and the results
are shown in Figs. [17 and [18] Note that the nll of DC and MF-BNN is every poor, probably due to our
implementations, and cannot be fitted into the figures. Thus they are not shown in the figures. Also note that
some figures show negative nll. This is because our computation of the nll omits the constant term. Nevertheless,
this modification does not affect the comparison. We can see that for the topology structure posterior in Fig.[17]
the results are consistent with the conclusion drawn on the RMSE results. Since the CIGAR ignores the

38

inter-output correlations, it will overestimate the covariance determinant, leading to higher nll than GAR. The
NAR starts with poor performance with a small number of training data. It consistently improves with increasing
number of training data and end up with similar perform as GAR and CIGAR. Similarly, the SOFC results are
consistent with the conclusion for the RMSE results. However, all methods demonstrated do not improve their
performance significantly with more training data. This is caused by the calculations of the nll and the data itself.
More specifically, in the ECD and IP fields, there are a few spatial locations where the recorded values are almost
constant (caused by the Dirichlet boundary conditions). In this case, the nll will be dominated by the logarithm
of variance and becomes less informative for the quality of the predictive variance. We thus see that the nll in
Fig.[18]fluctuates around the same values no matter how many training points are used. We leave investigating
the uncertainty metric using more advance metric (e.g., [74]) more in depth in the future considering the scope
of this work.

39

	Introduction
	Backgronud
	Statement of the problem
	Autoregression

	Generalized Autoregression
	Tensor Factorized Generalization with Latent Features
	Efficient Model Inference for Subset Data Structure
	Generalization for Non-subset Data: Efficient Model Inference and Prediction
	Autokrigeability, Complexity, and Further Acceleration

	Related Work
	Experimental Results
	Multi-Fidelity Fusion for Canonical PDEs
	Multi-Fidelity Fusion for Real-World Applications
	Stability Test

	Conclusion
	Gaussian process
	Proof of Theorem
	Posterior distribution
	Joint Likelihood for Non-Subset Multi-Fidelity Data
	Posterior Distribution for Non-Subset Multi-Fidelity Data
	CIGAR
	-Fidelity Autoregression Model

	Summary of the SOTA methods
	Implementation and Complexity
	Experiment in Detail
	Canonical PDEs
	Multi-Fidelity Fusion for Canonical PDEs
	Multi-Fidelity Fusion for Topology Optimization
	Multi-Fidelity Fusion for Solid Oxide Fuel Cell
	Plasmonic Nanoparticle Arrays Simulations
	Metircs for the Predictive Uncertainty

