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Abstract

Relative positional embeddings (RPE) have received considerable attention since
RPEs effectively model the relative distance among tokens and enable length ex-
trapolation. We propose KERPLE, a framework that generalizes relative position
embedding for extrapolation by kernelizing positional differences. We achieve this
goal using conditionally positive definite (CPD) kernels, a class of functions known
for generalizing distance metrics. To maintain the inner product interpretation of
self-attention, we show that a CPD kernel can be transformed into a PD kernel by
adding a constant offset. This offset is implicitly absorbed in the Softmax normaliza-
tion during self-attention. The diversity of CPD kernels allows us to derive various
RPEs that enable length extrapolation in a principled way. Experiments demon-
strate that the logarithmic variant achieves excellent extrapolation performance
on three large language modeling datasets. Our implementation and pretrained
checkpoints are released at https://github.com/chijames/KERPLE. gitl

1 Introduction

Transformer-based models have excelled in various natural language processing tasks such as chat-
bot [Roller et al.l 2021]], code completion [[Chen et al.l [2021a], and paper abstract summariza-
tion [Zhang et al2020|]. These sequence modeling tasks often require the model to operate well on
significantly longer text sequences than the fixed maximum length L used at training time. Training
(or retraining) the model using a substantially larger value of L is often infeasible since the trans-
former training cost is O(L?). Hence, one desires a transformer that continues to perform well on
longer sequences than those used during training; i.e., perform length extrapolation at inference time.
Most transformer designs do not have this property [Press et al., 2022]]. While recent work on absolute
positional embeddings demonstrated the extrapolation ability [Kiyono et al., 2021} |Likhomanenko
et al.} 2021], it is believed that relative positional embeddings are more robust to input length change
[Likhomanenko et al., [2021]], for example, ALiBi [Press et al.l|2022] and TS5 [Raffel et al.| [2020].
Hence, we are motivated to study the inner workings of relative positional embeddings.

Relative positional embeddings (RPE) encode the idea of shift-invariance: for any shift p, (m + p) —
(n+ p) = m — n. Itis often added directly to the self-attention matrix before Softmax normalization
[Chen et al.| |2021b]. Inspired by shift-invariance and the ability of a kernel to define a similarity
function, there have been studies on shift-invariant kernels for RPE [Wennberg and Henter, 2021]]
with a focus on Gaussian kernel. However, in our preliminary experiments, the Gaussian kernel
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Figure 1: The 3-Para-Log Variant of Our KERPLE Framework. a, b, and p are learnable
parameters in each attention head shared across layers. Since # of heads is H, there are 3- H learnable
parameters. The learnable parameters are trained with length-3 sequences. At the inference time, the
last row (in dashed squares) becomes active, and the model extrapolates to length-4 sequences. Note
we focus on causal language modeling following ALiBi, so the matrices are triangular.

g1k a- 0P

a-1? a-0?

—b -log(1+

a-1?P a- 07

a-1? a-0?

demonstrates limited length extrapolation ability (see Appendix [A.3). Hence, a distinct class of
shift-invariant kernels is needed to achieve adequate length extrapolation.

To this end, we note a set of well-established conditionally positive definite (CPD) kernels suitable
for modeling distance metrics [[Scholkopt] 2000]. However, CPD kernels do not conform to an inner
product. We can remedy this issue by transforming a CPD kernel into a PD kernel by adding a
sufficiently large constant. This constant offset is subsequently absorbed implicitly in the Softmax
normalization (see the discussion below Eq. (2))). For example, ALiBi implicitly admits a PD kernel
of the form ¢ — |m — n| (see the end of section[4), which is reduced to a CPD kernel —|m — n|. The
CPD kernel and Softmax normalization combination opens the door to a sea of possible CPD kernels.
We investigate structures from this class that exhibit a strong length extrapolation ability, like ALiBi.

Our main result is a framework for KErnelize Relative Positional Embedding for Length
Extrapolation (KERPLE). The framework elucidates key principles that encourage the length
extrapolation property. We show that ALiBi is a particular instance within our framework. Our
subsequent experiments suggest that the proposed method yields better length extrapolation on large
datasets such as OpenWebText2, GitHub, and ArXiv.

2 Background and Related Work

2.1 Preliminary

Let {w,, }£ _, be the input tokens to a transformer model, where L is the total number of tokens. Each
Wy, is a scalar and is used to index the embedding vector e,,, € R? as the input to the transformer. A
transformer converts each e, into query, key, and value vectors in R<: qm = Wyepn, kn, = Wiep,
Uy = Wyen,, where W, Wi, W, € R4*d are learnable matrices. Then, the self-attention module
computes the scaled attention scores and generates the output vector o,,, at position m as:

Qm,n =

exp(gy,kn/Vd) s
57 T \[ y Om = Z A ,nUn -
27121 exp(q,,ki/Vd) n=1

Since the operation is position-agnostic, it is believed that positional information helps model token
interactions [Vaswani et al.,[2017]], which we survey in the next subsection.

2.2 Positional Embedding

Absolute. Absolute positional embeddings assign a positional vector p,,, to each position m and
adds p,, to the embedding vector e,,. The very first version of which is the predefined sinusoidal
function [[Vaswani et al., |2017]]. Followed by the success of BERT [Devlin et al., 2019]], learnable
absolute positional embeddings have been applied to the task of masked language modeling [Devlin
et al., 2019, Liu et al.| 2019, [Clark et al.} 2020, [Lan et al.,|2020]], Autoregressive-decoding [Radford
et al.l 2018} 2019]], and sequence-to-sequence [Gehring et al., 2017, [Lewis et al., 2019] settings.
Recent work studied ways to extrapolate sinusoidal positional embeddings to longer sequences
by randomly shifting absolute positions during training [Kiyono et al., [2021]] or augmenting with
continuous signals [Likhomanenko et al.| [2021]].



Relative. As opposed to the modeling of absolute position m, relative positional embeddings (RPE)
that model the positional difference m — n has become popular in the literature [[Shaw et al.,|2018|
Huang et al., 2019| Dai et al., 2019} [Yang et al.,2019| [Huang et al.| 2020, He et al., 2021] [Ke et al.,
2021} (Chen et al.l2021b]]. In particular, the TS model that considers bucketed relative distances and
log-binning has been shown to perform well on various transformer architectures [Raffel et al., 2020].
Rotary positional embedding [Su et al., |2021]] encodes the position with rotations: f(g,, m) =
R,.q., where R,, is a rotation matrix with angles proportional to m. With the rotation’s property,
the query-key product exhibits a positional difference: f (g, m) " f(kn,n) = q,}, Rn_mkn.

We note that the overview above focuses on the NLP domain. Recent work has applied positional
embeddings to other domains such as vision [Wu et al.,|2021a] and speech [Likhomanenko et al.|
2021]]. A survey can be found in [[Dufter et al.,|[2022].

2.3 Kernel and its Application in Transformer

The kernel trick is a classic approach to generalize the inner product to high dimensional spaces
[Mika et al., | 1998| |Scholkopf], [2000} Leslie et al., 2001} |Dhillon et al., 2004} [Takeda et al., 2007]. In
the context of transformers, there has been interest in applying kernels to the self-attention structure
to enhance the performance. Examples of such work include kernel for positional embeddings [Tsai
et al.L 2019, /Wu et al.}2021b, [Wennberg and Henter, [2021 |Luo et al., 2021]. Another line of research
leverages the kernel’s feature map [Rahimi and Recht, 2007] to linearize the self-attention module
and reduce the computational cost [Katharopoulos et al.,|2020\ (Chen et al.,2021c} |Xiong et al.| 2021}
Peng et al.| 2021}, |(Choromanski et al.l 2021} |Qin et al., [2022].

3 Theoretical Foundations of CPD Kernels

3.1 PD and CPD Kernels

In this work, we use shift-invariant conditionally positive definite (CPD) kernels to model the effect
of relative positional differences. We propose this formulation because the notion of relative is
modeled by a shift-invariant function: a bivariate function k over two positions (m, n) such that
k(m,n) = f(m — n) for some univariate f. The notion of positional difference m — n is generalized
by the CPD kernel. We review the definitions of PD and CPD kernels below.

Definition 1 (PD Kernel). A (real) symmetric function k : X x X — R is a positive definite
kernel if for any integer N and any {x; € X} |, {¢; € R} |, the quadratic form is nonnegative:

N N
D=1 Zj:l cicjk(wi, ;) = 0.

Definition 2 (CPD Kernel). A (real) symmetric function k:XxX > Risa conditionally positive
definite kernel if for any integer N and any {x; € X}, the quadratic form is conditionally

nonnegative: Zf\il Z;\;l cicik(zi, x5) > 0 for {c; € R}, with Zf\il ¢; =0.

Fact 1 (Berg et al[[[1984] and Prop. 5 of |Schdlkopf] [2000]). Letk: X x X — (—00,0] be a CPD
kernel with k(z,z) = 0Vz € X; Then, there exists a Hilbert space H and a mapping ¢ : X — H
such that ||¢(z) — ¢(2')||> = —k(z, 2").

Fact[I]| suggests that CPD kernels generalize distance metrics to high dimensional spaces. Since we
are interested in positional differences, we examine modeling the distance between positions using
CPD kernels.

However, Fact[I]also implies that CPD kernels do not encode inner products as required by self-
attention for the computation of pairwise relations. PD kernels represent inner products. To better
understand the effect of CPD kernels on self-attention, we need to establish relations between CPD
and PD kernels. As noted in[Scholkopf] [2000], if one takes any PD kernel and offsets it by a constant,
the result is at least a CPD kernel. In the next subsection, we show that the converse is nearly true:
if k is CPD, so is ¢ + k for large enough ¢ € R (Lemma . Therefore, we may generate the CPD
kernels of interest and transform them into PD kernels if needed.



3.2 Constructing PD Kernels From CPD Kernels via Constant Shifts

In this subsection, we review a few properties of CPD kernels and use these to generate a variety of
CPD kernels. Then, we present a lemma that transforms CPD kernels into PD kernels via constant
shifts. This enables the production of a family of PD kernels from CPD kernels. Finally, we present
our critical observation that the exact value of the constant shift is not needed, thanks to a nice
property of Softmax normalization.

Below are some important facts about CPD kernels.

Fact 2 (Scaling and Summation). If I;;l and ];‘2 are CPD, then so are a - 1%1 (for a > 0) and I%l + I%g.
Fact 3 (Berg et al.{[[1984] and Prop. 4 of Schtjllfopf [2000]). If/; : X X X — (—00,0] is CPD, then
so are —(—k)® for 0 < a < 1 and —log(1 — k).

Fact 4 (Page 3 of Scholkopf| [2000]). The negative squared distance —||x — '||? is CPD.

The three Facts above jointly yield a rich family of CPD kernels as shown below.
Corollary 1. The following are CPD kernels.

(a) k(z,2') = —a|lz — ' ||P with0 < p < 2 and a > 0.

(b) k(x,2') = —b-log(1 + allz — 2'||?) with 0 < p < 2 and a,b > 0.

We note that it is possible to keep iterating between Fact [2] and [3] and generate more complicated
examples, e.g., —al|z — 2'||P — b-log(1 + aljlx — 2’||P) or —b-log(1 + a||lx — 2’||P)¢ for 0 < ¢ < 1.
However, since relative positional embeddings are of our interest, we only consider simple CPD
kernels. Those with complicated forms are deferred to future work.

Now that Corollary [T] has presented a few class of CPD kernels, we prove a lemma (in Appendix [A.T)
that constructs PD kernels from CPD kernels through shifting. Later in Eq. (), we will see that the
shifting construction is combined neatly with the Softmax normalization of self-attention.

Lemma 1 (CPD Shift Lemma. Proof in Appendix |A.1). Letk : X x X — R be a CPD kernel.
There exists ¢ > 0 such that ¢ + k is a PD kernel.

Lemma [T] implies the CPD kernels in Corollary [T] can be made PD if a large enough constant is
added. For example, ¢ — ||z — /||? for large enough c. Although Lemma I]does not have an explicit
construction of ¢, thanks to the shift-invariant property of the Softmax normalization, we can leave it
as an under-determined constant in our positional embedding design (Eq. (I in section[d). Given a
set of test points {z;}¥ |, one can do a geometric sequence searc to search for a ¢ such that the

N x N matrix [c + k(z;, z;)] N._1 = 0. Hence, we do not need the value of ¢ , but we can compute

it if needed, e.g., deriving the feature map of ¢ + k.

Alternative Proof of ¢ — ||z — ’||P. While the CPD shift lemma is convenient, one can prove
¢ — ||z — «'||P is PD for large enough c using a kernel representation theorem in|Schoenberg| [[1938].
See Appendix [A.7]for details.

4 Kernelized Relative Positional Embedding

Let {g}Z_; and {k,}L_, be the input queries and keys. Let (71, ..., /) be learnable parameters.
We propose a kernelized relative positional embedding as follows.

exp ((q;bkn + 'I;rl,...,r@ (m7 n))/\/g)
S exp((ghki + k..o, (m,4)) V)

(D

Amn =

where l;,«l,m” (m,n) is any shift-invariant CPD kernel with ¢ parameters. Due to Lemma Eq. (1)
can be reformulated into its kernel form as follows.

By geometric sequence search, we can enlarge ¢ by 2, 4, 8, 16, and so on until we find the required large
enough constant.



(;) exp ((q;rrlkn +c+ ffn,m,re (m, n))/\/a)
S exp((gh ki + ¢+ ey, (M) V)

Am,n

(2)
o050 (@ o (0 )VE)  oxp (], o/ V)
Zf:l eXP(QJLki + kn,.“,w (m7 Z))/\/g) ZiLzl €xXp (kcomp([qvm m], [ki7 Z])/\/g)
exp(xz;) _  exp(zi+c)

(*) is due to the shift-invariant property of the Softmax normalization:

2 exp(a;) >0 exp(wjtc)
for any ¢ € R. The second equality defines a bias kernel which is positive definite using Lemma [T}

Kryooore = C+ Kry g 3)
The last equality introduces a composite kernel k™ : R4+ x R4+ — R as
kcomp([q’m, m]v [knv ’I’L]) = q;kn + krl,...,w (m7 TL) (4)

Interpretation. The proposed method can be interpreted as applying a composite kernel to self-
attention. The composite kernel combines the information from query gq,,, key k,,, and positions
(m,n) in a way that augments the original self-attention structure by multiplicative and additive
position embeddings. The augmentation allows k™ to not only retain the original g, k,, but also
include positional information from the bias kernel &, . ,,.
Practical Choice. In section[5.2] we fix £ = 2 and experiment on two variants of the composite
kernel, Eq. (@), where we call these the power variant and the logarithmic variant of our proposed
KERPLE framework, Eq. (2)). These are from a combination of Corollary [T]and Eq. ().

(power) k™ ([q,,, m], [kn,n]) = g, kn +c—r1lm —n|" withr; > 0and 0 < ry < 2.
(logarithmic) k™ ([g,,, m], [kn,n]) = g, kn + ¢ — 71 - log(1 + ro|m — n|) with ry, 75 > 0.
We note that these are not the only variants of the composite kernel. In section 5.3 we experiment
with two more complicated variants, but only find lower training speeds and marginal improvement
in perplexities (e.g., logarithmic variant vs. 3-para-log). Thus, based on our study, the choices above
hold advantages in both performance and speed.

Connection to Prior Work. When the bias kernel, Eq. (@), is a triangle kernel: ¢ — |m — n|, our
model reduces to ALiBi [Press et al.| 2022]. [Wennberg and Henter| [2021]] discuss the situation where
the bias kernel is a Gaussian kernel. [T'sa1 et al.|[2019]] is the case where there is no bias kernel and
the attention product g, k,, is multiplied by an exponentiated inner product kernel, exp(x "y). Since
ALIiBi is the state-of-the-art and has great input length extrapolation, we will focus on comparison
with ALiBi in our experiments.

The logarithmic variant has an implicit connection to T5 positional bias [Raffel et al.|
2020]. According to the official GitHub repository https://github.com/google-research/
text-to-text-transfer-transformer and the HuggingFace Transformer [Wolf et al., [2020]],
TS5 bias is implemented with a log-binning strategy. For each head of the transformer, they maintain a
bucket of 32 learnable parameters and assign the relative positional bias b,,, _,, to these parameters as

bucket[m — n] if0<m-—n<16
bin—n =

bucket[min(31, 16 + [ &LallD L 16]] if m —n > 16,

where |- | is the floor function. Note that the log factor is approximately 7.7 log *5". Therefore, T5
is using a logarithmic bucket assignment, which turns out to extrapolate to different input lengths.
Compared with TS5, our logarithmic variant uses less parameters (2x12 vs. 32x12) but cannot learn
non-monotonic relations (the log function is monotonic). We will conduct more comparisons with TS
bias in our experiments.

5 Experiments

5.1 Dataset and Implementation Description

Dataset. We conduct experiments on OpenWebText2, GitHub, and ArXiv datasets gathered in
Gao et al.| [2020]. OpenWebText2 includes recent content from Reddit submissions until 2020,
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content from multiple languages, document metadata, multiple dataset versions, and open-source
replication code. GitHub includes open-source repositories written in primary coding languages such
as Java, C/C++, Python, and Go. ArXiv includes papers written in LaTex in Math, Computer Science,
Physics, and some related fields. These tasks are motivated by the downstream applications such
as online chatting [Roller et al., |2021]], code completion [[Chen et al.,[2021a], and academic paper
summarization [Zhang et al.| [2020].

Table 1: Dataset Overview. Raw Size is the size before any up- or down-sampling.
OpenWebText2  GitHub ArXiv
Raw Size 66.77 GB 95.16 GB 56.21 GB
Type Internet Coding  Academic

Implementation. We adapt our model from GPT-NeoX [Black et al.,[2021]], a transformer imple-
mentation by the EleutherAl team. The codebase is based on NVIDIA Megatron Language Model
[Shoeybi et al., 2019] and further accelerated using Microsoft DeepSpeed library [Rasley et al., [2020].

Our model is trained on a machine with one NVIDIA A100 GPU with 40 GB of memory. We adopt
almost all configurations of small GPT-NeoX?| except that we change the train-micro-batch-size
to 32, seq-length to 512, and max-position-embeddings to 512. Table 2] summarizes the important
configurations fixed throughout our experiments. In particular, the floating-point encoding is set as

Table 2: 162M Model Configurations.

# Layers Hidden Size # Attention Heads Train Seq. Len. # Trainable Params.
12 64 12 512 162M
Optimizer Batch Size Train Steps Precision # Trainable Params. for RPEs
Adam (Ir 6e-4) 32 50,000 bfloat16 at most 36

bfloat16 (Brain Floating Point, developed by Google Brain) so that the training can be accelerated by
half-precision computation with reliable stability [Kalamkar et al.l 2019]]. Hidden size 64 means that
d = 64 in Eq. ().

5.2 Experimental Results (Also c.f. Appendix[A.4|to[A.7)

We conduct experiments to cover aspects such as input length extrapolation, application on different
domains, and comparison with the prior work. These are elaborated on below. (i) Motivated by the
input length extrapolation demonstrated in [Press et al.,|2022]], we train our model with length 512
and test on lengths ranging from 512 to 16384. We hope that the emphasis on extrapolation enables
the application of transformers to longer sequences. (ii) To evaluate the applicability of the model
in different domains, we conduct experiments on OpenWebText2, GitHub, and ArXiv datasets. (iii)
To validate the effectiveness of our method, we compare KERPLE with Sinusoidal [Vaswani et al.}
2017], Rotary [Su et al.,[2021]], T5 [Raffel et al.,[2020], and ALiBi [Press et al.,[2022].

Table [3] reports the perplexities at different extrapolation lengths. We perform non-overlapping
evaluation: Suppose text is segmented in a different manner for 512 and 1024 tokens, we have
N sentences and N/2 correspondingly to evaluate. We also perform a paired two-sided t-test to
validate the statistical significance (significance level=0.05). We compare each candidate RPE with
our proposed logarithmic variant and mark the candidate with a T if the log variant is statistically
significantly better. Table @ reports the training speeds. These tables yield three conclusions. First,
within the KERPLE framework, the logarithmic variant is better than the power variant. Secondly, the
logarithmic variant is 9.7% faster than T5. In terms of extrapolation, the logarithmic variant generally
does better than T5 but could be slightly worse than TS5 at shorter lengths. Third, the logarithmic
variant is slightly slower than some prior work (ALiBi, Rotary, and Sinusoidal) but consistently
outperform these methods at all extrapolation lengths. More details are given below.

https://github.com/EleutherAl/gpt-neox/blob/main/configs/small_bf16.yml
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Logarithmic Variant vs. Power Variant. In our proposed KERPLE framework, the logarithmic
variant is better than the power variant. Precisely, the logarithmic variant is 4.4% faster and has lower
perplexities across all extrapolation lengths and all tasks.

Logarithmic Variant vs. T5. In terms of speed, the logarithmic variant is 9.7% faster than T5.
In terms of extrapolation perplexity, the logarithmic variant is close to or slightly worse than TS
when the extrapolation length is shorter than 2048, and consistently excels T5 at longer extrapolation
lengths. The tendency of extrapolation holds for all datasets evaluated in this work.

Logarithmic Variant vs. ALiBi, Rotary, and Sinusoidal. The logarithmic variant is 1.6% slower,
7.5% faster, and 3.0% slower than ALiBi, Rotary, and Sinusoidal. The speed comparison makes sense
because we require only a limited amount of learnable parameters for RPEs (at most 3 - H). Also, the
logarithmic variant consistently outperforms prior work at all extrapolation lengths and tasks.

Table 3: Perplexity Comparison on OpenWebText2, GitHub, and ArXiv. All models are trained
for 50k steps with training length 512 and five random seeds. 2" means our log variant is statistically
significantly better than x. The test used is paired two-sided t-test with o = 0.05.

OpenWebText2

BXIP. o5 KERPL(I;:DOWGO ALiBi TS Rotary Sinusoidal
512 239+06 239+06 239+06 23.7+06 242+067 33+ 1F
1024 220406 221407 224+05" 219406 328+1.7F 750+ 346f
2048 21.6+03 21.9+02" 225402t 21.7+02 6244611 5507 + 26077
4096 212404 21.5+057 2224047 2254060 111+ 13.87 14039 + 23251
8192 213+04 21.6+047 223+03"7 255+137 185+ 1897 22621 + 19277
16384 2144+0.6 21.6+06 225+057 3144317 269+ 33.00 30046 + 48241

GitHub
BXIP. o5 KERP L(I;:)()wer) ALiBi TS Rotary Sinusoidal
512 340+020 342+0.20 342+021 3.38+0.21 3.44+0.20 4+ 0.2f
1024 3.04+0.14 3.07+0.16 3.15+0.17"F 3.02+0.14 3.86+0.257 105 + 397
2048 2.86+0.10 2.90 4+ 0.08" 3.13 £0.10"7 2.844+0.09 594 +0.64" 1380 + 4041
4096 2.74+0.05 2.79 +0.06 3.04 +0.087 2.78 £ 0.047 11.1 £ 1.557 5217 £ 1118
8192 2.714+0.05 2.76 +£0.05 3.04 +0.03t 2.95+0.137 20.2 +£2.757 10081 + 3583"
16384 2.75+0.16 2.76+0.13 3.02+0.137 3.354+ 0271 31.3 £5.207 16443 + 8503f

ArXiv
Bxtrp. — o> KERP L(Ii‘)ower) ALiBi Ts Rotary Sinusoidal
512 6.07+026 6.10+0.26 6.12+0267 6.03+£0.26 6.07 +0.27 43 + 44
1024 5.61 £0.10 5.65+0.10" 582 +0.09" 5.5840.09 7.49 +0.34" 221 + 136
2048 522 +0.12 5264 0.13" 571 £0.147 5214+ 0.14 142 £ 1.81T 730 + 343"
4096 520+ 0.10 5.25+0.09 5.87+0.08" 532+0.160 30.1 +4.32F 1998 + 4971
8192 5.01+0.10 5.06+0.15 5.74 +0.137 5.54 +£0.39T 54.3 +6.227 4228 + 26451
16384 5.07+0.16 5.07 +£0.19 578 +£0.157 6.25 £ 0.611 854 +7.40"7 6674 + 5696

Table 4: Training Time Comparison on GitHub

KERPLE " \1iBi T5 Rotary Sinusoidal
Tog) _ (powen)
sec/step 0307 0321 0302 0340 0332 0298

5.3 Experiments on Complicated Kernels

In addition to the practical variants (power & logarithmic) in section[d} we consider two complicated
versions of the composite kernel, Eq. (@), as follows.



(bias+wht) bias + weight:
k™ (g, m], [kn,n]) = @ kp - exp(=r3|m —n|™) + ¢ —r1lm —n|"™
withry,rg > 0and 0 < ro,ry < 2.

(3-para-log) 3-parameter-logarithmic:

kcomp([q"“ m]a [knv n]) = qun +c—1r1- log(l + T2|m - ’n“rs)

withrq,79 > 0and 0 < rg < 2.
Recall the tensor product property of a kernel: if k; is a kernel on X" and k- is a kernel on )/, then
k((z,y), (2',y") = k1(z,2")k2(y,y’) is a kernel on X' x Y. Therefore, (bias+wht) is the setting
where we train a weight exp(—r3|m —n|™) and a bias kernel ¢ —r1|m —n|"2. q,| k,, is multiplied by
the weight kernel and then added with the bias kernel. (3-para-log) is the setting where we consider
|m — n|™s in the log. When 73 = 1, it is reduced to the logarithmic variant proposed in section

We plug in these composite kernel k™ into our KERPLE framework, Eq. (2)), and test the perfor-
mance of these RPE. Compared with section [5.2] Table 5| suggests that these variants do not have
clear advantage in extrapolation performance, e.g., 3-para-log is slightly better in perplexity than the
(two-parameter) logarithmic variant. Thus, enlarging the complexity of kernels does not necessarily
give better performance in the context of RPE.

Table 5: Perplexity Comparison for KERPLE with Complicated Kernels on OpenWebText2,
GitHub, and ArXiv. All models are trained for 50k steps with training length 512 and five seeds
random. OOM means out of memory.

Extrp OpenWebText2 GitHub ArXiv

" (bias+wht) (3-para-log) (bias+wht) (3-para-log) (bias+wht) (3-para-log)
512 241+£06 238+0.6 344+021 340+£020 6.11+0.27 6.06+0.27
1024 222406 220+£07 3.08+0.15 3.04+0.13 5.66+0.09 5.61=+0.10
2048 2194+04 21.6+£02 290+4+0.12 2.854+0.10 528 +0.12 521+0.12
4096 21.5+05 212404 2794+0.06 2.73+0.05 5314+0.08 5.184+0.09
8192 2144+05 21.3+04 276+£003 268+004 516+0.18 500+0.11
16384 0]0)Y| ooM 0]0)| OOM OOM OOM

5.4 Plots of Kernel Functions

We plot kernel functions including the power, log variants, and ALiBi for different heads to see their
contributions to softmax. We use the GitHub dataset for demonstration. Please see Figure and[4]
Both ALiBi and its generalized power variant quickly reach a very negative value. In contrast, the log
variant successfully discovers several flat kernels, effectively extending the window attention. This
corroborates our previous observation that KERPLE-log can utilize more distant token information.

Figure 2: Kernel Functions of Learned by the Log Variant.
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Figure 3: Kernel Functions Learned by the Power Variant. Note the y-axis should be multiplied by
1e8, which is a very negative value.
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Figure 4: Kernel Functions Learned by ALiBi.
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5.5 Position-wise Perplexity Evaluation

We plot the position-wise perplexity with evaluation length=4096 in Figure [5] Please see Ap-
pendix [A.6] for similar length=16384 result. The evaluation is done by measuring the loss at each
position in each sequence and averaging over the sequences.

We note that PPL@512 of KERPLE-log is the lowest among all model variants. We can derive several
critical observations for evaluation length=4096 in Figure[5} First, KERPLE-log lies below KERPLE-
log-windowed @512, indicating its usage of more distant information than window attention: If our
model does not use more information other than a fixed-window=512, the y-values after position=512
should overlap with the line windowed at 512. This is clearly not the case. In addition, the PPL
of KERPLE-log continues to decrease till the end of 4096 positions (Not plateauing). Second, TS
lies below KERPLE-log-windowed@512 most of the time and fluctuates around KERPLE-log-
windowed @512 after length=3000. It is still worse than KERPLE-log. Third, ALiBi lies above
KERPLE-log-windowed @512 for almost all the positions, indicating that window attention might be
a better choice than ALiBi.

Although window attention is a strong baseline, our KERPLE-log is almost like a free lunch compared
to window attention: With only 24 additional learnable parameters (2 para. for each head), the almost
same training speed, and the same train length=512 as window attention, it is able to achieve lower
PPLs across different positions.

6 Conclusion and Future Work

A general framework, KERPLE, is proposed to kernelize relative positional embeddings for length
extrapolation. At the core of this framework is the application of CPD kernels and the derivation of
practical variants. We show that these CPD kernels can be implicitly converted to PD kernels, which



Figure 5: Position-wise Perplexity on GitHub at Evaluation Length=4096 Compared to Window
Attention @512.
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keep the inner product interpretation of self-attention. We also demonstrate that the logarithmic
variant achieves exceptional extrapolation performance on three large language modeling datasets.
We believe our work paves the way for some interesting future directions that resolve our limitations.
For instance, we can consider general kernel families and model non-monotonic effects due to
positional differences. In addition, the use of learnable parameters in KERPLE might enable better
generalization to inputs higher than one-dimensional. Last but not least, there is always room for
improving memory efficiency by adjusting the model architecture and training procedure.

7 Broader Impact

Our work develops a better understanding of relative positional embedding for transformers based
on expressive kernel classes that adapt well to various datasets. The results apply to domains where
the positional information is helpful in the modeling, e.g., natural language, programming language,
and DNA/protein sequences for biology/medicine. The studies of transformers may have positive
economic effects by enabling new tasks which cannot be done by humans or enhancing accuracy and
efficiency. But inappropriate use can have negative societal impacts. These include job loss due to
automation, the ethical challenges from improper text generation, and the privacy issues in the data
collection process. These implications apply to any research on natural language processing and are
not associated with any specific work.
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