
A Appendix

In this section, we present some lemmas solved by Thor only.

Case 1. The lemma cols_upt_k _insert is from the QR Decomposition entry5 in the AFP.

lemma cols_upt_k_insert:
fixes A::"’a^’n::{mod_type}^’m::{mod_type}"
assumes k: "(Suc k)<ncols A"
shows "cols_upt_k A (Suc k) = (insert (column

(from_nat (Suc k)) A) (cols_upt_k A k))"
unfolding cols_upt_k_def
apply (auto)
apply (metis Suc_lessD from_nat_mono’ from_nat_to_nat_id k

less_Suc_eq_le less_le ncols_def to_nat_le)
by (metis from_nat_mono’ k less_imp_triv

less_or_eq_imp_le ncols_def not_less_eq order_trans)

Here, cols_upt_k A (Suc k) returns the set of columns in the matrix A up to the natural number
k+1, while ncols A counts the number of columns in the matrix A. In short, this lemma claims that
the set of columns (in a matrix A) up to column index k + 1 is equivalent to that of the same matrix
up to column index k inserted with the (k + 1)th column (of A). This will subject to the condition
that k + 1 is less than the number of columns in A. With Thor, the LM decided to unfold the goal
with the definition of cols_upt_k, which is followed by an auto tactic to simplify the proof state. All
remaining subgoals are then discharged by Sledgehammer.

Case 2. The lemma size_del_max is from theWeight-Balanced Trees entry6 in the AFP.

lemma size_del_max: "t ̸= Leaf =⇒ size t = Suc(size(snd(del_max t)))"
apply(induction t rule: del_max.induct)
apply simp
apply (clarsimp split: prod.splits)
apply (smt (z3) size_rotateR size_wbt.simps(1))
by simp

In this lemma, t is a weight-balanced tree, and the size function measures its size (as the name
suggests) and del_max deletes the maximum node from it. Essentially, this lemma claims that when a
weight-balanced its size will be reduced by one if we remove the largest node from it. For the proof,
Thor intelligently performs structural induction with the induction rule del_max.induct and then
simplifies the proof state a few times, which includes splitting products with the rule prod.splits.
Finally, Thor concludes the remaining goals with Sledgehammer.

Case 3. The lemma t_list_of_B_log_bound is from the AFP entry named as Priority Queues Based
on Braun Trees.7

lemma t_list_of_B_log_bound:
"braun t =⇒ t_list_of_B t ≤ 3 * (nlog2 (size t + 1) + 1) * size t"
apply (induction t rule: measure_induct_rule[where f=size])
apply (case_tac x)
apply simp
using braun.simps(1) t_list_of_B_braun_simps(1) apply blast
by (metis acomplete_if_braun height_acomplete order_refl

size1_size t_list_of_B_induct)

Here, size measures the size of a Braun tree; nlog2 stands for the function λx. ⌈log2(x)⌉;
t_list_of_B is another measure of a Braun tree. Basically, this lemma describes the relation-
ship between a normal tree size and a Braun-tree specific measure. The proof starts with an intelligent
structural induction, progresses with case analysis, and is concluded with Sledgehammer on each of
the remaining subgoals.

5QR_Decomposition/Gram_Schmidt.thy
6Weight_Balanced_Trees/Weight_Balanced_Trees.thy
7Priority_Queue_Braun/Sorting_Braun.thy

15

QR_Decomposition/Gram_Schmidt.thy
Weight_Balanced_Trees/Weight_Balanced_Trees.thy
Priority_Queue_Braun/Sorting_Braun.thy


Case 4. The lemma inj_imp_Ker0 is from the AFP entry named as Matrices, Jordan Normal Forms,
and Spectral Radius Theory.8

lemma inj_imp_Ker0:
assumes "inj_on T (carrier V)"
shows "carrier (V.vs kerT) = {0V}"
apply (rule equalityI)
apply (rule subsetI)
apply (unfold ker_def, auto)
by (metis V.module.M.zero_closed assms f0_is_0 inj_on_contraD)

Here, T is a linear map between two vector spaces. The lemma claims that if the T is injective on the
carrier set of the space V, the kernel of T has to be a singleton set with the zero in V. In this proof,
Thor naturally performs a sequence of introduction steps by applying the lemma equalityI and
subsetI, before unfolds the definition of a kernel (i.e., ker_def ) and uses auto to simplify the proof
state. The final remaining goal is closed with Sledgehammer.

8Jordan_Normal_Form/Missing_VectorSpace.thy

16

Jordan_Normal_Form/Missing_VectorSpace.thy

	Appendix

