
Supplementary Materials

A Constraint Explanation for Problem 2

Constraint 2b checks the loss of each sample and the derivation is shown as follows.

Let a latent variable Lst to be the loss of sample s at leaf node t, as ysk and ckt are both binary, we
can set:

Lst =
1

2

X

k2K
(ysk � ckt)

2 (11a)

=
1

2

X

k2K
(ysk + ckt � 2yskckt) , 8t 2 TL, s 2 {1, · · · , n} (11b)

It is easy to see that 0 Lst 1, as the loss of each sample s at leaf t can only have one mis-match
on class label. We introduce variable Ls 2 [0, 1] to indicate the loss of sample s in its best allocated
leaf. To guarantee that the best leaf node for sample s is chosen, we conclude the following big-M
constraints:

�M(1� zst) Ls � Lst (12)
As Ls � Lst will no exceed 1, combined with Equation 11, we have:

1

2

X

k2K
(ysk + ckt � 2yskckt)� Ls 1� zst , 8t 2 TL (13)

Constraint 2c ensures that only one label should be assigned to a particular leaf.

Constraint 2d to 2i are mainly adopted from Bertsimas and Dunn [2019] on Chapter 8.2. Here we
briefly explain the meaning and derivations of these constraints. Constraint 2d guarantees that a
sample can only be assigned to one leaf node. Constraint 2e and 2f are set to enforce the split of the
tree with given training data. They are derived as follow:

First, to enforce the splits required by the structure of the tree when assigning points to leaves, we set
constraints:

aTm(xs + ✏) bm +M1(1� zst), 8m 2 AL(t), t 2 TL (14)

aTmxs � bm �M2(1� zst), 8m 2 AR(t), t 2 TL (15)

Here ✏ is added to avoid the strict inequality and can be expressed as the smallest non-zero distance
between adjacent values of jth feature:

✏j = min{x(i+1)
j � x

(i)
j |x(i+1)

j 6= x
(i)
j } (16)

where x
(i)
j is the ith largest value in the jth feature.

To specify the M1 and M2, let ✏min = minj{✏j} and ✏max = maxj{✏j}, we notice that the largest
value for aTm(xs + ✏) � bm is 1 + ✏max. Thus, M1 can be set to 1 + ✏max. Similarly, The largest
value of aTmxs � bm is 1, so we can set M2 = 1.

Therefore, we reformulate Equation 14 and 15 as follow:

aTm(xs + ✏� ✏min) + ✏min bm + (1 + ✏max)(1� zst), 8m 2 AL(t), t 2 TL (17)

aTmxs � bm � (1� zst), 8m 2 AR(t), t 2 TL (18)

Constraint 2g and 2h are set to ensure that if there’s no split on t 2 TD, then all samples at this node
will go to the right branch of this decision node and send down to the same right most leaf node
(along with Constraint 2e and 2f). Constraint 2i enforces the hierarchical structure of the tree. It
guarantees a parent node must have a split if its child node has a split.

14

B Branch-and Bound Algorithm for Optimal Decision Tree Problem

Algorithm 1 depicts the details of the Branch-and-bound scheme for training the optimal decision
tree. Based on Proposition 3 and 4, relaxed MIP and group decomposition provide tighter bounds
than the basic lower bound. Therefore, using the basic lower and upper bound is adequate to deduct
the convergence proof of Algorithm 1. The critical property of our BB based optimal decision tree
training algorithm is that it can guarantee the convergence by only branching on the space of first
stage variables m = (a, b, c, d) (i.e. the variables describing the tree structure).

Algorithm 1 can be treated as a rooted BB tree. It starts from a root BB node indexed at level 0
with the original variable space M0. Let �(M) = ||mu �m

l||1 be the diameter of the set M . We
denote Miq as the BB node at level q which is explored at iteration iq . A node Miq+1 is a descendent
node that connected to its parent node Miq , with Miq+1 ⇢ Miq . The descendent node is at level
q + 1 and is explored at iteration iq+1. We denote {Miq} as the sequence of the partition element
that represents a path of the BB tree from the root node to the node Miq at the level q. Since the
search space is narrowing along the path, the sequence {�i} is monotonically increasing, while {↵i}
is monotonically decreasing. If lim

i!1
↵i = lim

i!1
�i = f , we say the BB algorithm converges. Once

the algorithm is convergent, it produces a global ✏-optimal solution in a finite number of steps.

Algorithm 1: Branch-and-Bound Optimal Decision Tree Algorithm
Input: M0, non-zero tolerance ✏

1 Set iteration index i = 0, M {M0} ;
2 Initial upper and lower bounds ↵i = ↵(M0), �i = �(M0);
3 repeat
4 Node Selection
5 Select a set M 2M satisfying �(M) = �i;
6 M M \ {M};
7 i i+ 1;
8 Branching
9 Partition M into subsets M1 and M2 according to the branch strategy in Section B.2;

10 Add each subset to M to create separated descendent nodes;
11 Bounding
12 Compute ↵(M1), �(M1), ↵(M2), �(M2);
13 For any j 2 {1, 2}, if �s(Mj) is infeasible for some s 2 S , M M \ {Mj};
14 �i min{�(M 0) | M 0 2M};
15 ↵i min{↵i�1,↵(M1),↵(M2)};
16 Remove all M 0 from M if �(M 0) � ↵i;
17 If |�i � ↵i| ✏, STOP;
18 until M = ;;

B.1 Proof of Theorem 1 (Convergence Analysis)

The proof follows the work of Cao and Zavala [2019] which proves the convergence of the BB
algorithm by only branching on first stage variables. In their case, both first stage and second stage
variables are continuous variables. They also assume that Q(.) is a continous function. However, we
prove that for optimal decision tree problem, which has mixed-integer first and second stage variables
and also discontinous Q(.) function, such convergence can still hold. We also adopt some basic
results from the seminal work in the Chapter IV of Horst and Tuy [2013] and modified definitions
and theories accordingly for the optimal decision tree problem.

Specifically, based on Corollary IV.1 and Definition IV.10 from Horst and Tuy [2013], it is easy
to see that Algorithm 1 creates exhaustive subdivisions. That is, for all decreasing sub-sequences
{Miq}, limq!1

�(Miq) = 0. To prove that the lower bound � converges to f , we have to show that the

lower bounding operation of Algorithm 1 is strongly consistent and its selection operation is bound

improving.

From Definition IV.6 and Theorem IV.3 of Horst and Tuy [2013], it is trivial that the selection
operation in Algorithm 1 is bound improving, since it always selects the node with the actual attained

15

lower bound for further partition. In Lemma 3 of Cao and Zavala [2019], they prove that the basic
lower bounding operation is strongly consistent if the first stage variables are continuous. In our
case, by giving priority to the first stage integer variables, after finite steps, all integer variables are
determined and then the prove can be down following Cao and Zavala [2019].
Lemma 5. Given an exhaustive subdivision on m, Algorithm 1 satisfies lim

i!1
�i = f .

Proof. Since Algorithm 1 uses a strongly consistent lower bounding operation and its selection
operation is bound improving, from Theorem IV.3 in Horst and Tuy [2013], the result is trivial.

Then, we have to prove the convergence of the upper bounds ↵ through the following lemma.
Lemma 6. Given an exhaustive subdivision on m, Algorithm 1 generates a sequence {↵i} such that

lim
i!1

↵i = f .

Proof. Since a, c, d are binary variables and these variables are given priority in the branching strategy,
the value of a, c, d will eventually be fixed after finite step of subdivision. Suppose the optimal limit
points of them are a

⇤
, c

⇤
, d

⇤. Therefore, we can have a i0, such that m0 = (a⇤, b, c⇤, d⇤), 8m0 2
Mi, 8i � i0 with fixed a

⇤
, c

⇤
, d

⇤. Let m⇤ 2 M0 as an optimal solution of Problem 2, with
m

⇤ = (a⇤, b⇤, c⇤, d⇤). Without loss of generality, we assume at a decision node t, the jth feature is
selected for splitting (i.e. a⇤jt = 1). Suppose the sorted value of jth feature from small to large is
{x1,j , · · · , xs,j , · · · , xn,j}. Assume xs,j is an optimal solution of bt. It is easy to see that all values
within the range [xs,j , xs+1,j) gives the same optimal value. Define b

⇤
t as the midpoint of the range.

Based on the definition of ✏ in Problem 2 (See Chapter 8.2 of Bertsimas and Dunn [2019]), we are
guarantee to have the same optimal value on any b such that bt 2 [b⇤t � 0.5✏min, b

⇤
t + 0.5✏min], 8t 2

TD. We denote B(m⇤) = {(a⇤, b, c⇤, d⇤) | bt 2 [b⇤t � 0.5✏min, b
⇤
t + 0.5✏min], 8t 2 TD}. For every

point m 2 B(m⇤), we have Q(m) = Q(m⇤) holds.

Since the subdivision is exhaustive, after a finite number of iterations i0 such that i0 � i0, we have,
either the partition considered satisfies Mi0 ✓ B(m⇤), or the partition Mi0 which contain the solution
m

⇤ is pruned. For the first case, since Mi0 ✓ B(m⇤), we have Q(m) = Q(m⇤), 8m 2 Mi0 . Then
we have that ↵i0 = Q(m⇤) = f . In the second one, since Mi0 is pruned, then we have ↵i0 �(Mi0).
Because m

⇤ 2 Mi0 , we also have �(Mi0) Q(m⇤). Hence, ↵i0 = Q(m⇤) = f . Therefore,
lim
i!1

↵i = f holds.

Combing Lemma 5 and 6, Theorem 1 can be obtained.

B.2 Branching Strategy for Algorithm 1

The branching strategy for Algorithm 1 is designed based on the variables’ effect on the structure
of the optimal decision tree. Since d indicates whether each decision node is splitting or not, it
directly determines the skeleton of the tree structure. Thus, in implementation, the variables of
d on each decision node are first used for branching. We devise the following heuristics for the
other three decision variables (a, b, c) to select the branching variable: First, we generate a threshold
⌧ = 1� 1

2 ||b
u � b

l||1. Suppose ⌧ is smaller than a randomly generated number between 0 and 1. In
that case, we branch on variable a, which determines the splitting feature of the decision node (If a is
all determined, then branching on variable c). When ⌧ is larger than the randomly generated number,
we branch on variable b (continuous) at the midpoint of its range. The interior order of each type of
variables is based on picking variable with smaller decision(leaf) node index (e.g. aj,t will be chosen
over aj,t+1, if they both are not determined.)

C Basic Lower Bounding Problem Calculation

Algorithm 2 explicit the way of finding optimal value of the subproblem �s. It also provides a
byproduct Tzs , which indicates the leaf node that sample s can reach under region M . Tzs can inherit
successively to the descendent BB node and directly reduce the number of variables on z for the lower
bound calculation. Moreover, Tzs can also enhance the effect of sample reduction, which further
improves the performance of the BB algorithm.

16

Algorithm 2: Global search for the basic subproblem �s(M) := min
m2M

Qs(m)

Input: xs,ys,m
l = (al, bl, cl, dl),mu = (au, bu, cu, du), D, n, L̂,�

1 Set DT root node (decision node) t0 = 1, node set T {t0}, Leaf loss set L = ;, reach leaf
node set Tzs = ;, TD = {1, · · · , 2D � 1}, TL = {2D, · · · , 2D+1 � 1};

2 while T 6= ; do
3 t = min{t | t 2 T};
4 T T \ {t};
5 if t 2 TD then
6 if dlt = d

u
t = 0 then

7 while t /2 TL do
8 t 2t+ 1
9 end

10 T T [{t};
11 else
12 Ft = {j | (aljt = a

u
jt = 1) _ (aljt 6= a

u
jt), 8j 2 {1, · · · , P}};

13 for Each split feature f 2 Ft do
14 if xsf < b

l
t then

15 T T [{2t};
16 else if xsf � b

u
t then

17 T T [{2t+ 1};
18 else
19 T T [{2t, 2t+ 1} ; /* xsf 2 [blt, b

u
t) */

20 end
21 end
22 end
23 else
24 Tzs Tzs [{t};
25 if ysk 2 [clkt, c

u
kt], 8k 2 {1, · · · ,K} then

26 L L [{0};
27 else
28 L L [{1};
29 end
30 end
31 end
32 return Tzs , L = 1

L̂
min{l | l 2 L}+ �

n

P
t2TD

d
l
t;

C.1 Proof of Theorem 2

In this part we prove Theorem 2 that Algorithm 2 can find all leafs that sample s can fall into under
M and can obtain the global optimum for the lower bound subproblem �s(M).

Proof. We proof by induction on maximum depth D:

Base case: Suppose maximum depth D = 0, then there’s only one leaf node t = 1 for the tree model,
Tz = {t} under M . The statement is true.

Induction: Suppose the statement is true for the decision tree problem with maximum depth D � 0
under any specific M , then for decision tree problem with maximum depth D + 1, since D � 0, the
first node is a decision node and line 6-22 guarantee to put all its possible descendent nodes into the
node set T according to bound M at decision node t. Since each possible descendent node can be
regarded as a root node of decision tree model with depth D, then the decision tree problem rooted
with the descendent nodes can find all possible leaf nodes that sample s can fall into with given
bound M = [ml

,m
u], according to the assumption. Thus the statement is proved true on decision

tree problem with maximum depth D + 1.

17

Therefore, since Algorithm 2 exhaust all possible loss of sample s and pick the minimum one,
Algorithm 2 will find the global optimum of subproblem �s(M) := min

m2M
Qs(m).

D Additional Analysis for Sample Reduction

In this section, we provide the new formula for two tighter lower bound strategies after sample
reduction.

Relaxed MIP With the assistance of Sdt we can further simplify Problem 7 as:

�
R(M) = min

c,L

X

s2Sud

1

L̂
Ls + �

X

t2TD

d
l
t +

X

s02Sdt

1

L̂
Ls0 (19a)

s.t. Ls � 1�
X

t2Tzs

X

k2K
yskckt (19b)

X

k2K
ckt = 1, 8t 2 TL (19c)

0 Ls 1 (19d)
ckt 2 {0, 1}, 8t 2 TL (19e)
s 2 Sud (19f)

Here, Ls0 are determined according to sample reduction. Compared to Problem 7, the number of
variable Ls is reduced from n to |Sud|. The solving efficiency of the second lower bound strategy
can be further enhanced.

Group decomposition The computing load of the subproblem formed by each group can also
be reduced through sample reduction. Specifically, we can have the following equation for each
subproblem �

G
g :

�
G
g (M) = min

mg2M,Ls

X

s2Sud\Sg

(
1

L̂
Ls +

�

n

X

t2TD

dt) +
X

s02Sdt\Sg

1

L̂
Ls0 (20a)

s.t. Constraint 2g 2h 2i 2j 2k (20b)
1

2

X

k2K
(ysk + ckt � 2yskckt)� Ls 1� zst, 8t 2 Tzs (20c)

X

k2K
ckt = 1, 8t 2 TL (20d)

X

t2Tzs

zst = 1 (20e)

aTm(xs + ✏� ✏min) + ✏min bm + (1 + ✏max)(1� zst),

8m 2 AL(t), t 2 Tzs (20f)

aTmxs � bm � (1� zst), 8m 2 AR(t), t 2 Tzs (20g)
zst 2 {0, 1}, 8t 2 Tzs (20h)
ckt 2 {0, 1}, 8t 2 TL (20i)
s 2 Sud \ Sg (20j)

Here, we can see that the number of decision variables is also vastly reduced. The number of
constraints related to samples is significantly reduced accordingly under the scheme of sample
reduction. In the case that |Tzs | = 1 for some s, the corresponding constraint 20e- 20g are eliminated
on these s, since here zs is fully determined.

18

E Additional Experiments

E.1 Results with Hyperparameter Tuning

We implement the experiments with hyperparameter tuning and compared the performance of RS-
OCT with CART, OCT [Bertsimas and Dunn, 2017], and FlowOCT [Aghaei et al., 2020]. Since
FlowOCT is designed for datasets with binary features, all datasets are transformed to binary with
one-hot encoding before feeding to FlowOCT. The code of FlowOCT is implemented in Python† and
use Gurobi as the MIP solver. Table 3 and 4 present the results of training optimal classification trees
on all datasets with hyperparameters selected through validation for all four methods. For OCT and
our method, we performed hyperparameter tuning following the instruction in [Bertsimas and Dunn,
2017] to select the continuous regularization parameter �. For CART, we first train a full decision
tree with the maximum depth and then we prune the tree by tuning the pruning-purity parameter
from the Julia package DecisionTree.jl. For FlowOCT, we followed the instruction in [Aghaei
et al., 2020] and modify its regularization parameter � by selecting values in the set {0, 0.1, · · · , 0.9}.
From the result, we can see that even after hyperparameter tuning, RS-OCT still competitive on
most of datasets, compared to other methods. Particularly, for large datasets (i.e., n � 7, 000), when
maximum depth of tree is two, RS-OCT can improve the training accuracy of 2.7% and 2.5% on
average, compared to CART and OCT, respectively. The testing accuracy (out of sample accuracy)
can be improved by 2.8% and 2.5% on average, compared to CART and OCT, respectively.

E.2 Analysis and Ablation Test for Sample Reduction

We provide the analysis and ablation test of the sample reduction on small and median dataset to
demonstrate its effectiveness. First, four indicators are presented to help evaluate the effect of sample
reduction on each dataset. The NODES represents how many BB nodes are explored during the
running of the BB algorithm. The MAX-LEVEL represents the maximum depth of the BB nodes
explored by the BB algorithm. The MAX-RATE and AVG-RATE are the indicators of the maximum
and average percent of samples whose loss are pre-determined before the calculation of each node.
We did not put the MIN-RATE here since, in the root decision node of the tree, no sample can be
determined, and thus the MIN-RATE is always zero.

The numerical results (Table 5) reveal that the effect of sample reduction will primarily reduce the
computation load when the search tree of the BB algorithm goes deep. Specifically, for datasets
(SEEDS, GLASS, BODY, BANKNOTE, WALL-FOLLOWING) that can converge to a small optimality
gap (e.g. 1), the sample reduction devote a significant effort on the calculation process in terms of
Max-rate and Avg-Rate. Almost all of these datasets can, on maximum, have the loss determined for
over 90% of samples and maintain a relatively high average rate of determined samples among all
explored nodes. For the indicator of Nodes and Max-Level, we discover that the exploration of more
nodes could also harness the effect of sample reduction even if the node’s level is not deep, especially
when the data size is large.

Next, we perform the ablation test for sample reduction. To make the comparison more precise, we
only test on datasets where the average percentage of determined samples is above zero. Table 6
presents the test result and reveals that, with sample reduction, all datasets can either converge to a
smaller optimality gap within the same time or use less time to reach <1% optimality gap. Therefore,
the sample reduction can have a recognizable effect on improving the calculation efficiency of each
BB node.

One limitation of the sample reduction is that it could have reduced influence on datasets with high
feature dimensions (e.g. Both two OZONE datasets have 72 features). The reason could be probably
due to the large search space of the decision variables (i.e. The number of first-stage variable is
(P + 2)|TD|+K|TL|, which is proportional to P and K). Even if the bounds of decision variables
is narrowed through the BB procedure, the feasible space under a BB node is still too large to help
determine the loss of any samples.

†https://github.com/pashew94/StrongTree

19

https://github.com/pashew94/StrongTree

Table 3: Numerical results on small and median datasets with hyperparameter tuning (Serial).

DATA-
SET

n P K METHOD
DEPTH = 2 DEPTH = 3

TRAINING
ACCURACY (%)

TESTING
ACCURACY (%)

TRAINING
ACCURACY (%)

TESTING
ACCURACY (%)

SEEDS 210 7 3

CART 91.2 94.1 91.8 94.1
OCT 94.3 86.3 96.9 90.2

FLOWOCT 43.8 30.8 45.3 32.5
RS-OCT 94.3 88.2 95.0 94.1

GLASS 214 9 6

CART 65.8 64.3 72.2 64.3
OCT 67.2 64.3 72.8 67.9

FLOWOCT 55.1 40.7 59.2 37.0
RS-OCT 68.4 62.5 71.5 62.5

BODY 507 5 2

CART 90.0 88.9 91.9 88.1
OCT 91.1 87.3 93.7 93.7

FLOWOCT 60.6 56.7 63.9 59.8
RS-OCT 92.1 92.9 93.7 91.3

STATLOG-
GERMAN

1,000 24 2

CART 73.7 71.2 76.7 74.8
OCT 73.9 70.0 75.5 72.4

FLOWOCT 75.7 72.0 77.2 72.0
RS-OCT 73.9 70.0 76.0 70.8

CONCRETE 1,030 8 3

CART 62.6 61.9 69.5 65.0
OCT 65.3 63.0 69.9 64.6

FLOWOCT 57.6 61.2 66.3 65.1
RS-OCT 65.2 63.8 67.8 70.4

BANKNOTE 1,372 4 2

CART 90.0 89.0 95.1 95.9
OCT 90.3 87.5 96.2 98.5

FLOWOCT 54.0 52.2 55.1 52.2
RS-OCT 92.7 91.3 97.9 96.8

CONTRA-
CEPTIVE

1,473 11 3

CART 47.7 46.3 53.4 52.6
OCT 52.0 52.6 55.8 56.4

FLOWOCT 50.3 44.4 53.4 46.3
RS-OCT 52.0 52.6 55.6 56.6

OZONE-
EIGHT

1,847 72 2

CART 93.1 93.1 93.7 92.0
OCT 93.6 93.3 93.7 92.8

FLOWOCT 93.2 93.7 7.4 6.5
RS-OCT 93.8 92.6 93.7 92.8

OZONE-
ONE

1,848 72 2

CART 97.0 96.8 97.0 96.8
OCT 97.1 96.3 97.3 96.3

FLOWOCT 96.8 95.7 96.3 97.2
RS-OCT 97.3 96.8 97.1 96.1

THYROID-
ANN

3,772 21 3

CART 97.8 98.1 99.4 99.0
OCT 97.8 98.1 99.4 98.8

FLOWOCT 92.9 94.4 93.0 94.4
RS-OCT 97.8 98.1 99.4 99.2

STATLOG-
LANSAT

4,435 36 6

CART 64.7 64.6 79.6 79.8
OCT 65.2 64.8 79.6 79.2

FLOWOCT 31.6 33.0 33.8 33.3
RS-OCT 66.6 67.8 80.1 79.9

SPAMBASE 4,601 57 2

CART 86.6 86.2 87.9 87.0
OCT 86.0 84.5 88.6 87.2

FLOWOCT 81.3 82.8 OOM1 OOM
RS-OCT 85.4 84.5 89.6 89.0

WALL-
FOLLOWING

5,456 2 4

CART 94.0 94.0 100.0 100.0
OCT 94.0 94.0 100.0 100.0

FLOWOCT 42.5 40.9 43.1 41.4
RS-OCT 94.0 94.0 100.0 100.0

PAGE-
BLOCK

5,473 10 5

CART 95.4 95.0 96.3 95.6
OCT 95.4 95.3 96.4 95.7

FLOWOCT 93.9 92.3 OOM OOM
RS-OCT 95.4 95.3 96.4 95.7

1 OUT OF MEMORY.

20

Table 4: Numerical results on large datasets with hyperparameter tuning (Paralleled with 1000 cores).

DATA-
SET

n P K METHOD
DEPTH = 2 DEPTH = 3

TRAINING
ACCURACY (%)

TESTING
ACCURACY (%)

TRAINING
ACCURACY (%)

TESTING
ACCURACY (%)

PENDIGITS 7,494 16 10

CART 38.9 39.1 62.7 62.9
OCT 39.2 39.4 62.8 63.3

FLOWOCT 36.5 39.0 52.1 53.7
RS-OCT 39.9 39.9 63.9 63.7

AVILA 10,430 10 12

CART 52.2 52.9 55.0 55.3
OCT 52.4 53.3 55.0 55.3

FLOWOCT OOM1 OOM OOM OOM
RS-OCT 53.5 54.6 55.0 55.3

EEG 14,980 14 2

CART 62.3 61.7 65.6 63.8
OCT 62.3 61.7 55.1 55.1

FLOWOCT 55.4 56.3 44.7 43.7
RS-OCT 66.7 66.0 67.9 65.7

HTRU 17,898 8 2

CART 97.8 97.7 97.8 97.7
OCT 97.8 97.7 97.8 97.7

FLOWOCT OOM OOM OOM OOM
RS-OCT 98.0 97.8 97.9 97.7

SHUTTLE 43,500 9 7

CART 93.9 93.8 99.6 99.6
OCT 93.9 93.8 99.6 99.6

FLOWOCT OOM OOM OOM OOM
RS-OCT 95.4 95.5 99.7 99.8

SKIN-
SEGMEN-

TATION
245,057 3 2

CART 90.7 90.6 93.8 93.8
OCT 90.7 90.6 93.8 93.8

FLOWOCT OOM OOM OOM OOM
RS-OCT 92.7 92.7 96.6 96.5

HT-
SENSOR

928,991 11 3

CART 58.1 58.1 64.3 64.3
OCT 58.1 58.1 64.3 64.3

FLOWOCT OOM OOM OOM OOM
RS-OCT 59.7 59.8 64.6 64.5

1 OUT OF MEMORY.

Table 5: The effects of sample reduction on small and median datasets (D = 2,� = 0.05, serial).

DATASET n P K NODES MAX-LEVEL MAX-RATE (%) AVG-RATE (%)
SEEDS 210 7 3 345 38 96.9 35.6
GLASS 214 9 6 178 50 93.7 23.5
BODY 507 5 2 3195 43 100 60.5

STATLOG-GERMAN 1,000 24 2 3736 42 0.0 0.0
CONCRETE 1,030 8 3 22 10 0.0 0.0
BANKNOTE 1,372 4 2 9538 38 99.9 89.9

CONTRACEPTIVE 1,473 11 3 7553 30 84.3 3.9
OZONE-EIGHT 1,847 72 2 2012 73 0.0 0.0
OZONE-ONE 1,848 72 2 6181 83 0.0 0.0

THYROID-ANN 3,772 21 3 23142 79 97.8 0.8
STATLOG-LANSAT 4,435 36 6 1784 45 0.5 0.0

SPAMBASE 4,601 57 2 146 72 0.0 0.0
WALL-FOLLOWING 5,456 2 4 93 38 91.4 19.8

PAGE-BLOCK 5,473 10 5 4227 52 99.0 2.5

Table 6: Ablation test of sample reduction on small and median datasets (D = 2,� = 0.05, serial).

DATASET n P K TIME-NO SR TIME-SR GAP-NO SR GAP-SR
SEEDS 210 7 3 329.1 151.2 <1% <1%
GLASS 214 9 6 2,125.6 1,903.8 <1% <1%
BODY 507 5 2 1,036.1 965.9 <1% <1%

BANKNOTE 1372 4 2 773.1 633.8 <1% <1%
WALL-FOLLOWING 5456 2 4 338.3 223.2 <1% <1%
CONTRACEPTIVE 1473 11 3 14,400.0 14,400.0 12.2% 12.0%

THYROID-ANN 3772 21 3 14,400.0 14,400.0 68.7% 55.6%
PAGE-BLOCK 5473 10 5 14,400.0 14,400.0 47.3% 46.2%

21

