
A Scalable Deterministic Global Optimization
Algorithm for Training Optimal Decision Tree

Kaixun Hua
University of British Columbia

kaixun.hua@ubc.ca

Jiayang Ren
University of British Columbia
rjy12307@mail.ubc.ca

Yankai Cao⇤
University of British Columbia

yankai.cao@ubc.ca

Abstract

The training of optimal decision tree via mixed-integer programming (MIP) has
attracted much attention in recent literature. However, for large datasets, state-of-
the-art approaches struggle to solve the optimal decision tree training problems
to a provable global optimal solution within a reasonable time. In this paper, we
reformulate the optimal decision tree training problem as a two-stage optimization
problem and propose a tailored reduced-space branch and bound algorithm to
train optimal decision tree for the classification tasks with continuous features.
We present several structure-exploiting lower and upper bounding methods. The
computation of bounds can be decomposed into the solution of many small-scale
subproblems and can be naturally parallelized. With these bounding methods, we
prove that our algorithm can converge by branching only on variables representing
the optimal decision tree structure, which is invariant to the size of datasets. More-
over, we propose a novel sample reduction method that can predetermine the cost
of part of samples at each BB node. Combining the sample reduction method with
the parallelized bounding strategies, our algorithm can be extremely scalable. Our
algorithm can find global optimal solutions on dataset with over 245,000 samples
(1000 cores, less than 1% optimality gap, within 2 hours). We test 21 real-world
datasets from UCI Repository. The results reveal that for datasets with over 7,000
samples, our algorithm can, on average, improve the training accuracy by 3.6%
and testing accuracy by 2.8%, compared to the current state-of-the-art.

1 Introduction

Decision tree, as a typical supervised learning algorithm with strong interpretability, has been applied
in a wide range of fields. As a rule-based inductive model, a decision tree concludes a series of
decision rules to navigate tasks such as classification or regression. The target of the decision tree is
to achieve a low prediction error while maintaining the low complexity of the decision tree structure.
Therefore, modelling a decision tree can be treated as an optimization problem that minimizes the
training error and the tree complexity. However, even constructing an optimal decision tree with binary
class is NP-complete [Laurent and Rivest, 1976]. Since the first establishment of the decision tree
algorithm by [Morgan and Sonquist, 1963], many heuristic algorithms, such as ID3 [Quinlan, 1986],
C4.5 [Quinlan, 1996] and CART [Breiman et al., 1984], are proposed to achieve the optimization
target. However, these heuristic algorithms inevitably fall into sub-optimal solutions.

⇤corresponding author

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

A recent study based on a comprehensive benchmark shows that global solutions lead to average
absolute improvements in test accuracy of 1 - 5% [Bertsimas and Dunn, 2017]. Several formulations
and algorithms have been proposed to learn optimal decision trees through mixed integer program-
ming (MIP) [Verwer and Zhang, 2017, 2019, Aghaei et al., 2020, Günlük et al., 2021], itemset
mining [Nijssen and Fromont, 2007, Aglin et al., 2020], tailed branch-and-bound and dynamic
programming [Hu et al., 2019, Lin et al., 2020, McTavish et al., 2022, Demirović et al., 2022] or
SAT [Narodytska et al., 2018, Avellaneda, 2020, Ordyniak and Szeider, 2021, Hu et al., 2020, Shati
et al., 2021]. However, a majority of these works can only address binary features. Binary encoding
(converting continuous features into binary features) may lead to an enormous feature space, and
may also lose information on the relationship between values of numerical features. Some of the
aforementioned works have also proposed several approaches, such as bucketization [Verwer and
Zhang, 2019], minimum description length principle [Demirović et al., 2022], and boosting tree
based column elimination [McTavish et al., 2022], to deal with this problem.

Besides the works using binary-encoded features, the other research direction that focuses on directly
addressing numerical features through MIP is rarely explored. Bertsimas and Dunn [2017] propose a
seminal work on modelling the optimal classification tree (OCT) as a MIP problem, which directly
address continuous features. This approach avoids the drawback of binary encoding and can be
extended naturally to the multivariate (oblique) decision tree problem [Bertsimas and Dunn, 2019].
Recently, Zhu et al. [2020] present an SVM-based MIP formulation for learning optimal multivariate
decision trees. This work also presents a sample selection method to select a subset of samples and
use it to train the decision tree. Although the authors claim that the sample selection method can
handle large datasets, the decision tree learned on the subset is not guaranteed to be the optimal one
of the original dataset. The above MIP based approaches all rely on off-the-shelf MIP solvers such
as CPLEX [Cplex, 2020] and Gurobi [Optimization, 2020], and have reported directly addressing
datasets with up to 7,000 samples. Bertsimas and Dunn [2017] mentioned in their article that "datasets
with tens of thousands of points were tested, but the time required for our methods to generate high-
quality solutions was prohibitive". The main obstacle preventing the solvable problem from scaling
to large datasets is that all these solvers implement a classical branch-and-bound (BB) scheme, which
needs to branch on all binary variables to guarantee convergence, the dimension of which expands
linearly with the size of the dataset.

In this paper, we propose a scalable deterministic global optimization algorithm for training optimal
decision tree on classification task with numerical features. The first contribution of our work is that
we reformulate the optimal decision tree training as a two-stage optimization problem. The stochastic
programming community has made great progress in exploiting the structure of this type of problems
[Karuppiah and Grossmann, 2008, Li and Grossmann, 2019]. Recently, Cao and Zavala [2019] prove
that for a two-stage problem with continuous second stage variables, branching only on the first
stage variables can guarantee the convergence under mild assumptions. Many machine learning
problems can be modeled as a two-stage problem and can apply this reduced-space BB method [Hua
et al., 2021, Shi et al., 2022]. Although for the decision tree training problem, there are both binary
and continuous variables in the second stage (i.e., sample specific variables, such as the predicted
class of a sample), we prove that the convergence of our branch-and-bound algorithm can still be
guaranteed by only branching on the first-stage variables (i.e., variables that represents the structure
of the decision tree), the dimension of which is independent of the number of samples. Secondly, we
provide several bounding strategies to construct the lower and upper bound of each BB node. Our new
MIP formulation consists of a decomposable structure that can be directly parallelized when solving
the lower bounding problem. We also present a tight and efficient MIP formula to obtain a lower
bound quickly. Thirdly, we develop a sample reduction method that can predetermine the costs of
some samples before the lower bound calculation at each BB node. Such a method can be combined
with the lower bound calculation to further speed up the solution process, especially for large-scale
datasets. The ablation test (Appendix D) performed on datasets reveals a consistant effectiveness on
improving the computation speed of the BB process. Our experiments show that some BB nodes (e.g.,
when training the dataset BANKNOTE) can even have more than 99% of samples to be determined
before computing the lower bound.

With these strategies, our tailored reduced-space BB algorithm can scale well on large datasets.
For large datasets, the optimal solution found by our algorithm can on average reduce the optimal
cost by 12.5% and improve the training accuracy by 3.6% and testing accuracy by 2.8%, compared
to the current state-of-the-art [Bertsimas and Dunn, 2019]. Remarkably, our work is the first that

2

successfully trains a decision tree to global optimum on a dataset with 245,000 samples (1000 cores,
less than 1% optimality gap, within 2 hours). We also improve the test accuracy by 1.7% on a dataset
with almost one million samples (928,991 samples, 1000 cores, under 56.2% optimality gap within
4 hours), compared with CART and OCT. We highlight that we also report the optimality gap as a
criteria to evaluate the goodness of the optimal solution, which is not presented in the majority of
MIP based works. Bertsimas and Dunn [2019] states that the current MIP solvers struggle to provide
a reasonable optimality gap for their OCT problem. It is also aligned with our numerical analysis
that OCT still retains over 90% optimality gap on average for large datasets. At the same time, our
algorithm can provide a practical gap on most of the dataset. Although OCT could find a better
solution than CART at the early stage of the solving process, our results reveal that an even better
solution could be discovered later and can result in better testing accuracy on large datasets.

In the following discussion of the paper, to avoid the ambiguity, we denote the node for the decision
tree as decision node and leaf node and the node for the branch-and-bound algorithm as BB node.

2 Optimal Decision Tree with Decomposible Structure

In this work, we focus on training an optimal decision tree for the task of classification. Most part
of the formulation presented here follows the work of Bertsimas and Dunn [2019]. However, in our
formulation, we do not consider the constraint about the minimum number of samples required in the
leaf node. Let S = {1, · · · , n} be the sample set and K = {1, · · · ,K} be the class set. For a given
data set X = {xs | xs 2 RP

, s 2 S} with corresponding label set Y = {ys | ys 2 {0, 1}K , s 2 S},
where P is the number of features and K is the number of class. Initially, we scale each feature
of the dataset to the range between 0 and 1. We seek to find an optimal decision tree model
F : RP �! {0, 1}K with maximum depth D, such that:

L(F) =
X

s2S
E(F (xs),ys) + �R(F) (1)

is minimized. Here, E(·) measures the misclassification error, R(·) is the regularization function
that measure the complexity of the optimal decision tree model and � is the complexity parameter.
We denote t 2 {1, · · · , T} as the node of the tree, where T = 2D+1 � 1 is the size (total number
of nodes) of the tree. Following the definition of Bertsimas and Dunn [2017], let p(t) = bt/2c
be the parent decision node of t, AL(t) as the set of ancestors of t whose left branch is followed
on the path from root node to node t, and AR(t) as the set of ancestors of t whose right branch is
followed on the path from root node to node t. The tree node consists of two sets: decision node

with t 2 TD = {1, · · · , bT/2c} and leaf node with t 2 TL = {bT/2c+ 1, · · · , T}. The training of
optimal decision tree can be treated as an optimization problem (Problem 2):

min
a,b,c,d,z,L

X

s2S
(
1

L̂
Ls +

�

n

X

t2TD

dt) (2a)

s.t.
1

2

X

k2K
(ysk + ckt � 2yskckt)� Ls 1� zst, 8t 2 TL (2b)

X

k2K
ckt = 1, 8t 2 TL (2c)

X

t2TL

zst = 1 (2d)

aTm(xs + ✏� ✏min) + ✏min bm + (1 + ✏max)(1� zst), 8m 2 AL(t), t 2 TL (2e)

aTmxs � bm � (1� zst), 8m 2 AR(t), t 2 TL (2f)
PX

j=1

ajt = dt, 8t 2 TD, j 2 {1, · · · , P} (2g)

0 bt dt, 8t 2 TD (2h)
dt dp(t), 8t 2 TD (2i)
0 Ls 1 (2j)

3

ajt, dt 2 {0, 1}, 0 bt 1 8t 2 TD, j 2 {1, · · · , P} (2k)
zst, ckt 2 {0, 1}, 8t 2 TL (2l)
s 2 S (2m)

Here, variable a, b, c, d describe the structure of decision tree. Specifically, variable dt on node
t 2 TD determines whether a decision node splits or not. We track such split with variable at =
[a1t, · · · , aPt]T 2 {0, 1}P and bt 2 [0, 1]. The prediction of each leaf node is controlled by the
class indicator ckt 2 {0, 1}, 8t 2 TL, k 2 K. Variable zst, 8t 2 TL, s 2 S represents whether
sample s falls into leaf t. Variable Ls 2 [0, 1] represents the loss of sample s. ysk 2 {0, 1} is the
element of vector ys which represents whether sample s is labeled k. L̂ is the parameter to normalize
the misclassification with the baseline accuracy. ✏, ✏max, and ✏min are constants to maintain the
calculation stability of problem 2. Their values are generated following Bertsimas and Dunn [2019].
A detailed explanation of constraints can be found in Appendix A at supplementary materials.

3 Reduced-space Branch-and-Bound Algorithm

In this section, we model Problem 2 as a two-stage optimization problem and propose a reduced-space
branch-and-bound (BB) algorithm with properly designed lower and upper bounds. Algorithm 1
(presented in Appendix B) elaborates the details of our algorithm. The algorithm starts from the
initial feasible region M0. It narrows the gap between the lower and upper bound by partitioning
M0 recursively into smaller regions and pruning any regions that are verified to contain no optimal
solution. In each iteration with particular sub-region M , lower bound �(M) and upper bound ↵(M)
are computed. If the gap between � and ↵ is smaller than ✏, Algorithm 1 terminates. Otherwise M is
partitioned into two disjoint sub-region with some branching strategies explained in Appendix B.2.

A critical feature of our algorithm is that it can ensure the convergence by only branching on the first
stage variables (i.e. a, b, c, d). Cao and Zavala [2019] prove that for a two-stage optimization problem,
if the second stage variables are continuous, then the BB algorithm can converge by branching only
on the first stage variables. Although the decision tree training problem is different since we have
both continuous and binary second stage variables, we can still prove its convergence.

Theorem 1. Algorithm 1 converges to the global optimum, in the sense that

lim
i!1

↵i = lim
i!1

�i = f (3)

The proof of Theorem 1 is presented in Appendix B.1.

3.1 Two Stage Optimization Problem

Note that variables a, b, c, d describe the structure of decision tree and are the same for all sample,
while variables z and L are sample-specific variables and describe the allocation and cost of a specific
sample. Therefore, Problem 2 can be reformulated as a two-stage optimization problem in the
following form:

f(M0) = min
m2M0

X

s2S
Qs(m) (4)

where we denote m = (a, b, c, d) as all first-stage variables and Qs(·) represents the optimal value of
the second-stage problem:

Qs(m) = min
zs,Ls

1

L̂
Ls +

�

n

X

t2TD

dt (5a)

s.t. Constraint 2b � 2l (5b)

The closed set M0 := [ml
,m

u] denotes the region of the first stage variables. (·)l, (·)u represent the
lower and upper bound of each variable. In each BB node with a specific partition M ✓ M0, we
solve the problem f(M) = min

m2M

P
s2S

Qs(m).

4

3.2 Lower Bounding Problem

Basic lower bounding problem: the problem we solve at each BB node has an implicit constraint.
That is, all samples share the same first stage variables (i.e., tree structure). This is called non-
anticipativity constraints in the stochastic programming community. We can obtain a basic lower
bound by relaxing this constraint and solve the resulting problem:

�(M) := min
ms2M

X

s2S
Qs(ms) (6)

such a problem can be easily decomposed into n subproblems �s(M) := min
m2M

Qs(m) with �(M) :=
P
s2S

�s(M). The optimal value of �s can be calculated through Algorithm 2 (presented in Appendix C)

by enumerating all possible leaf nodes that sample s can fall into, without the need to solve any
optimization problems explicitly. The complexity of Algorithm 2 is O(|TD|+ |TL|). Since the depth
of the tree is typically small for the sake of interpretability, the speed of Algorithm 2 can be executed
much faster than other methods.
Theorem 2. With given bound M = [ml

,m
u], Algorithm 2 finds all possible leaf nodes that sample

s can fall into and gives the global optimal value of �s(M).

The proof of Theorem 2 is in Appendix C.1.

Relaxed MIP problem: One byproduct of Algorithm 2 is Tzs ✓ TL, the set of all possible leaf
nodes that sample s can fall into. Figure 1 in Section 4 provides an example on the determination
of Tzs . We have zst = 0, 8t 62 Tzs . For each sample, basic lower bounding method computes the
lower bound by comparing the label ysk with the prediction ckt of each leaf node in t 2 Tzs . Note
here basic lower bounding method relaxes the non-anticipativity constraints on c and allow different
values of c for each sample. We can enforce this constraint to generate a tighter lower bound by
solving the following MIP problem:

�
R(M) = min

c,L

X

s2S

1

L̂
Ls + �

X

t2TD

d
l
t (7a)

s.t. Ls � 1�
X

t2Tzs

X

k2K
yskckt (7b)

X

k2K
ckt = 1, 8t 2 TL (7c)

0 Ls 1 (7d)
ckt 2 {0, 1}, 8t 2 TL, k 2 K (7e)
s 2 S (7f)

where d
l is the lower bound of variable d. Since the only number of integer variables in Problem 7

is c, the dimension of which is typically small and independent of the number of samples, solving
Problem 7 is much easier than the original problem. Because Problem 7 is based on the Tzs calculated
from the basic lower bounding method but enforces non-anticipativity constraints on c, we have:
Proposition 3. �(M) �

R(M) f(M)

Notice that when the variable c is fixed (cl = c
u in M) at a BB node, �(M) = �

R(M) holds and we
do not need to compute �

R(M).

Group decomposition: for the basic lower bounding method, we treat each sample as one subproblem.
One natural extension is to assign multiple samples to a subproblem. Specifically, we define the

group set G = {1, · · · , G}, and we partition S into G groups {S1, · · · ,SG |
GS

g=1
Sg = S and

Si \ Sg = ;, 8i, g 2 G, i 6= g}, then we can obtain a lower bound from:

�
G(M) := min

mg2M

X

g2G
Qg(mg), (8)

5

which can be decomposed into G subproblems with �
G(M) =

P
g2G

�
G
g (M) and �

G
g (M) :=

min
mg2M

Qg(mg). Here each subproblem g can be obtained by replacing s 2 S in the original

problem with s 2 Sg. The non-anticipativity constraints is still enforced within each subproblem
(i.e. a, b, c, d are the same for all samples within the group), while the non-anticipativity constraints
between groups are relaxed. Hence, the �G provides a tighter lower bound than the basic lower bound
�.
Proposition 4. �(M) �

G(M) f(M)

The fewer groups we split, the tighter is the lower bound. However, the solution time of each
subproblem is also longer. Therefore, there is a trade-off between the efficiency and tightness when
setting the number of groups. Besides this, the way of assigning samples to groups also influences the
quality of lower bounds. Finding the best grouping scheme is itself NP-hard. In our implementation,
we adopted the heuristic results (e.g. CART) to navigate the assignment of groups. First, we divide
all samples into raw groups based on leaves they fall under from the heuristic solution. Second, in
each raw group, a k-means clustering is launched. Finally, the samples for each cluster at each raw
group are evenly assigned to G groups. In this way, samples are approximately evenly distributed
among different groups. We keep the group assignment the same for all BB nodes.

3.3 Upper Bounding Problem

The upper bound can be easily obtained by choosing any arbitrary first stage solution m̂ 2 M .
Let ↵(M) be the upper bounding problem, we have ↵(M) =

P
s2S Qs(m̂). The calculation of

↵(M) is the same as the evaluation of a decision tree m̂, which is computationally cheap. In our
implementation, at the root BB node, we use CART to provide a feasible solution m̂ for the initial
upper bound. We also propose two heuristics in each descendent BB node to enable a fast search
for an optimal solution. First, the optimal solution to each subproblem directly provides a feasible
solution. We calculate the corresponding cost and pick the most optimal one to be the upper bound.
This method does not require additional computational time to generate m̂. However, it could be
affected by the group assignment. The second method applies bootstrapping to randomly generate
a small subset of samples and train a decision tree for the subset. This "bootstrapped" subproblem
provides a feasible solution and introduces more possibilities for finding a better upper bound.

4 Sample Reduction

During the calculation of the basic lower bound, Algorithm 2 reduces the possible leaf nodes that
sample s can fall into from TL to Tzs . Comparing the label ysk with the range of c of each leaf node
in t 2 Tzs , the loss of some samples can be determined. Specifically, suppose k is the label of sample
s (i.e. ysk = 1). Equation 9 checks the loss of sample s under M .

Ls =

8
>><

>>:

1 if
V

t2Tzs

c
l
kt = c

u
kt = 0

0 if
V

t2Tzs

c
l
kt = c

u
kt = 1

undtm. otherwise

(9)

Figure 1 provides an example to illustrate the determination of Tzs and the loss determination of a
sample s under some conditions of cl, cu. If the loss of sample s is determined at the current BB node,
we no longer need to take this sample into consideration in the lower bound calculation, resulting
in sample reduction. Moreover, determined loss holds for all descendent BB nodes. Therefore, the
determination of some sample’s loss can significantly reduce the computational load, especially when
the level of the search tree goes deep. With sample reduction, many of these samples can determine
their loss without being involved in the solution of any optimization problem. Indeed, for dataset
SKIN-SEGMENTATION (one of the largest test dataset in our experiment with n = 245, 057), on
average, 63.6% of the samples can be determined among all BB nodes. For some BB nodes, 99.6%
of samples can have their loss determined. Such a strategy significantly improves node exploration
efficiency.

We notice that a similar "data selection" method is proposed in [Zhu et al., 2020]. A major difference
between their method and our "cost determination" method is that the solution found from the

6

"selected" data subset can not guarantee the global optimum of the original dataset. In contrast, in
our method, the loss of removed samples is not deleted but pre-determined and added to the final
total loss calculation. Hence, the optimal solution we obtain is the same as the optimal solution of the
original problem.

Improvements on the calculation of lower bound: define the sample set with determined loss
as Sdt and those with undetermined loss as Sud, such that |Sdt|+ |Sud| = n. Here, we analyze the
effects of sample reduction combined with the reach-leaf determination (Tzs) on three lower bound
strategies. Initially, the calculation of the basic lower bounding problem requires running Algorithm 2
for n times. With sample reduction, the basic lower bounding problem (Problem 6) can be rewritten
as:

�(M) := min
ms2M

X

s2Sud

Qs(ms) +
X

s2Sdt

1

L̂
Ls (10)

Here, Ls, 8s 2 Sdt is already determined at the parent BB node via the sample reduction. Thus, the
computing load of Problem 6 can be reduced from O(n) to O(|Sud|). Since M of a descendent BB
node is a subset of its parent BB node, Tzs can also be inherited from the parent BB node, and the
calculation of Tzs only need to be executed on samples in Sud. Similarly, for the lower bound from
relaxed MIP, the number of samples involved in the optimization is reduced from n to |Sud|. Finally,
for the group decomposition based lower bounding strategy, the number of samples involved in each
subproblem is reduced from |Sg| to |Sud \ Sg|. The detailed formulations of these lower bounding
methods after sample reduction can be found in Appendix D.

x1 = [0.8],y1 = [0, 1]

0 0
1 1

cl

cu
0 1
0 1

0 1
0 1

0 1
0 1

(a) Tz1 = [6, 7], L1 = 0

x2 = [0.5],y2 = [1, 0]

0 0
1 1

0 1
0 1

0 1
0 1

0 1
0 1

(b) Tz2 = [5, 6, 7], L2 = 1

x3 = [0.3],y3 = [0, 1]

0 0
1 1

0 1
0 1

0 1
0 1

0 1
0 1

(c) Tz3 = [4, 5, 6, 7], L3 undtm

Figure 1: Loss determination under the bounds al = [1, 1, 1], au = [1, 1, 1], bl = [0.2, 0.1, 0.1], bu =
[0.6, 0.4, 1.0], cl = [0 0 0 0

0 1 1 1] , c
u = [1 0 0 0

1 1 1 1]. The nodes in blue indicate the possible paths of a
sample under current bound. The bound of c for each leaf t is denoted as cl

cu under each leaf node.
Sample 1: since x1[1] � b

u
1 , x1 can only fall into the right descendent of the root decision node,

and as x1[1] 2 [bl3, b
u
3], leaf node 3 and 4 can be reached by sample 1 and thus Tz1 = {6, 7}. Since

c
l
2t = c

u
2t = 1, 8t 2 Tz1 (colored in blue), which is identical to y12, we have L1 = 0. Sample 2: since

x2[1] 2 [bl1, b
u
1], x2 can fall into both descendent of the root decision node, However, as x2[1] � b

u
2 ,

leaf node 1 can not be reached by sample 2, and thus Tz2 = {5, 6, 7}. Since y2 is inconsistent with all
the [clt, c

u
t], 8t 2 Tz2 , we determine that L2 = 1. Sample 3: since x3[1] 2 [blt, b

u
t], 8t 2 TD, all leaf

node can be reached by sample 3, Tz3 = {4, 5, 6, 7}. Sample 3 can have several possible loss values
if fall into different leaf node in Tz3 . Here, variable c is fixed in all leaves except leaf 1 (colored in
red). Therefore, we are unable to determine L3.

5 Computational Experiments

We evaluate the performance of our algorithm (denoted as RS-OCT) on 21 real-world datasets from
UCI machine learning repository [Lichman et al., 2013]. The algorithm is implemented in Julia
1.7.0. Our implementation code is available at: https://github.com/YankaiGroup/optimal_
decision_tree. Comparison is made against the CART algorithm [Breiman et al., 1984] and
Optimal Classification Tree (OCT) method [Bertsimas and Dunn, 2017]. A comparison with the
performance of FlowOCT [Aghaei et al., 2020] is also presented in Appendix E.1. To avoid the
effects of hyper-parameter choice, the penalty parameter � is set to 0.05 for all three algorithms. The
split of training and testing data follows the work of Bertsimas and Dunn [2017], that is, 75% of the
entire dataset is selected as the training set while the rest 25% is set as the testing set. All datasets are

7

https://github.com/YankaiGroup/optimal_decision_tree
https://github.com/YankaiGroup/optimal_decision_tree

split by the stratifiedobs function from Julia Package MLDataUtils, under random seed 1, so
that the distribution of class is guaranteed to be the same in both training and testing set. RS-OCT
and OCT are executed until either they converge to an optimality gap within 1% or the runtime
exceeds a limit of 4 hours. The result of CART is obtained through the Julia Package DecisionTree
with version v0.10.12. The MIP problem of OCT and the subproblem of RS-OCT (for grouping
based lower bound) are solved by the state-of-art global optimizer CPLEX 20.1.0 [Cplex, 2020].
Both OCT and RS-OCT are provided with the same CART solution as warm-start. A preliminary
parallel version of our algorithm is implemented by assigning subproblems in the lower bound
calculation to multiple CPU cores. The size of each subproblem for group decomposition is set
as max(2K,

2Dn
(ct+P+2)�2D(P+2+K)), where ct (default: 150) is a constant that controls the average

group-size. The serial and parallel experiments are executed on a high-performance computing cluster
(40 Intel "Skylake" at 2.4 GHz with 202G RAM per computing node). Five criteria (upper bound,
training accuracy, testing accuracy, optimality gap, and time) are used to compare the performance of
the algorithms. Here, the upper bound (UB) represents the best feasible solution we found until the
termination of each algorithm. The optimality gap is calculated as UB�LB

UB ⇥ 100%. It measures the
closeness from the best-searched solution (i.e. UB) to its possible global optimum (i.e. lower bound).
As a unique property of deterministic global optimization algorithms, heuristic algorithms like CART
cannot provide such criteria. Our work focuses on improving the solution process of the optimal
decision tree problem. Therefore, to best represent the solving performance, we use the same value
of �, so that both our method and OCT are solving the same optimization problem, and we can have
a fair comparison of the optimality gap, solution time, and best achieved upper bound on this specific
problem formulation. However, to further demonstrate the performance of RS-OCT in practical,
compared to other state-of-the-art algorithms, we also perform experiments with hyperparameter
tuning on depth 2 and 3. The results are presented in Appendix E.1. The effectiveness of sample
reduction is validated via the ablation test and the result is shown in Appendix E.2.

Small and medium-scale datasets We perform experiments on 15 datasets ranging from 210
to 5,473 samples. Table 1 presents the result of using three algorithms. In terms of UB, RS-OCT
can find a better (or equally better) solution with the lowest cost for almost all datasets, compared
to CART and OCT. RS-OCT also terminates with a smaller optimality gap for all datasets. It is
remarkable that for datasets such as GLASS, BANKNOTE, and WALL-FOLLOWING, RS-OCT can
achieve an optimality gap within 1% while OCT still has a large gap over 98% after 4 hours of
running. Our result indicates that although OCT could find a better solution than CART, it is still hard
to claim that such a solution is the optimal one. In contrast, RS-OCT can find an even better solution
more efficiently and prove the optimality within a reasonable time. Due to the better cost found by
RS-OCT, the training accuracy of all datasets in Table 1 improves by 2.9% on average compared
to CART and 0.8% on average compared to OCT. In terms of testing accuracy, since we fixed the
penalty parameter � for all datasets, the result on smaller datasets (n < 1000) is unsatisfactory
probably due to an overfitting issue. In total, the testing accuracy is improved by 2.2% and 1.0%,
on average, compared to CART and OCT, respectively. For medium-scale datasets (n � 1000), the
testing accuracy improves by 3.3% on average compared to CART and 1.4% on average compared to
OCT.

Large-scale datasets We test our algorithm on several large datasets (n � 7, 000), with a variety
of dimensions (3-16) and number of classes (2-12), as shown in Table 2. RS-OCT is executed in
parallel with 1000 CPU cores. Remarkably, RS-OCT outperforms OCT and CART on all criteria
for all datasets, including the HT-SENSOR which has almost one million samples. In terms of upper
bound, we notice that for datasets with a size over 40, 000 samples, OCT can not provide a better
solution than the warm-start given by CART. Nevertheless, RS-OCT discovers better solutions in
terms of UB than both CART (12.5% improvement on average) and OCT (11.7% improvement on
average) on all large datasets. In terms of optimality gap, RS-OCT converges to an optimality gap
within 1% on PENDIGITS, SHUTTLE, and SKIN-SEGMENTATION. It verifies that the best solutions
found for these datasets are merely at most 1% close to the actual global optimal solution. It is the
first time an optimal decision tree (without binary encoding) is found for a dataset with almost one
million samples with a meaningful optimality gap (56.2%) in four hours of runtime. Remarkably, our
algorithm can also solve for a dataset with over 200, 000 samples to a practical optimality gap (1%)
in less than two hours. Given the more optimal solution found by RS-OCT, its training accuracy is on
average boosted by 3.7% and 3.6%, compared to CART and OCT, respectively. The testing accuracy

8

Table 1: Numerical results on small and median datasets (D = 2,� = 0.05, serial). The results of
testing accuracy reported in [Bertsimas and Dunn, 2017] are also listed in the paranthesis for CART
and OCT. These "paranthesis" results are obtained within the runtime of 2 hours.

DATA-
SET

n P K METHOD UB TRAINING
ACCURACY(%)

TESTING
ACCURACY(%)

GAP
(%)

TIME
(S)

SEEDS 210 7 3
CART 42.2 91.2 94.1 (87.2) - -
OCT 27.2 94.3 86.3 (88.7) <1% 579.1

RS-OCT 27.2 94.3 88.2 <1% 151.2

GLASS 214 9 6
CART 152.2 65.8 64.3 - -
OCT 143,8 67.7 64.3 99.9 14400

RS-OCT 140.9 68.4 62.5 <1% 2503.8

BODY 507 5 2
CART 74.3 90.0 88.9 - -
OCT 58.7 92.1 92.1 <1% 10985

RS-OCT 58.7 92.1 92.1 <1% 965.9

STATLOG-
GERMAN

1,000 24 2
CART 281.6 73.7 71.2 (70.1) - -
OCT 280.2 73.9 71.2 (70.5) 99.9 14400

RS-OCT 267.3 75.1 72.0 38.5 14400

CONCRETE 1,030 8 3
CART 667.6 62.6 61.9 - -
OCT 621.4 65.2 65.4 100 14400

RS-OCT 621.4 65.2 63.0 13.0 14400

BANKNOTE 1,372 4 2
CART 185.6 90.0 89.0 (89.0) - -
OCT 155.0 91.6 91.0 (90.1) 98.7 14400

RS-OCT 135.2 92.7 92.2 <1% 675.6

CONTRA-
CEPTIVE

1,473 11 3
CART 1353.7 47.6 46.3 (46.8) - -
OCT 1215.6 53.0 51.0 (48.4) 54.5 14400

RS-OCT 1189.8 54.0 56.4 12.0 14400

OZONE-
EIGHT

1,847 72 2
CART 103.3 93.1 93.1 (93.1) - -
OCT 102.2 93.2 92.8 (93.1) 100 14400

RS-OCT 94.7 93.7 92.4 97.6 14400

OZONE-
ONE

1,848 72 2
CART 43.5 97.0 96.8 (96.8) - -
OCT 39.3 97.3 96.8 (96.8) 99.9 14400

RS-OCT 40.4 97.2 96.8 99.6 14400

THYROID-
ANN

3,772 21 3
CART 140.6 95.4 95.6 (95.6) - -
OCT 86.7 97.2 96.8 (95.6) 99.9 14400

RS-OCT 66.1 97.8 98.1 65.4 14400

STATLOG-
LANSAT

4,435 36 6
CART 4861.3 64.7 64.6 (63.2) - -
OCT 4786.8 65.2 64.8 (63.2) 100 14400

RS-OCT 4757.8 65.4 66.0 40.1 14400

SPAMBASE 4,601 57 2
CART 826.9 85.5 84.5 (84.2) - -
OCT 826.9 85.5 84.5 (84.3) 100 14400

RS-OCT 756.0 86.7 85.9 81.4 14400

WALL-
FOLLOWING

5,456 2 4
CART 608.8 94.0 94.0 (94.0) - -
OCT 608.8 94.0 94.0 (94.0) 100 14400

RS-OCT 608.8 94.0 94.0 <1% 223.2

PAGE-
BLOCK

5,473 10 5
CART 315.4 93.1 93.2 - -
OCT 273.1 93.9 93.8 100 14400

RS-OCT 209.6 95.4 95.0 46.2 14400

is also boosted by 3.3% and 2.8% on CART and OCT, respectively. Notably, compared with the
results from Table 1, we find that the performance of RS-OCT is improving with the increment of the
data size.

6 Conclusion

This paper proposed a tailed reduced-space branch and bound (BB) algorithm to train optimal decision
tree for the classification tasks. Our BB algorithm can converge to a global ✏-optimal solution by
only branching on variables describing the tree structure, which is invariant to the number of samples.
Combined with the sample reduction and paralleled lower bound calculation, our algorithm can
perform well on all datasets in terms of UB, optimality gap and training accuracy. Our algorithm also
improves the testing accuracy on all large datasets (n � 7, 000).

Impact and Future work: We hope that the MIP-based scalable framework proposed in this paper
can help address the needs of optimal decision tree for large-scale data training in high-stake domains
such as crime analysis [Zhuang et al., 2017], or medical decision [Bertsimas et al., 2018]. We look
forward to integrating our algorithms with other functionality (e.g., fairness [Aghaei et al., 2019]) to
provide handy tools for wider applications.

9

Table 2: Numerical results on large datasets (D = 2,� = 0.05, paralleled with 1000 cores).
Bertsimas and Dunn [2017] do not report results on datasets of this scale.

DATA-
SET

n P K METHOD UB TRAINING
ACCURACY(%)

TESTING
ACCURACY(%)

GAP
(%)

TIME
(S)

PENDIGITS 7,494 16 10
CART 32993.0 38.9 39.1 - -
OCT 32993.0 38.9 39.1 100 14400

RS-OCT 32426.1 40.0 39.9 <1% 2093.5

AVILA 10,430 10 12
CART 9454.3 50.4 51.0 - -
OCT 9196.4 51.7 52.5 100 14400

RS-OCT 8787.5 53.8 53.8 19.6 14400

EEG 14,980 14 2
CART 7815.8 61.7 61.2 - -
OCT 7748.7 61.7 61.0 100 14400

RS-OCT 6752.7 66.9 65.5 50.8 14400

HTRU 17,898 8 2
CART 327.0 97.8 97.7 - -
OCT 320.5 97.8 97.7 100 14400

RS-OCT 300.7 98.0 97.8 42.8 14400

SHUTTLE 43,500 9 7
CART 2567.5 93.8 93.8 - -
OCT 2567.5 93.8 93.8 100 14400

RS-OCT 1908.1 95.4 95.5 <1% 586.1
SKIN-

SEGMEN-
TATION

245,057 3 2
CART 23409.5 89.9 89.8 - -
OCT 23409.5 89.9 89.8 100 14400

RS-OCT 16953.7 92.7 92.7 <1% 6698.9

HT-
SENSOR

928,991 11 3
CART 782046.1 58.1 58.1 - -
OCT 782046.1 58.1 58.1 100 14400

RS-OCT 753075.8 59.7 59.7 56.2 14400

Limitation: Similar to other works, our algorithm only tests optimal decision tree problems with
small depth (e.g. D = 2, 3). Larger D slows down the algorithm’s efficiency. Proper bound tightening
methods will be designed in the future to solve this problem.

Acknowledgments and Disclosure of Funding

Y.C. acknowledges funding from the discovery program of the Natural Science and Engineering Re-
search Council of Canada under grant RGPIN-2019-05499. The authors also gratefully acknowledge
the computing resources provided by SciNet (www.scinethpc.ca) and Digital Research Alliance of
Canada (www.alliancecan.ca).

References
Sina Aghaei, Mohammad Javad Azizi, and Phebe Vayanos. Learning optimal and fair decision trees

for non-discriminative decision-making. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 33, pages 1418–1426, 2019.

Sina Aghaei, Andres Gomez, and Phebe Vayanos. Learning optimal classification trees: Strong
max-flow formulations. arXiv preprint arXiv:2002.09142, 2020.

Gaël Aglin, Siegfried Nijssen, and Pierre Schaus. Learning optimal decision trees using caching
branch-and-bound search. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 3146–3153, 2020.

Florent Avellaneda. Efficient inference of optimal decision trees. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 34, pages 3195–3202, 2020.

Dimitris Bertsimas and Jack Dunn. Optimal classification trees. Machine Learning, 106(7):1039–
1082, 2017.

Dimitris Bertsimas and Jack Dunn. Machine learning under a modern optimization lens. Dynamic
Ideas LLC, 2019.

Dimitris Bertsimas, Jack Dunn, Colin Pawlowski, John Silberholz, Alexander Weinstein, Ying Daisy
Zhuo, Eddy Chen, and Aymen A Elfiky. Applied informatics decision support tool for mortality
predictions in patients with cancer. JCO clinical cancer informatics, 2:1–11, 2018.

L Breiman, JH Friedman, R Olshen, and CJ Stone. Classification and regression trees. 1984.

10

Yankai Cao and Victor M Zavala. A scalable global optimization algorithm for stochastic nonlinear
programs. Journal of Global Optimization, 75(2):393–416, 2019.

IBM ILOG Cplex. V20.1.0: User’s manual for CPLEX. International Business Machines Corpora-

tion, 2020.

Emir Demirović, Anna Lukina, Emmanuel Hebrard, Jeffrey Chan, James Bailey, Christopher Leckie,
Kotagiri Ramamohanarao, and Peter J Stuckey. Murtree: Optimal decision trees via dynamic
programming and search. Journal of Machine Learning Research, 23(26):1–47, 2022.

Oktay Günlük, Jayant Kalagnanam, Minhan Li, Matt Menickelly, and Katya Scheinberg. Optimal
decision trees for categorical data via integer programming. Journal of global optimization, 81(1):
233–260, 2021.

Reiner Horst and Hoang Tuy. Global optimization: Deterministic approaches. Springer Science &
Business Media, 2013.

Hao Hu, Mohamed Siala, Emmanuel Hebrard, and Marie-José Huguet. Learning optimal decision
trees with maxsat and its integration in adaboost. In IJCAI-PRICAI 2020, 29th International

Joint Conference on Artificial Intelligence and the 17th Pacific Rim International Conference on

Artificial Intelligence, 2020.

Xiyang Hu, Cynthia Rudin, and Margo Seltzer. Optimal sparse decision trees. Advances in Neural

Information Processing Systems, 32, 2019.

Kaixun Hua, Mingfei Shi, and Yankai Cao. A scalable deterministic global optimization algorithm
for clustering problems. In International Conference on Machine Learning, pages 4391–4401.
PMLR, 2021.

Ramkumar Karuppiah and Ignacio E Grossmann. A lagrangean based branch-and-cut algorithm for
global optimization of nonconvex mixed-integer nonlinear programs with decomposable structures.
Journal of global optimization, 41(2):163–186, 2008.

Hyafil Laurent and Ronald L Rivest. Constructing optimal binary decision trees is np-complete.
Information processing letters, 5(1):15–17, 1976.

Can Li and Ignacio E Grossmann. A generalized benders decomposition-based branch and cut
algorithm for two-stage stochastic programs with nonconvex constraints and mixed-binary first
and second stage variables. Journal of Global Optimization, 75(2):247–272, 2019.

Moshe Lichman et al. Uci machine learning repository, 2013.

Jimmy Lin, Chudi Zhong, Diane Hu, Cynthia Rudin, and Margo Seltzer. Generalized and scalable
optimal sparse decision trees. In International Conference on Machine Learning, pages 6150–6160.
PMLR, 2020.

Hayden McTavish, Chudi Zhong, Reto Achermann, Ilias Karimalis, Jacques Chen, Cynthia Rudin,
and Margo Seltzer. Fast sparse decision tree optimization via reference ensembles. In AAAI

Conference on Artificial Intelligence, 2022.

James N Morgan and John A Sonquist. Problems in the analysis of survey data, and a proposal.
Journal of the American statistical association, 58(302):415–434, 1963.

Nina Narodytska, Alexey Ignatiev, Filipe Pereira, Joao Marques-Silva, and IS RAS. Learning optimal
decision trees with sat. In Ijcai, pages 1362–1368, 2018.

Siegfried Nijssen and Elisa Fromont. Mining optimal decision trees from itemset lattices. In
Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data

mining, pages 530–539, 2007.

Gurobi Optimization. Gurobi optimizer 9.0 reference manual. 2020.

Sebastian Ordyniak and Stefan Szeider. Parameterized complexity of small decision tree learning.
Cancer, 683(90):18, 2021.

11

J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

J Ross Quinlan. Improved use of continuous attributes in c4.5. Journal of artificial intelligence

research, 4:77–90, 1996.

Pouya Shati, Eldan Cohen, and Sheila McIlraith. Sat-based approach for learning optimal decision
trees with non-binary features. In 27th International Conference on Principles and Practice of

Constraint Programming (CP 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

Mingfei Shi, Kaixun Hua, Jiayang Ren, and Yankai Cao. Global optimization of k-center clustering.
In International Conference on Machine Learning, pages 19956–19966. PMLR, 2022.

Sicco Verwer and Yingqian Zhang. Learning decision trees with flexible constraints and objectives
using integer optimization. In International Conference on AI and OR Techniques in Constraint

Programming for Combinatorial Optimization Problems, pages 94–103. Springer, 2017.

Sicco Verwer and Yingqian Zhang. Learning optimal classification trees using a binary linear program
formulation. In Proceedings of the AAAI conference on artificial intelligence, volume 33, pages
1625–1632, 2019.

Haoran Zhu, Pavankumar Murali, Dzung Phan, Lam Nguyen, and Jayant Kalagnanam. A scalable
mip-based method for learning optimal multivariate decision trees. Advances in Neural Information

Processing Systems, 33:1771–1781, 2020.

Yong Zhuang, Matthew Almeida, Melissa Morabito, and Wei Ding. Crime hot spot forecasting: A
recurrent model with spatial and temporal information. In 2017 IEEE International Conference on

Big Knowledge (ICBK), pages 143–150. IEEE, 2017.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See section 6
(c) Did you discuss any potential negative societal impacts of your work? [N/A] Our work

is focus on developing novel training method on optimal decision tree
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] all proofs are in

appendix file from the supplementary materials
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 5

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A] Since our algorithm is a deterministic global optimization
algorithm, whatever random seed provide, the algorithm will always converge to the
same global optimum (with given optimality gap)

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section 5

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] OCT is coded by

ourselves and the code is provided in the supplementary materials and we also provide
the result reported in their original paper for reference.

12

(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] We are using data from UCI Machine Learning Repository
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A] We are using data from UCI Machine Learning
Repository

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A] Our work didn’t use crowdsourcing or conducted research with
human subjects

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A] Our work didn’t use crowdsourcing or
conducted research with human subjects

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] Our work didn’t use crowdsourcing or
conducted research with human subjects

13

