
A Proof of Theorem 1 and Corollary 2

To prove Theorem 1 and Corollary 2, we use the following particular solution of QCQP problems.
Lemma 1. Suppose that A 2 Rn⇥n is a positive definite matrix, a vector b 2 Rn, a scalar c, and
positive constants kx, ky. The solution of this problem

minimize kxx
TAx+ ky|y|

subject to y � xTAx� 2bTx+ c.

is given by

x⇤
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q
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x
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◆
A�1b,
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,

where

c̃ =
c

bTA�1b
, k̃x =

kx
kx + ky

.

Proof: See Appendix B.

To keep the notation short in the following proofs, we define

� , rV.

Proof of Theorem 2: For the Hamilton-Jacobi function HJ(fm, Gm, hm) of the modified dynamics
(fm, Gm, hm), the map fm and each row of the map Gm don’t depend on the orthogonal vector of
�. Hence, fm and Gm are written as

fm = fn � �p, Gm = Gn � �qT,

where p is scalar and q 2 Rm. hm depends only on the norm in HJ(fm, Gm, hm), i. e.,

hm = (1� r)hn,

where r is scalar.

The optimal function (5a) is rewritten as the p, q, and r, i.e.,

k1
k�kkfm � fnk+

k2
2�2
kGm �Gnk2 +

k2
2k�k2 khm � hnk

= k1|p|+ k2
k�k2

2�2
kqk2 + k2

khnk
2k�k2 r

2.

Also, the condition of constraint (5b) is rewritten as

HJ�(fm, Gm, hm)

= �Tfm +
1

2�2
kGT

m�k2 + 1

2
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2�2
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2
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,
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then this optimal problem (5) of this theorem becomes a problem used in Lemma 1. The optimal
point of p, q and r is given by

p⇤ =
1

k�k2R
⇣
Vf̂ + k̂2VGn,hn

⌘
,

q⇤ =
1

k�k2

 
1�

r
C

⇣
� Vfn

VGn,hn
; k̃2, 1

⌘!
GT

n�,

r⇤ = 1�
r
C

⇣
� Vfn

VGn,hn
; k̃2, 1

⌘
.

Therefore, Theorem 1 is derived.

Proof of Theorem 2:

Optimal maps fm and Gm are also written as

fm = fn � �p, Gm = Gn � �qT.

Hence, the objective function (7a) is rewritten as p and q function, i.e.,

k1
k�kkfm � fnk+

k2
2�2
kGm �Gnk2 = k1|p|+ k2

k�k2

2�2
kqk2.

Also the condition of constraint (7b) is written

HJ�(fm, Gm, hn)

= �Tfm +
1

2�2
kGT

m�k2 + 1

2
khmk2

= �T
(fn � �p) +

1

2�2
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2
khnk2

= �k�k2p+ 1

2�2
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�2
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 0.

If x , q, y , p, and
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GT

m�, c , 1
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⇣
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⌘
,

then this optimal problem (7) becomes the problem used in Lemma 1. The optimal points of p and q
are given by

p⇤ =
1

k�k2R
⇣
Vfn,hn + k̂2

2
(VGn)

⌘
,

q⇤ =
1

k�k2
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r
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⇣
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VGn
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⌘!
GT

n�,

Therefore, the solution of problem (7) becomes Eqs. (8).

B Proof of the particular solution of QCQP

This section presents the proof of the following QCQP problem.

minimize kxx
TAx+ ky|y| (10a)

subject to y � xTAx� 2bTx+ c, (10b)

where A is a positive definite matrix. We classify this problem according to the parameter A, b and c.

First, the solution of this optimal problem is switched depending on the positive or negative value of
c.
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Lemma 2. If c  0 then the solution of Eq. (10) is (x, y) = (0, 0). If c > 0, the solution x⇤ of
Eq. (10) equals the solution of the following problem:

minimize kxx
TAx+ ky|xTAx� 2bTx+ c|. (11)

Furthermore, the solution y⇤ is given by

y⇤ = kxx
⇤TAx⇤ � 2bTx⇤

+ c. (12)

Proof: The objective function (10a) is strictly convex and the minimum point is (x, y) = (0, 0). If
c  0, the origin (x, y) = (0, 0) satisfies the condition of constraint (10b). Therefore, the solution of
Eq. (10) is (x, y) = (0, 0).

If c > 0, (x, y) = (0, 0) does not satisfies the constraint condition (10b), and the optimal solution
belong the boundary of the region satisfying (10b). Therefore, the solution point (x⇤, y⇤) satisfies
Eq. (12).

Also, the solution of the new optimal problem (11) is switched by the ratio between c and bTA�1b.

Lemma 3. If c̃ > 1� k̃2x then the solution x⇤ of the optimal problem (11) is given by

x⇤
= (1� k̃x)A

�1b, (13)

where

c̃ =
c

bTA�1b
, k̃x =

kx
kx + ky

.

If c̃  1� k̃2x, the solution x⇤ equals the solution of the following QCQP problem, such that

minimize xTAx (14a)

subject to xTAx� 2bTx+ c = 0. (14b)

Proof: The optimal problem (11) is split on the sign of x⇤TAx⇤ � 2bTx⇤
+ c.

Case x⇤TAx⇤ � 2bTx⇤
+ c < 0:

The optimal problem of this case is written as

minimize (kx � ky)x
TAx+ 2kyb

Tx� kyc.

If kx � ky  0, there is no optimal point. Otherwise kx � ky > 0, the optimal point is written as

x⇤
= � ky

kx � ky
A�1b.

The optimal point does not satisfies the condition x⇤TAx⇤ � 2bTx⇤
+ c < 0, because

x⇤TAx⇤ � 2bTx⇤
+ c

=
k2y

(kx � ky)2
bTA�1b+

2ky
kx � ky

bTA�1b+ c > 0,

where A�1 is a positive definite matrix and c > 0.

Case x⇤TAx⇤ � 2bTx⇤
+ c > 0:

The problem (11) is written as

minimize (kx + ky)x
TAx� 2kyb

Tx+ kyc.

Hence, this optimal point is written as

x⇤
=

ky
kx + ky

A�1b

= (1� k̃x)A
�1b,
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where
p
A is a square root of the positive definite matrix A. The condition x⇤TAx⇤� 2bTx⇤

+ c > 0

is rewritten by the previous optimal solution, such that
x⇤TAx⇤ � 2bTx⇤

+ c

= (1� k̃x)
2bTA�1b� 2(1� k̃x)b

TA�1b+ c

= �
⇣
1� k̃2x

⌘
bTA�1b+ c > 0

, c̃ > 1� k̃2x.

Case xTAx⇤ � 2bTx⇤
+ c = 0: The problem (11) is written as the QCQP problem (14).

The solution of the simple QCQP problem (14) is easily derived using the method of Lagrange
multiplier.
Lemma 4. The solution of the simple QCQP problem (14) is given by

x⇤
=

⇣
1�
p
1� c̃

⌘
A�1b.

Proof: Supposing a Lagrange multiplier � > 0, the Lagrange function is written as
L(x,�) = xTAx+ �(xTAx� 2bTx+ c).

The KKT condition is given by
@L(x⇤,�)

@x
= 2(1 + �)Ax⇤ � 2�b = 0. (15)

@L(x⇤,�)

@�
= x⇤TAx⇤ � 2bTx⇤

+ c = 0, (16)

Eq. (15) is written as

x⇤
=

�

1 + �
A�1b,

and the Eq. (16) is given by
x⇤TAx⇤ � 2bTx⇤

+ c = 0

, �2

(1 + �)2
bTA�1b� 2�

1 + �
bTA�1b+ c = 0

,� �2
+ 2�

(1 + �)2
bTA�1b+ c = 0

,� (�2
+ 2�)bTA�1b+ (1 + �)2c = 0

,(c� bTA�1b)�2
+ 2(c� bTA�1b)�+ c = 0

,�2
+ 2�+

c̃

(c̃� 1)
= 0

,� = �1±
r

1� c̃

c̃� 1

,� = �1±
r

1

1� c̃
.

As � > 0 and c̃ > 0, the Lagrange multiplier is written as

� = �1 +
r

1

1� c̃
.

Therefore, the optimal point x⇤ is given by

x⇤
=

�

1 + �
A�1b

=

�1 +
q

1

1�c̃q
1

1�c̃

A�1b

= (1�
p
1� c̃)A�1b.
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Finally, we summarize three Lemmas 2-4 and solve the QCQP problem (10).
Lemma 1. The solution of the problem (10) is given by

x⇤
=

 
1�

r
C

⇣
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⌘!
A�1b, (17a)

y⇤ = R
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TA�1b
⌘
. (17b)

Proof: Lemmas 2-4 split the solution x⇤ as three cases:
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8
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Furthermore, the solution of y⇤ is written as,

y⇤ :=

8
<

:

x⇤TAx⇤ � 2bTx⇤
+ c 1� k̃2x < c̃

x⇤TAx⇤ � 2bTx⇤
+ c 0 < c̃  1� k̃2x

0 c  0

=

8
<

:

c� (1� k̃2x)b
TA�1b 1� k̃2x < c̃

0 0 < c̃  1� k̃2x
0 c̃  0

= R(c� (1� k̃2x)b
TA�1b).

Therefore, the solution become Eq. (17).

C Overall schematic of the learning process

Algorithm 1 shows the overall schematic of the learning process. The first line defines the modified
dynamics (fm, Gm, hm) from the nominal dynamics (fn, Gn, hn), defined by the neural network,
where � is a set of parameters of the nominal dynamics. The 2-7 line represents a training loop,
where the gradient-based optimization methods can be used by using the forward and backward
calculation. Note that an ODE solver is used for forward calculation, and Algorithm 2 shows the
forward calculation when the Euler method is used. For simplicity, mini-batch computation omitted
in this schematic.

D Neural network architecture and hyper parameters

This section details how to determine the neural network architecture. The architecture and hyper
parameters of the neural networks were basically determined by Bayesian optimizing using the
validation dataset.

Table 1 shows the search space of Bayesian optimization. The first three parameters: learning rate,
weight decay, and batch size are parameters for training the neural networks. Also, an optimizer is
selected from AdamW, Adam, and RMSProp. The structure of neural network is determined from
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Algorithm 1 Training process
Input: x0: initial state, u: input signal,y: output signal, (fn, Gn, hn): nominal dynamics, V : a

designed function
1: define modified functions (fm, Gm, hm) from (fn, Gn, hn) and V
2: for 1 to #iterations do

3: ŷ  ODE with (fm, Gm, hm) from x0, u (Algorithm 2)
4: forward computation of Loss function (9) from y
5: r�Loss backward computation with Loss

6: � Optimizer(�, r�Loss)
7: end for

Algorithm 2 Forward computation for dynamics Eq. (1)
Input: x0: initial state, u: input signal, (fm, Gm, hm): dynamics
Output: ŷ: output signal

1: for t 0 to T do

2: xt+1  xt +�t(fm(xt) +Gm(xt)ut)

3: ŷt  hm(xt)

4: end for

5: return ŷ

the number of intermediate layers and dimensions for each layer. One layer in our setting consists of
a fully connected layer with a ReLU activation. The last three rows represent parameters related to
our proposed methods. ✏ is a parameter of the loss function LHJ. Initial scale parameter is multiplied
with the output of fn to prevent the value of fn(x) from becoming large in the initial stages of
learning. When fn(x), which determine the behavior of the internal system, outputs a large value, it
diverges due to time evolution, and the learning of the entire system may not progress. Therefore, it
is empirically preferable to start with a small value for fn(x) at the initial stage of learning. When
the flag of ‘stop gradient for projection’ is false, backward computation related to the second term of
modification of fm and Gm is disabled. Note that modification related to fm and Gm consists of
two terms (see Theorem 1). Setting this parameter to false resulted in better performance in our all
experiments.

We ran 300 trials using the Bayesian optimization for the bistable model benchmark and the glucose
insulin benchmark with the above settings, and the hyper parameters obtained are shown in Table 2,
where the number of dimensions for each hidden layer is shown in tuple from the order closest to the
input layer.

Hyperparameters of comparative methods were determined by grid search using the validation dataset.
ARX and PWARX have an order parameter n of the autoregressive model, and this parameter is
searched in the range of 1� 5. The number of iterations was set to 10000 so that the optimization of
PWARX converges sufficiently. MOESP and ORT have an internal dimension n (1  n  20) and
the number of subsequences used for estimation k (2n < k  20).
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Table 1: The search space of Bayesian optimization

parameter name range type
learning rate 10

�5 – 10
�3 log scale

weight decay 10
�10 – 10

�6 log scale
batch size 10 – 100 integer
optimizer { AdamW, Adam, RMSProp} categorical
#layer for fn 0 – 3 integer
#layer for Gn 0 – 3 integer
#layer for hn 0 – 3 integer
#dim. for a hidden layer of fn 8� 32 integer
#dim. for a hidden layer of Gn 8� 32 integer
#dim. for a hidden layer of hn 8� 32 integer
✏ 0 – 1.0 log scale
Initial scale parameter for fn 10

�5 – 0.1 log scale
Stop gradient for projection true, false boolean

Table 2: Selected parameters for each benchmark

parameter name bistable glucose insulin
learning rate 3.01⇥ 10

�4
3.28⇥ 10

�4

weight decay 4.76⇥ 10
�9

2.28⇥ 10
�9

batch size 100 100

optimizer RMSProp RMSProp
#layer for fn 3 1

#layer for Gn 1 2

#layer for hn 3 2

#dim. for a hidden layer of fn (17,10,22) (8)
#dim. for a hidden layer of Gn (34) (27,29)
#dim. for a hidden layer of hn (10,62,58) (35,18)
✏ 0.63 0.75
Initial scale parameter for fn 9.64⇥ 10

�2
8.94⇥ 10

�2

Stop gradient for projection false false

E Glucose-Insulin system

Glucose concentration in the blood is modeled as a time-delay system regulated by insulin concentra-
tion (See Fig. 7 (A)) [32]. Suppose that G I , and X are the glucose, insulin, and accumulated glucose
plasma concentration ([mg/100ml],[µUI/ml],and [min mg/100ml], respectively) and u is the amount
of ingested glucose per minute [min�1 mg/100ml]. The dynamics of each concentration is given by

Ġ(t) = �k1G(t)� k2G(t)I(t) + g0 + u(t),

İ(t) = �k3I(t) +
k4
⌧
X(t),

Ẋ(t) = G(t)�G(t� ⌧),

y(t) = [G(t), I(t)]T,

where k1 is a spontaneous glucose disappearance rate, k2 is an insulin-dependent glucose disappear-
ance rate, g0 is a constant increase in plasma glucose concentration, k3 is an insulin disappearance
rate, k4 is an insulin release rate per the average glucose concentration within the last ⌧ minute.
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Table 3: Model parameters.

Parameter Value Unit

k1 3.35⇥ 10
�2 1

min
k2 5.22⇥ 10

�5 1

min(µUI/ml)
k3 1.055 1

min
k4 0.293 (µUI/ml)

min(mg/100ml)

g0 3.13 (mg/100ml)
min

⌧ 6 min

(A) (B)

Figure 7: (A) Overview and (B) input and output behavior of the glucose insulin system.

This system has a unique asymptotically stable equilibrium point (G, I,X) ⌘ (G⇤, I⇤, X⇤
) on the

nonlinear plain such that

G⇤
=
�k1k3 +

p
(k1k3)2 + 4k2k3k4g0
2k2k4

,

I⇤ =
�k1k3 +

p
(k1k3)2 + 4k2k3k4g0
2k2k3

,

X⇤
=
�k1k3 +

p
(k1k3)2 + 4k2k3k4g0
2k2k4

⌧.

Here we set the initial state of this model as G(0) = G⇤, I(0) = I⇤, X(0) = X⇤ and set the model
parameters as shown in the following Table 3. Furthermore, we adopt the output of the previous
oral glucose absorption system [33] as u (See Fig. 7 (B)), and the glucose absorption amount u is
normalized based on human blood volume per body weight (0.80[100 ml/kg]).
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