
A Appendix

Algorithm 1: Training the ViTCA update rule with a “pool sampling”-based approach
Input :ViTCA cell update rule F✓, hyper-parameters ⌦={I 2 N+

, b 2 N+
, � 2 [0, 1],

Ch 2 N+
, ⌘ 2 R+

, ↵ 2 R, � 2 R, NP 2 N+
}, dataset of images D={X1,X2, ...,

XNb2N+}

Output :Optimal update rule parameters ✓I
1 ✓0 initial update rule parameters; // E.g ., He initialization [46]
2 P ;; // Pool of cell grids and their respective ground truth images
3 for i 1 to I do
4 X (Xj , ...,Xj+b) where j ⇠ U{1, Nb � b}; // (·, ..., ·) is batch-wise concatenation
5 if |P| > b and i mod 2 = 0 then
6 P {(Z1,X1), ..., (Zb,Xb)} ⇢ P; // Retrieve first b elements from the pool
7 Z (Z1, ...,Zb); X (X1, ...,Xb); // Retrieve cell grids and images from P

8 else
// Zero-initialize grids of cells and inject noisy inputs
// i is used for determining noise shape and coverage
// Ch determines the number of cell hidden channels

9 Z seed(mask(X, i), Ch);
10 end
11 T ⇠ U{8, 32}; // Randomly sample number of cell updates to perform
12 for t 1 to T do
13 Z F✓i�1(Z,�); // Iteratively update cell grids with cell update prob. �

14 end
// Zo and Zh are output and hidden channels of cell grids, respectively

15 Lo_overflow
1
Co

kZo �min(max(Zo, 0), 1)k1; // Output channels overflow loss
16 Lh_overflow

1
Ch

kZh �min(max(Zh,�1), 1)k1; // Hidden channels overflow loss

17 Lrec
1
Co

kZo �Xk1; // Image reconstruction loss
18 L

1
bHW

(↵Lrec + �(Lo_overflow + Lh_overflow));
19 Q rL/(krLkF + 10�8); // Normalize gradients. k · kF is Frob. norm
20 ✓i ✓i�1 � ⌘Q; // Update the update rule parameters
21 P P [{(Z1,X1), ..., (Zb,Xb)}; // Append updated cell grids and ground truths
22 P trunc(shuffle(P), NP); // Shuffle pool and retain first NP elements
23 end

A.1 Training on high-resolution imagery with fusion and mitosis

As an alternative to gradient checkpointing for reducing memory usage, we briefly experimented
with a downsampling scheme inspired by cell fusion and mitosis when training on CelebA at 64⇥64.
Specifically, we split the T applications of the update rule (within a training iteration) into multiple
stages: 1) We apply the update rule twice so that cells will have, at minimum, some amount of
knowledge of their neighbours. 2) We stash the masked input for a later re-injection. 3) Fusion—we
apply a 2⇥2 average pooling with a stride of 2 across the cell grid, combining 2⇥2 groups of cells
into singular cells. 4) We apply the update rule T � 4 times at this 32⇥32 downsampled cell grid
resolution. 5) Mitosis—we perform a 2⇥2 duplication of cells (each cell is duplicated to its right,
bottom-right, and bottom). 6) We re-inject the stashed masked input. 7) We apply the update rule
twice to adapt the cells to the 64⇥64 resolution and to fill in any missing information.

We found that performing this fusion and mitosis scheme decreased training memory consumption
to levels similar to our gradient checkpointing scheme (⇠50% memory reduction) while having a
⇠ 70% faster backward pass. Loss-wise, we observed a ⇠ 33% increase in the average validation
reconstruction loss during training, which can qualitatively be observed in the example provided
in Fig. 5 (bottom). Although the results shown are not ideal—i.e., we did not perform a hyper-
parameter search here, for example, finding the optimal number of iterations preceding fusion and
following mitosis—this brief experiment tests the feasibility of reducing memory consumption while
maintaining denoising capability and avoiding gradient checkpointing. As shown in the figure, ViTCA
with fusion and mitosis is able to successfully denoise the input despite applying updates at two

14

Figure 5: Qualitative results using cell
fusion and mitosis as an alternative to
gradient checkpointing. Gold boxes
are inputs, green ground truths, purple
ViTCA outputs, and blue ViTCA w. fu-
sion and mitosis outputs. Outputs are
after 64 CA iterations.

PSNR " SSIM " LPIPS # # Params.

Pool size

128 26.51 0.914 0.065 92.5K
256 26.40 0.912 0.067 92.5K
512 26.61 0.915 0.064 92.5K
1024 26.53 0.913 0.066 92.5K
2048 26.54 0.915 0.064 92.5K
4096 26.48 0.912 0.066 92.5K
8192 26.30 0.910 0.069 92.5K

Cell init. constant 26.53 0.913 0.066 92.5K
random 25.90 0.905 0.074 92.5K

Patch size

1⇥1 26.53 0.913 0.066 92.5K
2⇥2 25.85 0.906 0.076 96.0K
4⇥4 24.54 0.882 0.113 109.8K
8⇥8 21.62 0.803 0.212 165.3K
16⇥16 18.71 0.687 0.279 387.0K

Table 4: Quantitative ablation on pool size NP , cell ini-
tialization method, and patch size PH⇥PW for denoising
autoencoding with ViTCA on CelebA. Boldface and un-
derlining denote best and second best results. Italicized
items denote baseline configuration settings.

PSNR " SSIM " LPIPS #
3⇥3 23.25 0.827 0.145
5⇥5 22.34 0.817 0.145
7⇥7 21.65 0.792 0.168

Table 5: Quantitative ablation on attention neighbourhood size NH⇥NW for denoising autoencoding
with ViTCA on FashionMNIST. Boldface and underlining denote best and second best results.
Italicized items denote baseline configuration settings.

LandCoverRep MNIST CelebA FashionMNIST

PS
NR

"
SS

IM
"

LP
IP

S
#

PS
NR

"
SS

IM
"

LP
IP

S
#

PS
NR

"
SS

IM
"

LP
IP

S
#

PS
NR

"
SS

IM
"

LP
IP

S
#

asynchronous 33.80 0.932 0.102 27.01 0.940 0.028 26.53 0.913 0.066 23.80 0.855 0.117
synchronous 33.68 0.931 0.104 26.00 0.927 0.034 23.76 0.870 0.105 23.12 0.832 0.132

Table 6: Quantitative ablation comparing test results with ViTCA trained using asynchronous
(�=50%) vs. synchronous (�=100%) cell updates for denoising autoencoding. During testing, cells
are updated at the rate they were trained in. Boldface denotes best results. Italicized items denote
baseline configuration settings.

different scales. This scale agnostic behaviour reveals potentially interesting research directions
beyond the scope of this work, such as allowing an NCA update rule to dynamically and locally
modify cell grid resolution based on a compute budget, which could see applications in signal (image,
video, or audio) compression.

A.2 Extended ablation study

Here we present an extension of our ablation study in Sec. 4.1.1, using the baseline ViTCA model as
our reference. As before, the ablation examines the effects certain training configuration parameters
have on test performance.

Pool size, cell initialization, and patch size. In Tab. 4, we examine the impact of varying the
(max) pool size NP , cell initialization method, and patch size PH⇥PW on CelebA. As shown in the
table, it is difficult to correlate pool size with test performance. However, when pool size NP =8192,

15

LandCoverRep MNIST CelebA FashionMNIST

PS
NR

"
SS

IM
"

LP
IP

S
#

PS
NR

"
SS

IM
"

LP
IP

S
#

PS
NR

"
SS

IM
"

LP
IP

S
#

PS
NR

"
SS

IM
"

LP
IP

S
#

disabled 33.80 0.932 0.102 27.01 0.940 0.028 26.53 0.913 0.066 23.80 0.855 0.117
enabled 33.76 0.932 0.102 26.77 0.938 0.029 26.05 0.904 0.075 23.89 0.855 0.117

Table 7: Quantitative ablation comparing test results of ViTCA trained with gradient checkpointing
disabled vs. enabled. Boldface denotes best results. Italicized items denote baseline configuration
settings.

there is a noticeable reduction in performance. Test performance also degrades when initializing
cells such that their output and hidden channels receive random values sampled from U(0, 1) and
U(�1, 1), respectively, as opposed to receiving constant values (0.5 for output channels and 0 for
hidden). Finally, we see a consistent decrease in performance when the input image is divided into
non-overlapping patches > 1⇥1, as well as an increase in the number of model parameters.

Attention neighbourhood size. In Tab. 5, we examine the impact of attention neighbourhood size
NH⇥NW on FashionMNIST. Interestingly, increasing the neighbourhood size past 3⇥3 causes a
degradation in performance. This is most likely attributed to the increase in complexity caused by
incorporating more information into ViTCA’s self-attention. One would expect explicitly increasing
the receptive field of spatially localized self-attention to result in better performance, but it can
also complicate the process of figuring out which neighbours to attend to. We believe this may be
alleviated by increasing model capacity and/or training duration. As described in Sec. 4, we use
the Moore neighbourhood (3⇥3) as it requires less computation while still demonstrating ViTCA’s
effectiveness.

Asynchronous vs. synchronous cell updates. In Tab. 6, we compare between training with
asynchronous cell updates (�= 50%) and training with synchronous cell updates (�= 100%) on
LandCoverRep, MNIST, CelebA, and FashionMNIST. Training with asynchronous cell updates
provides a meaningful increase in performance compared to training with synchronous cell updates
and comes with several benefits, such as not requiring cells in a neighbourhood to be in sync with
each other and serving as additional data augmentation. Similarly mentioned in related work [21], this
allows ViTCA to be used in a distributed system where cells need not exist under a global clock and
can be updated at varying rates. Thus making it easier to scale up or down within a non-homogeneous
compute environment. This was somewhat demonstrated in Fig. 4 (d) where ViTCA was able to
adapt to varying update rates despite being trained on a fixed asynchronous update rate (�=50%).

Effects of gradient checkpointing. In Tab. 7, we compare between training with gradient check-
pointing disabled and with gradient checkpointing enabled on LandCoverRep, MNIST, CelebA, and
FashionMNIST. Similarly shown in Tab. 2, we see here that training with gradient checkpointing has
an adverse effect on test performance. As mentioned in Sec. 5, NCAs—during training—require all
activations from each recurrent iteration to be stored in memory before performing backpropagation.
This results in memory usage being proportional to the amount of recurrent iterations. As such,
depending on ViTCA’s configuration, gradient checkpointing may be required to be able to train on a
single GPU. We make use of PyTorch’s checkpoint_sequential, which we use as follows: given
the number of CA iterations T , we divide the sequential (forward) application of the update rule
into bT/2c segments of roughly the same length (depending on whether T is even or odd). Then,
all segments are executed in sequence, where activations from only the first and last segments are
stored as well as the inputs to each intermediate segment. The intermediate inputs are used for
re-running the segments without stored activations during the backward pass to compute gradients.
This results in a trade-off between memory consumption and backpropagation duration since each
intermediate segment’s forward pass needs to be re-computed during its backward pass. Moreover,
and not mentioned in the documentation of PyTorch at the time of writing, there exists a subtle yet
meaningful side-effect which we have observed and confirmed through the use of GNU Debugger
(GDB) and Python Debugger (PDB): Without gradient checkpointing, gradients are accumulated all
at once at the end of backpropagating through the entire computation graph, resulting in the expected
round-offs due to limitations in machine precision (float32 in our case). At this point, PyTorch may

16

Figure 6: Qualitative results showcasing UNetCA’s inductive biases in terms of adapting to: (a)
varying cell update rates; (b) noise configurations unseen during training, and; (c) unmasked and
completely masked inputs. Gold boxes are inputs, green ground truths, and blue UNetCA outputs.

use a variety of numerical techniques to minimize round-off, such as cascade summation (verified
to be used for CPU-based summation, see SumKernel.cpp in PyTorch) which recursively sums
two halves of a sequence of summands as opposed to naively summing them in sequence. With

gradient checkpointing, gradients are accumulated at each segment. This means that round-offs are
forced to (potentially) occur at each checkpoint/segment instead of once at the end of the entire
computation graph. Even if cascade summation is used when summing gradients within each segment,
the segment-wise ordering may reduce its effectiveness. We verified this behaviour by observing an
exact machine epsilon difference (✏ ⇡ 1.19⇥10�7 in IEEE 754 standard) in the gradient—when
compared to the non-checkpointed scheme—of the final operation of the update rule at the second-last
segment, once the loss started to diverge.

It is important to note that despite the difference in gradients, the accuracy of the forward pass remains
unchanged between the checkpointed and non-checkpointed models. Also, we must remind ourselves
that round-offs are unavoidable when performing floating-point arithmetic, meaning that gradients
computed within a deep learning library such as PyTorch are always an estimation of the true gradient.
Importantly, both checkpointed and non-checkpointed models exhibited the same spikes and dips in
their validation losses over the course of training, also decreasing at similar rates.

A.3 Extended analysis of cell state and update rule inductive biases

Here we present an extension of the analyses provided in Sec. 4.1.2 and Sec. 4.1.3.

Adaptation to varying update rates (UNetCA). Fig. 6 (a) shows UNetCA capable of adapting to a
slower (�=25%) cell update rate despite being trained with a �=50% cell update rate. Interestingly,
UNetCA experiences difficulty synchronously updating all cells (�=100%), producing a noticeably
lower quality output compared to its outputs at asynchronous rates. This is in contrast to ViTCA
(Fig. 4 (d)), where the quality of output remains the same across all update rates. Also, not shown
in Fig. 4 (d), but is important to note, are the number of ViTCA iterations from left-to-right, which
are as follows: 1, 8, 12, 16, 32. We point attention to the fact that UNetCA required 48 iterations to
converge with �=25%, 24 iterations to converge with �=50%, and could not converge to a good
solution with �=100%, while ViTCA required 32 iterations to converge with �=25%, 16 iterations
to converge with �=50%, and 8 iterations to converge with �=100%.

Generalization to noise unseen during training (UNetCA). As shown in Fig. 6 (b), UNetCA is
incapable of generalizing to noise configurations unseen during training, inducing a divergence in
cell states. This is in contrast to ViTCA as shown in Fig. 4 (e). ViTCA not only produces a higher
fidelity output mid-denoising, but it also maintains cell state stability.

Effects of not vs. completely masking input (UNetCA). Fig. 6 (c; top): Although UNetCA is able
to successfully autoencode the unmasked input image, it eventually induces a divergence amongst cell
states. This is in contrast to ViTCA as shown in Fig. 4 (g; left). ViTCA not only produces a higher
fidelity output mid-denoising, but it also maintains cell state stability. Fig. 6 (c; bottom): Unlike
ViTCA (Fig. 4 (g; right)), UNetCA does not output the median image when attempting to denoise a
completely masked input and instead causes cells to diverge.

17

Figure 7: Qualitative results showcasing ViTCA’s inductive biases in terms of adapting to masking
one or several of its self-attention heads. Gold boxes are inputs, green ground truths, and purple
ViTCA outputs (after 2784 iterations). For reference, the first column of outputs does not contain any
head masking.

Fw
d.
#

Bwd.
#

M
em

. #

disabled 229ms 355ms 17.0GB
enabled 232ms 576ms 2.5GB

Table 8: Profiling results showcasing ViTCA’s run-
time performance (forward and backward in mil-
liseconds) and memory usage (in GB) while training
on a minibatch of random 32⇥ 3⇥H ⇥W images
with gradient checkpointing disabled vs. enabled.
We use T =32 ViTCA iterations and 16 checkpoint
segments. Boldface denotes best results. Italicized
items denote baseline configuration settings.

Effect of masking heads. Fig. 7 shows how
ViTCA reacts to having its self-attention heads
masked during autoencoding (no noise) an ex-
ample from CelebA. The purpose of this exper-
iment is to observe each head’s contribution
to the output. We can see that when none of
the heads are masked, they attend to facial
features and contours, and the output is as ex-
pected. However, once heads are masked, the
unmasked heads stop attending to the features
they once did and instead deteriorate. In some
cases, the unmasked heads stop attending to
anything at all. There are a couple of inter-
esting cases: 1) When only the first head is
masked, ViTCA is still able to successfully au-
toencode the input, although there is a slight degradation in quality. This is consistent with examples
from the other datasets as well as when there is noise involved. 2) When certain heads are masked,
the noise that the model was trained to denoise starts to appear (e.g., fourth column from left and fifth
column from right).

A.4 Runtime analysis of ViTCA

Here we provide a brief analysis of ViTCA’s runtime performance and memory usage while training
on a minibatch of random 32⇥ 3⇥H ⇥W images through measurements of forward pass duration
(ms), backward pass duration (ms), and training memory usage (GB), with and without using gradient
checkpointing. We use T =32 ViTCA iterations and 16 checkpoint segments. Results are shown in
Tab. 8. Gradient checkpointing provides substantial memory savings at the cost of proportionally
increasing the duration of the backward pass.

18

