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Abstract

Recent extensions of Cellular Automata (CA) have incorporated key ideas from
modern deep learning, dramatically extending their capabilities and catalyzing
a new family of Neural Cellular Automata (NCA) techniques. Inspired by
Transformer-based architectures, our work presents a new class of attention-based

NCAs formed using a spatially localized—yet globally organized—self-attention
scheme. We introduce an instance of this class named Vision Transformer Cellular

Automata (ViTCA). We present quantitative and qualitative results on denoising
autoencoding across six benchmark datasets, comparing ViTCA to a U-Net, a
U-Net-based CA baseline (UNetCA), and a Vision Transformer (ViT). When com-
paring across architectures configured to similar parameter complexity, ViTCA
architectures yield superior performance across all benchmarks and for nearly
every evaluation metric. We present an ablation study on various architectural
configurations of ViTCA, an analysis of its effect on cell states, and an investigation
on its inductive biases. Finally, we examine its learned representations via linear
probes on its converged cell state hidden representations, yielding, on average,
superior results when compared to our U-Net, ViT, and UNetCA baselines.

1 Introduction

Figure 1: ViT vs. ViTCA for denoising Tiny Im-
ageNet [49] validation set images with 2⇥2 pixel
masks covering 75% of the image. Top-to-bottom:
noisy input, ViT, ViTCA, and ground truth.

Recent developments at the intersection of two
foundational ideas—Artificial Neural Networks
(ANNs) and Cellular Automata (CA)—have led
to new approaches for constructing Neural Cel-
lular Automata (NCA). These advances have
integrated ideas such as variational inference
[7], U-Nets [26], and Graph Neural Networks
(GNNs) [15] with promising results on prob-
lems ranging from image synthesis [7, 20, 21]
to Reinforcement Learning (RL) [6, 22]. Trans-
formers are another significant development in
deep learning [41], but, until now, have not been
examined under an NCA setting.

Vision Transformers (ViTs) [13] have emerged
as a competitive alternative to Convolutional
Neural Network (CNN) [56] architectures for
computer vision, such as Residual Networks
(ResNets) [45]. ViTs leverage the self-attention
mechanisms of original Transformers [41], which have emerged as the dominant approach for
sequence modelling in recent years. Our work combines foundational ideas from Transformers and
ViTs, leading to a new class of NCAs: Vision Transformer Cellular Automata (ViTCA).
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Figure 2: Global self-organization manifested within localized self-attention. Despite operating
in spatially local neighbourhoods about a cell, over time the localized (multi-head) self-attention in
ViTCA experiences a global self-organization admitted by its NCA nature. This circumvents the
quadratic complexity of explicit global self-attention (w.r.t. input size) with a linear amortization over
time (recurrent CA iterations), enabling effective per-pixel dense processing. Middle: visualizing
local attention maps about each cell as colour-coded “splats” blended together in overlapping regions,
producing a “splat map” [58]. Left, right: ViTCA iterations on a cell grid, updated from a seed state
to a converged state, given a noisy input image to denoise. For each head of the cells’ local attention
maps, there is global agreement on the types of features to attend to (e.g., foreground contours, noise,
background). Enveloping ViT by the NCA paradigm dramatically improves its output fidelity.

An effective and ubiquitous Transformer-based learning technique for Natural Language Processing
(NLP) pre-training is the unsupervised task of Masked Language Modelling (MLM), popularized
by the BERT language model [34]. The success of MLM-based techniques has similarly inspired
recent work re-examining the classical formulation of Denoising Autoencoders (DAEs) [51], but
for ViTs [3, 13, 28], introducing tasks such as Masked Image Encoding [16] and Masked Feature
Prediction [24] for image and video modelling, respectively. This simple yet highly-scalable strategy
of masked-based unsupervised pre-training has yielded promising transfer learning results on vision-
based downstream tasks such as object detection and segmentation, image classification, and action
detection, even outperforming supervised pre-training [16, 24]. We examine training methodologies
for ViTCA within a DAE setting and perform extensive controlled experiments benchmarking these
formulations against modern state of the art architectures, with favourable outcomes, e.g., Fig. 1.

Our contributions are as follows: first—to the best of our knowledge—our work is the first to
extend NCA methodologies with key Transformer mechanisms, i.e., self-attention and positional
encoding (and embedding), with the beneficial side-effect of circumventing the quadratic complexity
of self-attention; second, our ViTCA formulation allows for lower model complexity (by limiting
ViT depth) while retaining expressivity through CA iterations on a controlled state—all with the
same encoder weights. This yields a demonstrably more parameter-efficient [20] ViT-based model.
Importantly, ViTCA mitigates the problems associated with the explicit tuning of ViT depth originally
needed to improve performance (i.e., we use a depth of 1). With ViTCA, we simply iterate until cell
state convergence. Since ViT (and by extension, ViTCA) employs Layer Normalization (LN) [43]
at each stage of its processing, it is a fairly contractive model capable of fixed-point convergence
guarantees [32].

In relation to our first contribution, ViTCA respects CA requirements, most importantly that com-
putations remain localized about a cell and its neighbourhood. As such, we modify the global
self-attention mechanisms of a ViT to respect this locality requirement (Fig. 2). Localized self-
attention is not a new idea [4, 12, 19, 27]; however, because cells contain state information that
depends on its previous state, over CA iterations the effective receptive field of ViTCA’s localized
self-attention grows increasingly larger until eventually incorporating information implicitly across
all cells. Thus, admitting global propagation of information from spatially localized self-attention.
Moreover, due to the self-organizing nature of NCAs, self-organization also manifests itself within
the localized self-attention, resulting in a globally agreed-upon arrangement of local self-attention.
Thus, circumventing the quadratic complexity of explicit global self-attention (w.r.t. the input size)
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Figure 3: Computational overview. NCAs use a stateful lattice of cells, each storing information
along channels, to promote desired behaviour over the course of an evolutionary cycle. Starting
from an initial seed, each cell state evolves at discrete time steps according to a homogeneous,
learned update rule applied either synchronously or asynchronously (�). This update depends on the
current cell state and that of its neighbours (pictured is the Moore neighbourhood [1]). In ViTCA,
each cell is represented as a vector where the first CiPHPW channels contain a PH ⇥ PW noisy
input image patch (mask(x)), the next CoPHPW channels contain the current output patch (zt

o
),

the following Ch channels contain undefined data hidden from the loss that can be used to encode
additional information (zt

h
), and (optionally) the remaining C�PHPW channels contain positional

information (�). The update rule (F✓) is a modified ViT [13] whose self-attention mechanism is
locally constrained to each cell’s neighbourhood (localize).

through a linear amortization over time, and increasing the feasibility of per-pixel dense processing
(as we demonstrate). This globally consistent and complex behaviour, which arises from strictly local
interactions, is a unique feature of NCAs and confers performance benefits which we observe both
qualitatively and quantitatively when comparing ViT and ViTCA for denoising autoencoding.

2 Background and related work
Neural Cellular Automata. Cellular Automata are algorithmic processes motivated by the bi-
ological behaviours of cellular growth and, as such, are capable of producing complex emergent
(global) dynamics from the iterative application of comparatively simple (localized) rules [60]. Neu-

ral Cellular Automata present a more general CA formulation, where the evolving cell states are
represented as (typically low-dimensional) vectors and the update rule dictating their evolution is a
differentiable function whose parameters are learned through backpropagation from a loss, rather
than a handcrafted set of rules [30, 35, 59]. Neural net-based formulations of CAs in the NeurIPS
community can be traced back to the early work of [59], where only small and simple models
were examined. Recent formulations of NCAs have shown that when leveraging the power of deep
learning techniques enabled by advances in hardware capabilities—namely highly-parallelizable
differentiable operations implemented on GPUs—NCAs can be tuned to learn surprisingly complex
desired behaviour, such as semantic segmentation [31]; common RL tasks such as cart-pole balancing
[22], 3D locomotion [6], and Atari game playing [6]; and image synthesis [7, 20, 21]. Although
these recent formulations rely on familiar compositions of convolutions and non-linear functions, it is
important to highlight that NCAs are fundamentally not equivalent to “very-deep” CNNs (vs. [35]),
or any other feedforward architecture (e.g., ResNets [45]), particularly, in the same way that a Re-
current Neural Network (RNN) is not equivalent: CNNs and other feedforward architectures induce
a directed acyclic computation graph (i.e., a finite impulse response), whereas NCAs (and RNNs)
induce a directed cyclic computation graph (i.e., an infinite impulse response), where stateful data
can additionally be manipulated using (learned) feedback loops and/or time-delayed controls. As
such, NCAs can be viewed as a type of RNN, and both (N)CAs and RNNs are known to be Turing
complete [11, 54, 57, 59].2

Vision Transformers. Vision Transformers [13] are an adaptation of Transformers [41] to vision-
based tasks like image classification. In contrast to networks built from convolutional layers, ViTs rely
on self-attention mechanisms operating on tokenized inputs. Specifically, input images are divided
into non-overlapping patches, then fed to a Transformer after undergoing a linear patch projection
with an embedding matrix. While ViTs provide competitive image classification performance, the

2In the case of (N)CAs, a Turing complete example is the Rule 110 elementary CA [11, 54]
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quadratic computational scaling of global self-attention limits their applicability in high-dimensional
domains, e.g., per-pixel dense processing. Recent developments have attempted to alleviate such
efficiency limitations [9, 10, 14, 17], one notable example being Perceiver IO [5, 8] with its use of
cross-attention. We refer interested readers to a comprehensive survey on ViTs [18].

3 Vision Transformer Cellular Automata (ViTCA)
Building upon NCAs and ViTs, we propose a new class of attention-based NCAs formed using a
spatially localized—yet globally organized—self-attention scheme. We detail an instance of this class,
ViTCA, by first reviewing its backbone ViT architecture before describing the “pool sampling”-based
training process for the ViTCA update rule (see overview in Fig. 3).

Input tokenization. ViT starts by dividing a Ci⇥H⇥W input image X into N non-overlapping
PH⇥PW patches (16⇥16 in the original work [13]), followed by a linear projection of the flattened
image patches with an embedding matrix E 2 RL⇥d (Fig. 3 embed), where L = CiPHPW , to
produce initial tokens T0

2RN⇥d. Next, a handcrafted positional encoding [41] or learned positional
embedding � 2RN⇥d [13] is added to tokens to encode positional information and break permutation
invariance. Finally, a learnable class token is appended to the token sequence, resulting with
T 2 R(N+1)⇥d. For the purposes of our task, we omit this token in all ViT-based models. In
ViTCA, the input to the embedding is a flattened cell grid Z2RN⇥L where L=CPPHPW + Ch,
CP =Ci + Co + C� , Ch is the cell hidden size, Co is the number of output image channels (one
or three for grayscale or RGB), and C� is the positional encoding size when positional encoding is
(optionally) concatenated to each cell rather than added to the tokens [29].

Multi-head self-attention (MHSA). Given a sequence of tokens T, self-attention estimates the
relevance of one token to all others (e.g., which image patches are likely to appear together in an
image) and aggregates this global information to update each token. This encodes each token in terms
of global contextual information, and does so using three learned weight matrices: WQ 2Rd⇥d,
WK 2Rd⇥d, and WV 2Rd⇥d. T is projected onto these weight matrices to obtain Queries Q=
TWQ, Keys K=TWK , and Values V=TWV . The self-attention layer output SA2RN⇥d is:

SA = softmax
⇣
QKT

�p
d

⌘
V . (1)

Multi-head self-attention employs many sets of weight matrices, {WQi
,WKi

,WVi
2Rd⇥(d/h)

| i=
0, ..., (h� 1)}. The outputs of h self-attention heads are concatenated into (SA0, ..., SAh�1)2RN⇥d

and projected onto a weight matrix W2Rd⇥d to produce MHSA2RN⇥d. Self-attention explicitly
models global interactions and is more flexible than grid-based operators (e.g., convolutions) [33, 38],
but its quadratic cost in time and memory limits its applicability to high resolution images.

Spatially localizing self-attention. The global nature of self-attention directly conflicts with the
spatial locality constraint of CAs; in response, we limit the connectivity structure of the attention
operation to each cell’s neighbourhood. This can be accomplished by either masking each head’s
attention matrix (A= softmax(· · · ) 2 RN⇥N in Eq. 1) with a banded matrix representing local
connectivity (e.g., Fig. 3 localize), or more efficiently,

A? = softmax
⇣
A0�p

d

⌘
s.t. (A0)

ij
=

X

l

(Q)il(K)jl (2) SA? = A?V (3)

with (V)
jl

where i={0, ..., (N�1)}, j={(i+nw+nh), ..., i, ..., (i�nw�nh)}, and l={0, ..., (d�
1)}, and with nw={�bNW /2c, ..., 0, ..., bNW /2c} and nh={�W bNH/2c, ..., 0, ...,W bNH/2c}.
Here, we assume top-left-to-bottom-right input flattening. Instead of explicitly computing the global
self-attention matrix A2RN⇥N then masking it, this approach circumvents the O(N2

d) computation
in favour of an O(NMd) alternative that indexes the necessary rows and columns during self-attention.
The result is a localized self-attention matrix A?

2RN⇥M , where M=NHNW ⌧N . As we show in
our experiments, ViTCA is still capable of global self-attention despite its localization, by leveraging
stored state information across cells and their global self-organization during CA iterations (Fig. 2).

Following MHSA is a multilayer perceptron (Fig. 3 MLP) with two layers and a GELU non-linearity.
We apply Layer Normalization (LN) [43] before MHSA and MLP, and residual connections afterwards,
forming a single encoding block. We use an MLP head (Fig. 3 head) to decode to a desired output,
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with LN applied to its input, finalizing the ViTCA update rule F✓. In our experiments, ViT’s head
decodes directly into an image output whereas ViTCA decodes into update vectors added to cells.

3.1 Update rule training procedure
To train the ViTCA update rule, we follow a “pool sampling”-based training process [7, 30] along with
a curriculum-based masking/noise schedule when corrupting inputs. During odd training iterations,
we uniformly initialize a minibatch of cells Z= (Z1, ...,Zb) with constant values (0.5 for output
channels, 0 for hidden—see Appendix A.2 for alternatives), then inject the masked input mask(X)
(see Sec. 4.1). After input injection, we asynchronously update cells (�=50% update rate) using
F✓ for T ⇠U{8, 32} recurrent iterations. We retrieve output Zo from the cell grid and apply an L1

loss against the ground truth X. We also apply overflow losses to penalize cell output values outside
of [0,1] and cell hidden values outside of [-1,1]. We use L2 normalization on the gradient of each
parameter in ✓. After backpropagation, we append the updated cells and their ground truths to a pool
P which we then shuffle and truncate up to the first NP elements. During even training iterations,
we retrieve a minibatch of cells and their ground truths from P and process them as above. This
encourages F✓ to guide cells towards a stable fixed-point. Alg. 1 in Appendix A details this process.

4 Experiments
Here we examine ViTCA through extensive experiments. We begin with experiments for denoising
autoencoding, then an ablation study followed by various qualitative analyses, before concluding
with linear probing experiments on the learned representations for MNIST [50], FashionMNIST [42],
and CIFAR10 [53]. We provide an extension to our experiments in Appendix A.

Baseline models and variants. Since we are performing pixel level reconstructions, we create a
ViT baseline in which the class token has been removed. This applies identically for ViTCA. Unless
otherwise stated, for our ViT and ViTCA models we use a patch size of 1⇥1 (PH =PW =1), and only
a single encoding block with h=4 MHSA heads, embed size d=128, and MLP size of 128. For ViTCA,
we choose NH =3 and NW =3 (i.e., the Moore neighbourhood [1]). We also compare with a U-Net
baseline similar to the original formulation [48], but based on the specific architecture from [37].
Since most of our datasets consist of 32⇥32 (resampled) images, we only have two downsampling
steps as opposed to five. We implement a U-Net-based CA (UNetCA) baseline consisting of a
modified version of our U-Net with 48 initial output feature maps as opposed to 24 and with all
convolutions except the first changed to 1⇥1 to respect typical NCA restrictions [7, 30].

4.1 Denoising autoencoding
We compare between our baseline models and a number of ViTCA variants in the context of
denoising autoencoding. We present test set results across six benchmark datasets: a land cover
classification dataset intended for representation learning (LandCoverRep) [25], MNIST, CelebA
[47], FashionMNIST, CIFAR10, and Tiny ImageNet (a subset of ImageNet [49]). All datasets consist
of 32⇥32 resampled images except Tiny ImageNet, which is at 64⇥64 resolution. During testing,
we use all masking combinations, chosen in a fixed order, and we update cells using a fixed number
of iterations (T =64). See Tab. 1 for quantitative results.

Briefly mentioned in Sec. 3.1, we employ a masking strategy inspired by Curriculum Learning (CL)
[23, 52] to ease training. This schedule follows a geometric progression of difficulty—tied to training
iterations—maxing out at 10K training iterations. Specifically, masking starts at covering 25% of the
input with 1⇥1 patches of noise (dropout for RGB inputs, Gaussian for grayscale), then at each shift in
difficulty, new masking configurations are added to the list of available masking configurations in the
following order: (20⇥20, 50%), (20⇥20, 75%), (21⇥21, 25%), (21⇥21, 50%), (21⇥21, 75%), ..., (22⇥
22, 75%). Masking configurations are randomly chosen from this list.

We initialize weights/parameters using He initialization [46], except for the final layer of CA-based
models, which are initialized to zero [30]. Unless otherwise stated, we train for I=100K iterations,
use a minibatch size b=32, AdamW optimizer [36], learning rate ⌘=10�3 with a cosine annealing
schedule [40], pool size NP = 1024, and cell hidden channel size Ch = 32. In the case of Tiny
ImageNet, b=8 to accommodate training on a single GPU (48GB Quadro RTX 8000). Training
typically lasts a day at most, depending on the model. Due to the recurrent iterations required
per training step, CA-based models take the longest to train. To alleviate memory limitations for
some of our experiments, we use gradient checkpointing [44] during CA iterations at the cost of
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Ba
se

lin
es U-Net 33.94 0.934 0.099 106.6K 26.23 0.906 0.075 106.6K 23.43 0.897 0.049 104.5K

ViT 30.64 0.893 0.135 83.9K 19.70 0.779 0.237 83.9K 16.02 0.631 0.254 83.4K
UNetCA 33.94 0.935 0.102 54.0K 25.66 0.882 0.091 54.0K 25.61 0.929 0.034 52.0K
ViTCA 33.80 0.932 0.102 92.5K 26.53 0.913 0.066 92.5K 27.01 0.940 0.028 91.7K

Va
ri

an
ts

ViTCA-32 34.00 0.935 0.103 92.5K 27.01 0.920 0.060 92.5K 27.68 0.946 0.026 91.7K
ViTCA-32xy 34.06 0.936 0.106 92.8K 26.75 0.898 0.072 92.8K 26.97 0.942 0.028 92.0K
ViTCA-i 33.49 0.929 0.108 54.7K 26.10 0.904 0.074 54.7K 26.03 0.930 0.033 54.3K
ViTCA-i16 33.74 0.932 0.106 54.7K 26.61 0.912 0.066 54.7K 26.42 0.935 0.031 54.3K
ViTCA-ixy 33.75 0.933 0.107 54.8K 26.51 0.894 0.076 54.8K 25.95 0.933 0.033 54.4K
ViTCA-i16xy 33.93 0.935 0.108 54.8K 26.68 0.898 0.074 54.8K 26.28 0.936 0.031 54.4K

FashionMNIST CIFAR10 Tiny ImageNet

Ba
se

lin
es U-Net 24.19 0.852 0.126 104.5K 25.62 0.855 0.131 106.6K 21.93 0.775 0.203 106.6K

ViT 16.28 0.519 0.397 83.4K 20.99 0.744 0.237 83.9K 17.80 0.598 0.355 83.9K
UNetCA 23.67 0.854 0.123 52.0K 25.49 0.851 0.129 54.0K 21.78 0.773 0.204 54.0K
ViTCA 23.80 0.855 0.117 91.7K 25.61 0.856 0.127 92.5K 21.58 0.772 0.215 92.5K

Va
ri

an
ts

ViTCA-32 24.91 0.874 0.098 91.7K 26.05 0.864 0.122 92.5K 21.94 0.781 0.202 92.5K
ViTCA-32xy 24.55 0.869 0.102 92.0K 26.14 0.866 0.120 92.8K 22.03 0.783 0.199 92.8K
ViTCA-i 22.84 0.827 0.139 54.3K 25.42 0.853 0.132 54.7K 21.75 0.776 0.211 54.7K
ViTCA-i16 23.32 0.839 0.127 54.3K 25.65 0.856 0.128 54.7K 21.72 0.774 0.213 54.7K
ViTCA-ixy 23.54 0.848 0.123 54.4K 25.85 0.861 0.125 54.8K 21.95 0.782 0.201 54.8K
ViTCA-i16xy 23.59 0.848 0.121 54.4K 25.98 0.863 0.123 54.8K 21.99 0.782 0.201 54.8K

Table 1: Comparing denoising autoencoding results between baselines and ViTCA variants. ViTCA
variants include: 32 (32 heads), 16 (16 heads), i (inverted bottleneck), xy (xy-coordinate positional
encoding). Boldface and underlined values denote the best and second best results. Metrics include
Peak Signal-to-Noise Ratio (PSNR; dB), Structural Similarity Index Measure (SSIM; values in [0, 1])
[55], Learned Perceptual Image Patch Similarity (LPIPS; values in [0, 1]) [39].

backpropagation duration and slight variations in gradients due to its effect on round-off propagation.
We also experiment with a cell fusion and mitosis scheme as an alternative. See Appendix A for
details on runtime performance, gradient checkpointing, and fusion and mitosis.

Amongst baselines, ViTCA outperforms on most metrics across the majority of datasets used (10 out
of 18). Exceptions include LandCoverRep, where UNetCA universally outperforms by a small margin,
likely due to the texture-dominant imagery being amenable to convolutions. Notably, ViTCA strongly
outperforms on MNIST. Although MNIST is a trivial dataset for common tasks such as classification,
our masking/noise strategy turns it into a challenging dataset for denoising autoencoding, e.g., it
is difficult for even a human to classify a 32⇥32 MNIST digit 75% corrupted by 4⇥4 patches of
Gaussian noise. We hypothesize that when compared to convolutional models, ViTCA’s weaker
inductive biases (owed to attention [5, 8]) immediately outperform these models when there are large
regions lacking useful features, e.g., MNIST digits cover a small space in the canvas. This is not
the case with FashionMNIST, where the content is more filled out. Between baselines and ViTCA
variants, ViTCA-32 (32 heads) and 32xy (xy-coordinate positional encoding) outperform all models
by large margins, demonstrating the benefits of multi-head self-attention. We also experiment with a
parameter-reduced (by ⇠60%), inverted bottleneck variant where d=64 and MLP size is 256, often
with a minimal reduction in performance.

4.1.1 Ablation study

In Tab. 2 we perform an ablation study using the baseline ViTCA model above as reference on
CelebA. Results are ordered in row-wise blocks, top-to-bottom. Specifically, we examine the impact
of varying the cell hidden size Ch; the embed size d; the number of MHSA heads h; the depth (#
encoders), comparing both ViTCA (used throughout the table) with ViT; and in the last block we
examine the impact of various methods of incorporating positional information into the model.
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PSNR " SSIM " LPIPS # # Params.

H
id

de
n

di
m

8 25.61 0.898 0.086 86.3K
16 26.11 0.909 0.070 88.4K
32 26.53 0.913 0.066 92.5K
64 26.53 0.913 0.066 100.7K
128 26.51 0.912 0.066 117.2K
256 26.77 0.915 0.063 150.1K
512 26.78 0.916 0.063 215.9K

Em
be

d
di

m

8† 21.67 0.814 0.258 2.0K
16† 23.22 0.853 0.183 4.5K
32† 24.94 0.875 0.110 10.9K
64† 25.69 0.898 0.084 29.9K
128

† 26.05 0.904 0.075 92.5K
256† 26.36 0.911 0.067 316.0K
512† 19.93 0.768 0.274 1.2M

H
ea

ds

1 25.01 0.890 0.096 76.0K
4 26.53 0.913 0.066 92.5K
8 26.77 0.916 0.062 92.5K
16 26.78 0.917 0.062 92.5K
32 27.01 0.920 0.060 92.5K
64 26.94 0.919 0.061 92.5K

D
ep

th
ViTCA–1 26.53 0.913 0.066 92.5K
ViTCA–2† 10.82 0.225 0.771 175.3K
ViTCA–3† 9.70 0.165 0.793 258.0K

ViT–1 19.70 0.779 0.237 83.9K
ViT–2† 25.20 0.900 0.074 166.7K
ViT–3† 26.10 0.914 0.065 249.4K

PE
ty

pe

sincos5 26.92 0.917 0.062 95.1K
sincos5xy 27.00 0.919 0.059 95.3K
xy 26.45 0.894 0.077 92.8K
handcrafted 26.53 0.913 0.066 92.5K
learned 26.16 0.910 0.071 223.6K
none 26.28 0.890 0.081 92.5K

Table 2: Quantitative ablation for denoising autoen-
coding with ViTCA (unless otherwise stated via pre-
fix) on CelebA [47]. Boldface and underlining de-
note best and second best results. Italicized items de-
note baseline configuration settings. †Trained with
gradient checkpointing [44], which slightly alters
round-off error during backpropagation, resulting
in slight variations of results compared to training
without checkpointing. See Appendix A.2.

Specifically, we examine the use of: (1)
a xy-coordinate-based positional encoding
concatenated (“injected”) to cells, and;
(2) a Transformer-based positional encod-
ing (or embedding, if learned) added into
embed. These two categories are subdi-
vided into: (1a) sincos5—consisting of hand-
crafted Fourier features [29] with four dou-
blings of a base frequency, i.e., �=(sin 20⇡p,
cos 20⇡p, ..., sin 2J�1

⇡p, cos 2J�1
⇡p) 2

RN⇥(4JPHPW ) where J=5 and p is the pixel
coordinate (normalized to [-1,1]) for each pixel
the cell is situated on (one pixel since PH =
PW =1); (1b) sincos5xy—consisting of both
Fourier features and explicit xy-coordinates
concatenated; (1c) xy—only xy-coordinates;
(2a) handcrafted (our baseline approach)—
sinusoidal encoding �2RN⇥d similar to (1a)
but following a Transformer-based approach
[41], and; (2b) learned—learned embedding �

2RN⇥d following the original ViT approach
[13]. To further test the self-organizing capabil-
ities of ViTCA, we also include: (3) none—no
explicit positioning provided, where we let the
cells localize themselves.

As shown in Tab. 2, ViTCA benefits from an
increase to most CA and Transformer-centric
parameters, at the cost of computational com-
plexity and/or an increase in parameter count.
A noticeable decrease in performance is ob-
served when embed size d=512, most likely
due to the vast increase in parameter count ne-
cessitating more training. In the original ViT,
multiple encoding blocks were needed before
the model could exhibit performance equiva-
lent to their baseline CNN [13], as verified in
our ablation with our ViT. However, for ViTCA
we notice an inverse relationship of the effect
of Transformer depth, causing a divergence in
cell state. It is not clear why this is the case, as
we have observed that the LN layers and over-
flow losses otherwise encourage a contractive
F✓. This is an investigation we leave for future
work. Despite the benefits of increasing h, we
use h=4 for our baseline to optimize runtime performance. Finally, we show that ViTCA does not
dramatically suffer when no explicit positioning is used—in contrast to typical Transformer-based
models—as cells are still able to localize themselves by relying on their stored hidden information.

4.1.2 Cell state analysis
Here we provide an empirically-based qualitative analysis on the effects ViTCA and UNetCA have
on cell states through several experiments with our pre-trained models (Fig. 4 (a,b,c)). We notice
that in general, ViTCA indefinitely maintains cell state stability while UNetCA typically induces a
divergence past a certain point. An extended analysis is available in Appendix A.3.

Damage resilience. Shown in Fig. 4 (a), we damage a random H/2⇥W/2 patch of cells with
random values ⇠U(�1, 1) twice in succession. ViTCA is able to maintain cell stability despite not
being trained to deal with such noise, while UNetCA induces a divergence. Note both models are
simultaneously performing the typical denoising task. We also note that ViTCA’s inherent damage
resilience is in contrast to recent NCA formulations that required explicit training for it [7, 30].
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Figure 4: Qualitative results. Gold boxes are inputs, green ground truths, purple ViTCA outputs, and
blue UNetCA outputs. We analyze the effects of ViTCA and UNetCA on cell states in terms of: (a)
damage resilience; (b) convergence stabilility, and; (c) hidden state PCA visualizations of converged
cell grids for all examples in FashionMNIST [42]. We also investigate update rule inductive biases in
terms of adapting to: (f) varying inputs during cell updates; (d) varying cell update rates; (e) noise
configurations unseen during training; (g) unmasked and completely masked inputs, and; (h) spatial
interpolation enabled by our various methods of incorporating cell positioning.

Convergence stability. Fig. 4 (b) shows denoising results after 2784 cell grid updates. ViTCA is
able to maintain a stable cell grid state while UNetCA causes cells to diverge.

Hidden state visualizations. Fig. 4 (c) shows 2D and 3D PCA dimensionality reductions on the
hidden states of converged cell grids for all examples in FashionMNIST [42]. The clusters suggest
some linear separability in the learned representation, motivating our probing experiments in Sec. 4.2.

4.1.3 Investigating update rule inductive biases
Here we investigate the inductive biases inherent in ViTCA and UNetCA by testing their adaptation
to various environmental changes (Fig. 4 (d,e,f,g,h)).

Adaptation to varying update rates. Despite being trained with a �=50% cell update rate, ViTCA
is able to adapt to varying rates (Fig. 4 (d)). Higher rates result in a proportionally faster rate of cell
state convergence, and equivalently with lower rates. UNetCA exhibits a similar relationship, although
is unstable at �=100% (see Appendix A.3). For details comparing training with a synchronous vs.
asynchronous cell grid update, see Appendix A.2.

Generalization to noise unseen during training. ViTCA is capable of denoising configurations of
noise it has not been trained on. Fig. 4 (e; left-to-right): 4⇥1 and 1⇥4 patches of Gaussian noise at
65% coverage. In contrast, UNetCA induces a cell state divergence (see Appendix A.3).

Adaptation to changing inputs. At various moments during cell updates, we re-inject cells with new
masked inputs (Fig. 4 (f)). ViTCA is able to consistently adapt cells to new inputs while UNetCA
experiences difficulty past a certain point (e.g., at 464 iterations in the figure).

Effects of not vs. completely masking input. Fig. 4 (g; left): ViTCA is able to perform autoencoding
despite not being trained for it. UNetCA induces a cell grid divergence (see Appendix A.3). Fig. 4 (g;
right): Interestingly, when the input is completely masked, ViTCA outputs the median image [37].
UNetCA does not exhibit such behaviour and instead causes cells to diverge (see Appendix A.3).

Spatial interpolation. We use ViTCA models trained at 32⇥32 using various types of positioning
to generate 128⇥128 outputs during inference, assuming an identical cell grid resolution. Fig.
4 (h; top-to-bottom of outputs): xy-coordinates, no positioning, Fourier features [29], Fourier
features concatenated with xy-coordinates, and a Transformer-based handcrafted positional encoding
(baseline) [41]. Results are ordered from best to worst. The baseline approach is not capable of
spatial interpolation due to being a 1D positioning, while, as expected, the 2D encodings make it
capable. Surprisingly, removing Fourier features and using only xy-coordinates results in a higher
fidelity interpolation. We believe this to be caused by the distracting amount of positional information
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MNIST FashionMNIST CIFAR10
Acc. " # Params. Acc. " # Params. Acc. " # Params.

Ba
se

lin
es U-Net 96.3 15.4K 86.2 15.4K 52.3 15.4K

ViT 92.1 1.3M 83.4 1.3M 34.5 1.3M
UNetCA 96.3 327.7K 89.5 327.7K 55.1 327.7K
ViTCA 96.7 327.7K 89.7 327.7K 50.2 327.7K

Va
ri

an
ts

ViTCA-32 96.3 327.7K 89.8 327.7K 55.1 327.7K
ViTCA-32xy 96.3 327.7K 89.5 327.7K 53.6 327.7K
ViTCA-i 95.8 327.7K 89.6 327.7K 49.4 327.7K
ViTCA-i16 95.7 327.7K 90.1 327.7K 50.7 327.7K
ViTCA-ixy 96.2 327.7K 89.6 327.7K 50.2 327.7K
ViTCA-i16xy 96.5 327.7K 89.6 327.7K 52.7 327.7K

Linear classifier 93.0 10.3K 84.7 10.3K 39.0 30.7K
2-layer MLP, 100 hidden units 98.2 103.5K 89.4 103.5K 46.0 308.3K
2-layer MLP, 1000 hidden units 98.5 1.0M 89.6 1.0M 49.7 3.1M

Table 3: Linear probe [28] test accuracies (%) of baseline and variant models. Model variants are
labelled as in Tab. 1. All baselines and variants were pre-trained for denoising autoencoding and
kept fixed during probing. A linear classifier and 2-layer Multilayer Perceptrons (MLP) were trained
on raw image inputs. Parameter counts exclude fixed parameters. Boldface and underlined values
denote the best and second best results, respectively. Interestingly, CA-based models trained for
denoising autoencoding on increasingly challenging datasets produce an increasingly more useful
self-supervised representation for image classification compared to non-CA-based models.

Fourier features provide to cells, as cells can instead rely on their hidden states to store higher
frequency positional information. Finally, with no explicit positioning, ViTCA is still able to perform
high-quality interpolation—even exceeding using Fourier features—by taking advantage of its self-
organizing nature. As a side note, we point attention to the fact that ViTCA is simultaneously
denoising at a scale space it has not been trained on, exemplifying its generalization capabilities.

4.2 Investigating hidden representations via linear probes
Here we examine the learned representations of our models pre-trained for denoising. We freeze
model parameters and learn linear classifiers on each of their learned representations: converged
cell hidden states for CA-based models, bottleneck features for U-Net, and LN’d tokens for ViT.
This is a common approach used to probe learned representations [28]. Classification results on
MNIST, FashionMNIST, and CIFAR10 are shown in Tab. 3 and we use the same training setup as for
denoising, but without any noise. For comparison, we also provide results using a linear classifier
and two 2-layer MLPs of varying complexity, all trained directly on raw pixel values. Correlations
between denoising performance in Tab. 1 and classification performance in Tab. 3 can be observed.
Linear classification accuracy on ViTCA-based features typically exceeds classification accuracy
using other model-based features or raw pixel values, even outperforming the MLPs in most cases.

5 Discussion
We have performed extensive quantitative and qualitative evaluations of our newly proposed ViTCA
on a variety of datasets under a denoising autoencoding framework. We have demonstrated the
superior denoising performance and robustness of our model when compared to a U-Net-based CA
baseline (UNetCA) and ViT, as well as its generalization capabilities under a variety of environmental
changes such as larger inputs (i.e., spatial interpolation) and changing inputs during cell updates.

Despite the computation savings—owed to our circumvention of self-attention’s quadratic complexity
by spatially localizing it within ViTCA—there remains the same memory limitations inherent to all
recurrent models: multiple recurrent iterations are required for each training iteration, resulting in
larger memory usage than a feedforward approach. This limits single-GPU training accessibility.
We have experimented with gradient checkpointing [44] but found its trade-off for increased back-
propagation duration (and slightly different gradients) less than ideal. To fully realize the potential
of NCAs (self-organization, inherent distributivity, etc.), we encourage follow-up work to address
this limitation. Adapting recent techniques using implicit differentiation is one avenue to circumvent
these issues [2, 32]. Also, as mentioned in our ablation (Sec. 4.1.1), we hope to further investigate
the instabilities caused by increasing the depth of ViTCA.
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