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Figure 1: INRAS learns an implicit neural representation for audio scenes such that given the
geometry of a scene, emitter and listener positions, INRAS renders the sound perceived by the
listener. See supplementary video of demonstration examples of spatial sound rendering.

Abstract

The spatial acoustic information of a scene, i.e., how sounds emitted from a partic-
ular location in the scene are perceived in another location, is key for immersive
scene modeling. Robust representation of scene’s acoustics can be formulated
through a continuous field formulation along with impulse responses varied by
emitter-listener locations. The impulse responses are then used to render sounds
perceived by the listener. While such representation is advantageous, parameteriza-
tion of impulse responses for generic scenes presents itself as a challenge. Indeed,
traditional pre-computation methods have only implemented parameterization at
discrete probe points and require large storage, while other existing methods such
as geometry-based sound simulations still suffer from inability to simulate all
wave-based sound effects. In this work, we introduce a novel neural network for
light-weight Implicit Neural Representation for Audio Scenes (INRAS), which
can render a high fidelity time-domain impulse responses at any arbitrary emitter-
listener positions by learning a continuous implicit function. INRAS disentangles
scene’s geometry features with three modules to generate independent features for
the emitter, the geometry of the scene, and the listener respectively. These lead to
an efficient reuse of scene-dependent features and support effective multi-condition
training for multiple scenes. Our experimental results show that INRAS outper-
forms existing approaches for representation and rendering of sounds for varying
emitter-listener locations in all aspects, including the impulse response quality,
inference speed, and storage requirements.
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1 Introduction

There are more than a billion buildings in the world, each of them with unique architecture, interior
design and activities they are intended for. While vision is the primary sense for overall impression
and navigation through the world’s interior scenes, hearing plays a key role for a full immersion in a
scene. Indeed, many of our daily activities in an interior scene, such as having a conversation with
someone somewhere in the scene, listening to music or watching TV, calling our pets and locating
them, are dependent on the hearing function. Hearing is the sense that allows us to experience the
scene and interact with it, and the sound quality and its synchronization with the scene completes
our audio-visual perception. Indeed, the selection of scene acoustics plays a significant role in the
activities that the scene would be used for. For example, a dedicated IMAX theater with the latest
sound surround system will draw audience to watch the latest movies, while educational activities
will be held in quiet classrooms, and coffee shops with their energetic, but not noisy, environment
will draw visitors to work on their laptops. In these examples, spatial sound perception is affected by
the collection of the reflected sounds bounced off the floor, the walls, the ceiling, and other reflective
surfaces in the scene.

It is thus imperative to computationally model spatial audio aspects of interior scenes in order to
adequately render a scene with spatial audio. Computational modeling and representation of spatial
audio in an arbitrary scene is a non-trivial task, however, it has been an ongoing research theme
with long history in acoustics research [1]. Typically, the relationship between an arbitrary emitter
sound and spatial sound can be represented by an impulse response, which is the function of time
and positions of the emitter and the listener [2]. For a real scene, an impulse response between the
emitter and the listener can be usually measured by playing a sine sweep, using a loudspeaker at
the emitter location and recording the sound pressure with a microphone at the listener location [3].
Alternatively, the impulse responses can be also simulated by computational geometry-based sound
propagation techniques for scenes that are real or virtual [4, 5, 6, 7]. In both cases, it is time-consuming
and computationally expensive to render impulse responses in a continuous space, and therefore
prohibit more immersive, interactive spatial sound rendering in scenes. Classic encoding approaches
parameterize the impulse responses using a few perceptual parameters that guide reproduction of
reverberations [8, 9]. However, such features are typically custom and designed specifically for some
scenes and do not guarantee high fidelity impulse responses for a given novel scene.

In this work, we propose an Implicit Neural Representation for Audio Scenes, INRAS, for efficient
representation of spatial audio fields with high fidelity. In recent years, neural networks have been
shown to parameterize implicit, continuous representations and achieved remarkable progress in
computer graphics [10]. The infinite resolution property of such representation could be advantageous
for representing the acoustic field as well. Since the acoustic wave equation governs the sound
propagation from an emitter in a scene and its solution can be considered as a continuous field
of impulse responses, the acoustic field can be encoded via a smooth, continuous representation
which can alleviate the drawbacks of the approaches that encode the impulse response in discrete
positions and perform interpolation during rendering [8, 9]. Furthermore, our approach is motivated
by interactive sound propagation techniques using precomputed acoustic transfer operator for the
scene, where the transfer operator is dependent on the scene geometry and decoupled from the
emitter and the listener positions to render impulse response efficiently in interactive sound rendering
applications [11, 12].

Specifically, INRAS is a light-weight and efficient neural network model that can produce high fidelity
spatial impulse responses at arbitrary emitter-listener positions. INRAS includes two main stages.
In the first stage, it decomposes the features of the audio scene into three parallel modules: i) the
Scatter module, ii) the Bounce module, and iii) the Gather module. Motivated by the disentangled
procedures in the interactive acoustic radiance transfer techniques [11, 12], we design these three
modules to generate independent features for the emitter, scene geometry, and listener, respectively.
Indeed, disentangling the features of scene geometry allows our model to represent multiple scenes by
adding only a few trainable parameters. In the second stage, the listener module fuses the independent
features and generates the directional and binaural impulse responses. We show an overview of
INRAS in Figs 1 and 3.

In summary, our main contributions in this work are: 1) We propose a novel light-weight neural
network, INRAS, to learn an implicit neural representation for audio scenes that generate high
fidelity time-domain impulse responses for arbitrary emitter-listener. 2) INRAS disentangles scene’s
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geometry features to generate independent features for the emitter, the geometry of the scene, and
the listener, which leads to efficient reuse of scene-dependent features for arbitrary emitter-listener
positions, and supports effective multi-condition training for multiple scenes by adding only a few
trainable parameters. 3) INRAS outperforms existing approaches on all metrics of audio rendering,
including the impulse response quality, inference speed, and storage requirements.

2 Related Work

Scene Acoustics Modeling. Modeling scene acoustics can be divided into two categories, approaches
of 1) wave-based and, 2) geometry-based. The first type of wave-based algorithms aims to solve
the acoustic wave equation using numerical techniques [13, 14, 15, 16]. Due to the computation
complexity of the wave equation, these approaches are typically used for lower frequencies. While
wave methods have become more utilized with advancement of CPU/GPU computing power [17, 18],
this cost directs existing methods to prefer geometric approximations of scene acoustics (the second
type of acoustic modeling) [19]. Geometry-based approaches assume that the sound travels along a
straight line, and determine the path of sound propagation according to energy attenuation. These
methods are generally faster than wave-based methods and are suitable for high-frequency sound
propagation. However, with such an approach, it is difficult to accurately simulate low-frequency
acoustic phenomena such as edge diffractions and surface scattering of arbitrary order. The commonly
used geometric approaches are image sources methods [4, 5], ray-tracing [6, 7, 20], radiosity [21],
and acoustic radiance transfer [22].
A general model of geometric room acoustics can be formulated as an integral equation. One of
the first equations is the Kuttruff’s integral equation for diffuse reflections in a convex room [23].
Multiple extensions of this mathematical model have been proposed subsequently, such as the room
acoustic rendering equation which provides a framework for most geometric acoustic methods for
interiors [24]. These algorithms for sound propagation are limited to static sources and/or listeners.
Interactive applications are usually achieved by precomputing sound propagation effects such as
precomputing acoustic radiance transfer from static sources [11, 12, 25]. While our work aims to
represent the scene acoustics instead of performing simulation from scratch, the proposed INRAS
model is motivated by the interactive acoustic radiance transfer method [11, 12].

Sound Field Encoding. Classical sound field encoding approaches represent the field around a
listener point by capturing the sound from spatially distributed sources. For example, Ambisonics [26]
represents the sound field around a point using spherical harmonic coefficients and independently of
the reproduction setup (speakers or headphones). Parametric surround approaches, such as MPEG-
Surround [27], assume a known speaker configuration around the listener. MPEG-H [28] extends the
idea to allow encoding that is agnostic to the reproduction setup and supports higher-order Ambisonics
and binaural rendering. The Spatial Decomposition Method (SDM) [29] fits an image source model
to responses measured with a microphone array, approximating it at a point with multiple delayed
spherical wavefronts. In Directional Audio Coding (DiRaC) [30], the input is the directional sound
signal at a listener which is a superposition of all sound source signals in a scene convolved with
the corresponding directional impulse responses. DiRaC computes direction and the diffuseness
parameter for each of many time-frequency bins. These approaches are static and do not allow the
listener to navigate the scene and experience the changes in sound while doing so. Several works for
interactive sound field encoding propose to extract important features from precomputed impulse
responses and synthesize them back using digital signal processing techniques [8, 31, 9]. However,
these encodings typically cannot reproduce impulse responses with high fidelity.

Deep Acoustics. In recent years, deep learning approaches have been developed for various audio
applications, especially in speech [32, 33, 34, 35, 36] and music [37, 38, 39, 40]. In acoustics,
these include neural sound spatialization from a mono audio [41], estimation of room geometry and
reflection coefficients from impulse response [42], reverberation time and direct-to-reverberation ratio
prediction [43, 44], and learning the head-related transfer functions (HRTFs) [45]. In relation to scene
modeling, deep neural networks which model room impulse responses (RIR) have been extensively
studied. A convolutional neural network model has been proposed to estimate room impulse response
from reverberant speech [46]. Deep generative models such as IR-GAN [47] and fast-RIR [48] have
been proposed to generate new realistic impulse responses. Recently, the emergence of implicit
neural representations has shown great success in representing 3D geometry [49] and the appearance
of a scene [10]. Such representation approach could be generalized to represent images, videos, and
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sounds by learning a continuous mapping capable of capturing data at an "infinite resolution" [50].
Indeed, very recently, it has been proposed to learn an implicit neural function to represent the impulse
responses of interior scenes such as rooms [51, 52]. The Impulse Response Multi-layer perceptrons
(IR-MLP) proposes to predict impulse responses from spatio-temporal coordinates using an MLP.
However, this approach does not support both moving sources and moving listeners scenarios [51].
Such a problem has been addressed by Neural Acoustic Fields (NAF) [52], which proposes to learn
a continuous map from all emitter and listener location pairs to a neural impulse response function
using the magnitude component of the frequency-time spectrogram representation after applying
Short-time-Fourier-Transform. While the smooth nature of the time-frequency spectrogram can be
beneficial for training deep neural networks, the smoothness and entanglement of the time-frequency
representation prediction also leads to imprecise modeling of high peaks that appear less frequently.
For example, the sparse high peaks in the early reflection part of impulse response play a dominant
role in our perceptual feelings for sound source directions and clarity. Moreover, modeling using
the spectrogram magnitude ignores the phase information and adding a random phase which may
distort the audio signal. In our approach, we learn the neural representation of the sound field for both
moving listeners and moving sources scenarios. We aim to learn such implicit neural representation
for rendering time-domain impulse responses instead of spectrograms. Our results show that INRAS
can generate higher fidelity impulse responses with even fewer trainable parameters.

3 Methods

Problem Setup. INRAS implements several deep neural networks to model the continuous implicit
function that maps the coordinates of the scene to the corresponding time-domain directional and
binaural impulse responses of the sound field. More formally, for a given 3D scene D, we denote the
sound emitter locations as s ∈ R3, the listener locations as l ∈ R3, and the listener head orientation
θ ∈ R2. Then ∀(s, l, θ) ∈ R8 in the scene, there would be corresponding binaural impulse responses
h ∈ R2×T where T indicates the time length. We model the continuous function f(s, l, θ) −→ h
parameterized by a deep neural network that pairs s, l, θ with appropriate impulse response h. While
the idea seems straightforward, training the network to learn the time domain impulse response from
given coordinate inputs is challenging due to typical long temporal length of impulse responses, and
highly oscillating amplitude at different time samples, all which increase the difficulty of training.
A key insight to assist with training is that while the geometry of the scene determines the impulse
responses, it is always static no matter how emitter and listener positions vary and therefore the
geometry based information could be shared with an arbitrary emitter and listener positions. Such an
idea has been applied to interactive sound propagation based on acoustic radiance transfer [11, 12].
For training a neural network model, the approach would be to leverage the static scene geometry by
learning reusable scene-dependent features, and associate them with the emitter and the listener. This
allows the model to realize that the differences between impulse responses at various emitter-listener
locations are dependent on the scene geometry. Motivated by this approach, we propose a two-stage
model. The first stage performs decomposition of the audio scenes feature to learn the independent
scene geometric features and associate the emitter and listener to the scene. The second stage fuses
these features to render the binaural impulse responses. In the following sections, we review the
interactive acoustic radiance transfer and then describe our model in detail.

Background on Interactive Acoustic Radiance Transfer. The acoustic radiance transfer is a classical
approach to model sound propagation in complex room models and it can be derived from the acoustic
rendering equation [24]

L(x,Ω, t) = L0(x,Ω, t) +
∫
S
R(x, x′,Ω, t)L(x′, x−x′

|x−x′| , t)dx
′, (1)

where S is the set of all surface points in the scene, L is the total outgoing acoustic radiance, L0 is
the emitted acoustic radiance, Ω is the final radiance direction at x; the incident radiance direction at
x is implicit in the specification of x′, and R is the reflection kernel, which describes how radiance
at point x′ influences radiance at point x. The equation describes that the outgoing time-dependent
radiance at any surface point is a combination of the reflected time-dependent radiance and the
emitted time-dependent radiance.
The acoustic radiance transfer algorithm can be summarized in three steps (See Fig. 2). In the first
step, the scene’s boundary is divided into N bounce points, and energy is scattered from the emitter
to all bounce points. In the second step, sound energy is emitted in all directions from a given
bounce point. It propagates through the scene until the propagation is finally terminated upon an
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Step 1: Scattering from Emitter Step 2: Acoustic Transfer Step 3: Gathering at Listener

Figure 2: Acoustic radiance transfer steps overview.

incidence at some other bounce point. The energy-time curve on each bounce point can be stored
as an echogram. In the final step, the listener gathers energy responses from all bounce points.
In interactive extensions [11, 12], a linear acoustic transfer operator is precomputed to model the
propagation of acoustic radiance between bounce points distributed over the surface of the scene. In
other words, the acoustic transfer operator can be seen as the scene-dependent features that are shared
with all emitter-listener locations. Such disentanglement efficiently updates the impulse response at
various emitter-listener positions by computing the propagation delay based on the relative distance
to the bounce points. This motivates us to design a neural network model with similar decoupled
modules to satisfy that the scene geometry information can be realized and reused by an arbitrary
emitter and listener.

Implicit Neural Representation for Audio Scenes. INRAS includes two main components:(a) audio
scenes feature decomposition, and (b) spatial binaural impulse response prediction. In (a), there
are three parallel modules: 1) the Scatter module which learns features to associate the emitter with
bounce points; 2) the Bounce module which learns the scene-dependent features shared by all emitter
and listener positions; 3) the Gather module which learns features to associate the listener with
the bounce points. In (b), we fuse the output features of the three parallel modules and render the
directional and binaural impulse responses. System overview is shown in Fig. 3.

Scatter Module. Similar to computing the initial radiance scattering from the emitter to all bounce
points in acoustic radiance transfer, the Scatter module is dependent on the relative distance between
the emitter position and every bounce point position. We divide the surface of the scene into N
uniform bounce points with 3D locations {bi}Ni=1 ∈ R3. We compute the relative distance between
the emitter position s to all bounce points {dsbi}

N
i=1. Using relative distance as input instead of

absolute position enables the emitter to be aware of the geometry of the scene and allows the model
to learn smooth continuous features for various emitter positions. We use sinusoidal encoding to map
the input {dsbi}

N
i=1 to a higher dimension. This encoding is similar to the encoding used in graphical

implicit neural representation [10]. We learn a function FΘ parameterized by a fully connected
network. We denote the output feature as I = FΘ({dsbi}

N
i=1) ∈ RN×D, where D indicates the feature

dimension. In our experiments, we find that it is sufficient to use 40 to 60 bounce points to cover the
structure of the scene. We perform more investigations of bounce points selection in ablation studies
Results section.

Bounce Module. We design the bounce module to generate features representing the geometry of
static scenes shared with arbitrary locations of emitter and listener. To model such scene dependent
features, we learn a function UΦ parameterized by a multi-layer perceptron (MLP) with residual
connections that takes all bounce points positions {bi}Ni=1 ∈ R3 as input and outputs the features
Q = UΦ({bi}Ni=1) ∈ RN×D.

Gather Module. This module is similar to the Scatter module. We aim to associate the listener with
the bounce points in the scene. We compute the relative distance between the listener position l to
all bounce points: {dlbi}

N
i=1, and use sinusoidal encoding to learn a function GΨ parameterized by a

fully connected network to generate the output feature O = GΨ({dlbi}
N
i=1) ∈ RN×D.

Spatial-Time Feature Composition. The three modules in Feature Decomposition described above
do not incorporate time-dependencies. Adding time to every module could significantly slow down
the training procedure. Motivated by the acoustic operator decomposition in the interactive sound
propagation [12], the energy-time echogram for a specific bounce point bi(t) can be represented by
a set of time domain basis functions {τk(t)}Kk=1 via a linear combination: bi(t) =

∑K
k=1 αkτ

k(t),
where α’s are coefficients in the basis space. We follow this representation and learn a function
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Figure 3: System overview of INRAS. (a) Audio Scenes Feature Decomposition: inputs to scat-
ter/gather module are the relative distances between the emitter/listener locations and bounce points.
The bounce module takes all bounce points to generate scene-dependent features. (b) Spatial Binaural
IR Prediction: in this stage, the decomposed features are stacked and fed to the Listener module
which generates the spatial binaural impulse responses.

Pτ through a fully connected network to obtain a set of time-domain basis functions which can be
reused by all spatial features. We encode the time samples {tj}Tj=1 using the sinusoidal encoding.
The output is denoted as M = Pτ ({tj}Tj=1) ∈ RT×D. We then perform fast matrix multiplication to
obtain spatial-time features Î = MI⊤, Q̂ = MQ⊤ and Ô = MO⊤.

Listener Module. In the stage of spatial binaural impulse response prediction, the listener module
first performs feature fusions by concatenating the three features together E = {Î , Q̂, Ô} ∈ RT×3N ,
where {Ebi}Ni=1 ∈ RT×3 represents fused spatial-time features for l and s associated with the bounce
point bi. We feed E as input to the Listener module which combines it with the orientation of the
head given by θ and encoded by a learnable embedding matrix. We model the listener module via
MLP and generate binaural impulse responses in time-domain h = VΓ(E, θ).

Training and Rendering. All components and modules of INRAS are trained jointly. We use a
combination of mean square error loss Lmse = ∥h−ĥ∥22 and multi-resolution STFT loss Lmr_stft which
has been shown effective in modeling audio signals in the time domain [53]. The multi-resolution
STFT loss first converts the impulse response into frequency-time domain H = STFT(h) and
computes the spectral convergence loss Lsc =

∥|H|−|Ĥ|∥2

∥|H|∥2
, the magnitude loss Lmag = ∥|H| − |Ĥ|∥1

and the phase loss Lphase = ∥ϕ(H)− ϕ(Ĥ)∥, our total loss can be summarized as follow:

Lmr_stft = Lsc + Lmag + Lphase, Ltotal_loss = Lmse + Lmr_stft (2)

Once we obtain the impulse response h, we can render sounds perceived at the listener location by
convolving the impulse response with a sound source y. The final sound is denoted as ŷ = h⊛ y.

Multi-condition Training with Multiple Scenes. The design of INRAS enables the emitter and the
listener to be aware of scene geometry by computing the relative distance to the bounce points in
Scatter and Gather modules and provides a static scene-dependent features. This concept could be
generalized to multiple scenes, since one can include bounce points from multiple scenes and let the
emitter and listener to predict which scene they are in to achieve a multi-condition representation
goal. Specifically, we normalize the coordinate space of multiple scenes and adapt the total number
of bounce points Ntotal =

∑K
i=1 Ni for K scenes. When computing the relative distance and bounce

points features for the emitter/listener in a specific scene, we mask the other irrelevant bounce
points. Since all other components and feature dimension are kept the same, such operation adds a
handful of trainable parameters due to the increased bounce points number and in turn enables the
multi-condition representation over multiple scenes.

4 Experiments

Datasets. To evaluate our method, we use the Soundspaces dataset which consists of dense pairs
of impulse responses generated by geometric sound propagation methods [54]. All scenes have
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Figure 4: Rendered Impulse Responses Waveform Visualization. Top left:the speaker indicates the
emitter location. We show examples (right) of rendered waveforms at two listener locations (black
square and black circle) rendering by three methods: AAC-Linear, NAF and INRAS (blue: GT; red:
Prediction). Bottom left: Metrics upon which we evaluate Impulse Response are illustrated.

the same ceiling height and provide binaural impulse responses for four different head orientations
(0, 90, 180, 270 degrees). For a fair comparison to previous work [52], we re-sample all impulses
responses to 22050 sampling rate and use the same 6 scenes, including 2 multi-room layouts, 2 rooms
with non-rectangular walls, and 2 single rooms with rectangular walls. For each scene, we use 90%
data for training and hold 10% data for testing.

Implementation Details. We use Pytorch to implement all INRAS models. For all scenes, we extract
the bounce points from the mesh boundary, (40 to 60, depending on the scene). We encode the
relative distance from emitter/listener to bounce points using sinusoidal encoding with 10 frequencies
of sin and cos functions. We use a fully connected layer in the Scatter module and Gather module. In
the Bounce module, we use a 4-layer residual MLP. In the Listener module, we use a 6-layer residual
MLP. In all MLPs, we use 256 neurons and set PreLU as the activation function. We use AdamW
optimizer [55] to train all models on a Tesla T4 GPU for 100 epochs with a batch size of 64. The
initial learning rate is set as 5e-4 and it gradually decreases by a factor of 0.95.

Baseline Methods. We compare our method to existing learning-based and classical approaches. For
learning-based approaches, we compare INRAS with NAF [52]. Since INRAS is effectively a novel
encoding method to compress the acoustic field of a scene, we also compare INRAS with two audio
encoding methods: Advanced Audio Coding (AAC) and Xiph Opus by applying both linear and
nearest neighbor interpolation to the coded acoustic fields.

Evaluation Metrics. We evaluate all methods on three aspects: impulse response quality, storage
requirements and inference speed. We first compute acoustic parameters to evaluate the impulse
response quality. We use acoustic parameter Clarity (C50) to quantify the part of early reflections of
the impulse response which is associated with music loudness, speech intelligibility, and clarity. To
study the effects of late reverberation parts, we use reverberation (T60) and early decay time (EDT)
to illustrate the statistical portion of the impulse response. The reverberation time (T60) measures
how long it takes for the acoustic energy to decay by 60 dB. EDT is closely related to the listener’s
perception of reverberation but it is also affected by the early reflections of the impulse responses.
Illustration for these acoustic metrics can be found in Fig. 4. In addition, we also compute the
storage requirements for saving audio scenes representations and the inference speed for rendering a
binaural impulse response in the scene. For fair comparison, we test inference speed for all methods
consistently on a same Telsa T4 GPU.
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Model\Metric C50 error T60 error EDT error Parameters Storage Speed
(dB) ↓ (%) ↓ (sec) ↓ (Million) ↓ (MB) ↓ (ms) ↓

Opus-nearest 3.58 10.10 0.115 - 181.37 -
Opus-linear 3.13 8.64 0.097 - 181.37 -
AAC-nearest 1.67 9.35 0.059 - 346.74 -
AAC-linear 1.68 7.88 0.057 - 346.74 -
NAF 1.06 3.18 0.031 2.23 8.55 37.86
INRAS (Ours) 0.6 3.14 0.019 0.67 2.56 9.47

Table 1: Quantitative evaluation of impulse response quality, storage requirements and inference
speed. Results are indicated on average of six single scene models.

Apartment

Ground Truth
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Emitter

INRAS
Multi-Scenes

(Ours)

Apartment Office

0.0 0.2 0.4 0.6 0.8 1.0
Quiet Loud

Figure 5: Loudness map visualization comparing INRAS multi-scenes rendering of three scenes
(Top) vs. Ground truth using nearest neighbors (Bottom).

Results. Quantitative evaluation results are shown in Table 1. INRAS outperforms both traditional
audio coding and learning-based methods in all metrics. In particular, C50 and EDT errors for INRAS
outperform NAF by 43% and 39%, indicating that the early reflection part of INRAS rendered
impulse responses is much closer to the ground truth. Fig. 4 illustrates a comparison of two examples
of rendered impulse responses waveforms by AAC-linear, NAF and INRAS method. On the top left
of the figure, we visualize the impulse responses loudness map of INRAS where colors indicate the
loudness amplitude. In the two right columns, the comparison shows that the AAC-linear waveforms
have large gaps from the ground truth. While NAF is able to capture the exponential decay pattern of
reverberation, it cannot capture the early reflection part of both impulse responses that are shown.
This part includes high peaks important for clarity. In comparison, INRAS can render both the early
reflections and the late reverberation. We show more qualitative visualization on loudness maps and
waveforms in the Suppl. Materials. Moreover, INRAS model takes only ∼ 0.65 million trainable
parameters which results in less than 3MB storage and 4ms inference speed, indicating the INRAS is
significantly more light-weight and efficient model.

Multi-condition Training on Multiple Scenes. As discussed in the method section, the effective
audio scene feature decomposition allows us to train a single INRAS model to represent multiple
scenes. We investigated this property by training INRAS on three scenes with different types of
scene layouts. We selected one multi-room layout, one room with non-rectangular walls, and one
room with rectangular walls (See Fig. 5). As expected, INRAS can learn continuous implicit neural
representations for all three scenes. We illustrate the loudness maps for all three scenes learned by
such single model in Fig. 5 and in Table 2, where we show quantitative results of the multi-scene
model. In addition to the acoustic parameters that evaluate the impulse response quality, we further
evaluate the quality of the final rendered audio signal after convolving the impulse response with a
sound source. Specifically, we compute the Signal-to-Noise ratio (SNR) and audio Peak Signal to
Noise Ratio (PSNR). The results in Table 2 clearly show that our model after multi-condition training
can achieve high-quality results and better overall accuracy than average of other models applied to
each scene. Notably, the number of trainable parameters in INRAS increases only by 0.1M to extend
the single-scene to multi-scenes thus keeping the storage requirement less than 3MB. In comparison,
other approaches have increased the storage size linearly.
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Model\Metric Multi-scenes SNR PSNR C50 error T60 error Storage
(dB) ↑ (dB) ↑ (dB) ↓ (%) ↓ (MB) ↓

Opus-nearest ✗ 3.18 13.35 3.6 10.1 544.11
Opus-linear ✗ 3.57 13.45 3.23 8.7 544.11
AAC-nearest ✗ 6.48 17.84 1.51 9.64 1040.31
AAC-linear ✗ 7.52 18.7 1.57 8.05 1040.31
NAF ✗ -1.54 11.25 1.05 3.01 25.65
INRAS (Ours) ✓ 8.06 18.80 0.68 4.09 2.99

Table 2: Quantitative evaluation of INRAS after multi-condition training on three scene layouts.
Results for other methods are computed as an average of the three scenes.

Ablation Studies. To show the effectiveness of INRAS v.s. similar variants, we use a representative
scene to perform ablation studies. Table 3 shows comparison results of INRAS and its ablated
variants. We first implement a brute-force model (Simple INRAS) using a residual MLP like NAF
architecture and provide the normalized emitter and listener positions as input to predict the time
domain impulse response using MSE loss only. The result turns out to be unsuccessful in all metrics.
We further show that adding a multi-resolution STFT loss can improve T60 error but still the model
fails to capture the early reflection part. Next, we show that not including the relative distance impairs
the results since the emitter and the listener could not realize the scene geometry. Also, removing the
bounce module eliminates the static scene feature and therefore impairs the performance. We also
investigate the importance of bounce point selection. We sample two types of bounce points that both
have the same total number as the original setting but they do not cover the whole scene, i.e., missing
some boundaries. The results show that only using bounce points cover that the full scene geometry
can achieve the best performance in all metrics.

Model\Metric C50 err (dB) ↓ T60 err (%) ↓ EDT err (sec) ↓
Simple INRAS w. Lmse 1.47 49.6 0.048
Simple INRAS w. Lmse + Lmr_stft 2.20 6.40 0.074
INRAS w.o. rel. dist. 1.12 3.52 0.038
INRAS w.o. bounce module 0.63 2.30 0.019
INRAS w. more incomplete bounce points 0.50 2.31 0.019
INRAS w. less incomplete bounce points 0.49 2.17 0.018
INRAS (Ours) 0.44 2.07 0.017

Table 3: Ablation Studies of INRAS variants.
Bounce Points Sampling. We uniformly sample bounce points on the boundaries of obstacles
appearing in the scene. In the Soundspace dataset, the only obstacles are walls that block sound
propagation. Thus we uniformly sample the points on the surface of each room. The number of
bounce points is dependent on the room size and the sampling rate. We performed experiments with
various sampling rates to evaluate which selection to use. For example, one room has a perimeter of
about 24 meters and the total number points of the mesh boundary is around 2400. Our experiments
indicated that uniform sampling of the bounce points every 0.5m (sample rate: 1/50, 48 bounce
points) is optimal. Notably, the impulse response data has the same spatial resolution. A higher
sampling rate does not necessarily achieve better performance since noise and redundant features
could be induced with higher sampling resolution. We compare different sampling rates for bounce
points for the room mesh in Table 4.

Multi-conditioned Representation for Various Reflection Coefficients. To test whether INRAS can
be conditioned on various reflection coefficients, we create a 3m x 5m room using the available open
source Python package (pyroomacoustics) [56] to simulate impulse responses using Image Source +
Ray tracing method. We use spatial resolution of 0.5m to sample both impulse responses and bounce
points. For the same room, we create 225 sets of impulse responses with various absorption and

Sampling Rate\Metric T60 error (%) ↓ C50 error (dB) ↓ EDT error (sec) ↓
1/100 1.47 0.53 0.019
1/75 1.42 0.53 0.018
1/50 1.41 0.51 0.016
1/25 1.41 0.59 0.019
1/10 1.70 0.71 0.025

Table 4: Sampling rate study for bounce points sampling.
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Settings\Metric T60 error (%) ↓ C50 error (dB) ↓ EDT error (sec) ↓
Seen Coefficients 3.56 1.06 0.023

Unseen Coefficients 3.83 1.13 0.030
Table 5: Results on multi-conditioned reflection coefficients. These results show that INRAS can
perform well even when absorption and scattering coefficients are unseen and vary.

Method\Metric T60 error (%) ↓ C50 error (dB) ↓ EDT error (sec) ↓
Geometry Based Simulation 1.45 3.67 0.042

INRAS (ours) 0.35 (-75.86%) 1.61 (-56.13%) 0.011(-73.81%)
Table 6: Comparison between INRAS (ours) and Geometry Based Simulation for a real world scene.
Our results show that INRAS outperforms geometry-based simulation in all metrics and obtains
significant improvement in accuracy.

scattering coefficients on the walls. We use 90% sets of coefficients for training and 10% for testing.
For the coefficients seen in the training, we also hold 10% spatial points for testing. To incorporate
the coefficient condition in our model, we adapt our model by adding a coefficient embedding using
sinusoidal embedding similar to coordinate inputs. An addition operation is performed to add the
coefficient embedding to the decomposed features. In this experiment, as shown in Table 5, INRAS
model achieves testing T60 error of 3.83%, C50 error of 1.13dB and EDT error of 0.03 second, which
is not far from the performance on the training set. These results show that INRAS can perform well
even when absorption and scattering coefficients are unseen and vary.

5 Conclusion

In conclusion, here we present INRAS, a novel implicit neural representation for audio scenes.
INRAS is a light-weight, fast model that effectively renders high fidelity impulse responses for
multiple audio scenes. We achieve such function by leveraging a novel reusable representation of
scene-dependent features and associate them with the emitter and the listener. Experimental results
demonstrate that INRAS outperforms other methods in all metrics and we further show that INRAS
can represent multiple scenes after multi-condition training.

There are multiple benefits of an implicit neural representation of acoustic fields by INRAS. The first
benefit is that in comparison to previous pre-computation approaches, an implicit neural representation
of INRAS can learn a continuous compact representation for pre-computed impulse responses in a
scene. This significantly decreases the storage requirement and provides fast inference in run-time.
Some state-of-the-art geometry-based sound simulations can be made real-time as well. However,
these approaches still have the common drawbacks of geometric-based methods, such as inaccuracy
at low frequency and inability to simulate complete wave-based sound effects. In comparison,
an implicit neural representation of INRAS is not limited to these drawbacks at run-time since
conceptually it can learn to map input coordinates to infinite-high fidelity impulse responses which
can be pre-computed. In other words, the complexity of the sound simulation will not be a bottleneck
for the quality of the real-time rendering.

Furthermore, implicit neural representations can fit real world data, on which it is challenging for an
interactive geometric-based simulation to reach the same quality. To further investigate this aspect,
we trained INRAS on S1-M3969 subset of meshRIR dataset which includes dense real impulse
responses recordings in a room with approximate dimensions of 7m x 6.4m [57]. We sample the
bounce points every 0.5m. Since the recording is a single channel, we removed the head orientation
conditions at the listener module and output a single channel. We use 90% data for training and 10%
data for testing. For a fair comparison, we faithfully tuned material parameters of the room model to
best match the ground truth recordings. Our results show that INRAS outperforms geometry-based
simulation in all metrics and obtains large gains in accuracy, as shown in Table 6.
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