
Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section 7.
• Did you include the license to the code and datasets? [No] The code and the data are

proprietary.
• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] In the introduction.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] Yes in

Section E.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] In Section 3
(b) Did you include complete proofs of all theoretical results? [Yes] In Sections 3 and 4

and Appendix A
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] As a URL.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] In Section 7 and Appendix C.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Table 1.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Table 1.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] The UCI datasets in

Section 7.
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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A Correctness of Algorithm 2

In this section, we show that Algorithm 2 performs approximate inversion. And then we show how to
modify the algorithm in the setting were all columns of U are identical, for a factor of q speedup.

We begin by writing the exact form of (u0)p=l from the proof of Theorem 1, and the corresponding
c
0(l). Recall the Sherman–Morrison Formula:

(A+ cuu
>)�1 = A

�1
�

A
�1

uu
>
A

�1

c�1 + u>A�1u

At the time that we update A with the rank one matrix c
(l)
u
p=l

u
p=l>, what does A equal? Let c and

u originate from the i
th column of C and U . So our update is C(l)

:,i U
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:,i U
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, recalling r is the largest integer in

P . And likewise, all the relevant entries of C 0 and U
0 have been calculated for A�1. So we have
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The main computation we need to do is A�1
u. We’ll say that k` v il if set l from partition P:,i is

a superset of set ` from partition P:,k. That is, the rows where P:,k takes the value ` are a subset
of the rows where P:,i takes the value l. The key simplification we use is that if k` 6v il, then

U
P:,i=l
:,i

>
U

0P:,k=`
:,k = 0. The rows at which those two vectors have nonzero elements are disjoint. This

logic is explained in the proof of Theorem 1 without all the notation.
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Equation 6 follows because the terms in the dot product U 0P:,k=`
:,k

>
U

P:,i=l
:,i are only nonzero when

P:,k = ` and P:,i = l, but the latter is implied by k` v il, so this is equivalent to the elements where

P:,k = `. So U
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Proposition 3 (Correctness of Algorithm 2). In Algorithm 2, U
0

and C
0

take the values defined in

Equations 6 and 7.

Proof. We’ll assume that for k > i, C 0
:,k and U

0
:,k have the right values, and we’ll show that C 0

:,i

and U
0
:,i get the right values. Starting with U

0
:,q , the

Pq
k=q+1 in Equation 6 is empty, so U

0
:,q = U:,q .

In Algorithm 2, U 0 is initialized to U , and the q
th column is never updated.

Now we see that C 0
:,i is correct assuming U

0
:,i is. In Line 5, we ensure zl = C

(l)
:,i U

0P:,i=l
:,i

>
U

P:,i=l
:,i .

A dot product is the sum of elementwise multiplications, and one can inspect that each such multipli-
cation gets added to the right slot in z. Then, Line 6 implements Equation 7, with numerator and
denominator multiplied by C

(l)
:,i . (It stores the same value in multiple locations).

Now we turn to U
0
:,i. U 0

:,i is updated in every preceding loop. It starts out initialized to U:,i, which
accounts for the first term in Equation 6. In the sum from k = i+ 1 to q, each term is accounted for
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in a separate loop of the algorithm. We check that each term gets added at some point. So consider

the term
P

`:k`vil
C

0(`)
:,kU

0P:,k=`
:,k U

0P:,k=`
:,k

>
U

P:,i=l
:,i .

This term gets added to U:,i when i from Algorithm 2 equals k from Equation 6, and when k from
Algorithm 2 equals i from Equation 6. We are very sorry about this correspondence, but it would
have to happen either here or above in the discussion of C 0. Observe that in Line 10, ypjk takes the

value (U 0)
P:,i=pj

:,i

>
U

P:,i=pj

:,k . Then, in Line 11, ypjk gets multiplied by (U 0)
P:,i=pj

:,i and C
0(pj)
:,i , and

added to U
0
:,k. Swapping the i’s and k’s, and letting pj from Algorithm 2 equal ` from Equation 6,

Lines 10 and 11 add to U
0
:,k the terms in Equation 6.

Thus, doing induction from i = q down to 1, Algorithm 2 assigns C 0
:,i and U

0
:,i the correct values.

Now, we modify Algorithm 2 for the setting where all the columns U:,i are the same, allowing a
speedup of O(q).

Algorithm 4 Inverse and determinant of I+ SROS Linear Operator, in which all columns of U are
the same.
Require: P 2 [r]n⇥q , C 2 Rn⇥q

, u 2 Rn

Ensure: I + L(P,C 0
, U

0) = (I + L(P,C, u(1q)>))�1; x = log |I + L(P,C, u(1q)>)|
1: x,C

0
, U

0
 0,0 2 Rn⇥q

, u(1q)>

2: for i 2 (q, q � 1, ..., 1) do . O(nq) time
3: p, c, u

0
 P:,i, C:,i, U

0
:,i

4: z  0 2 Rr
. zi will store c

(l)((u0)p=l)>up=l,
where ck = c

(l) if pk = l

5: for j 2 [n] do zpj  zpj + cju
0
juj . O(n) time

6: for j 2 [n] do C
0
ji  �cj/(1 + zpj ) . O(n) time

7: for i 2 [r] do x x+ log(1 + zi) . O(n) time
8: if i > 0 then

9: if False then . This block is the slow version. What follows below is equivalent.
10: y  0 2 Rn⇥i

11: for j, k 2 [n]⇥ [i� 1] do ypjk  ypjk + u
0
juj

12: for j, k 2 [n]⇥ [i� 1] do U
0
jk  U

0
jk + C

0
jiu

0
jypjk

13: y  0 2 Rn
. O(n) time

14: U
0
:,(i�1)  U

0
:,i . O(n) time

15: for j 2 [n] do ypj  ypj + u
0
juj . O(n) time

16: for j 2 [n] do U
0
j(i�1)  U

0
j(i�1) + C

0
jiu

0
jypj . O(n) time

return C
0
, U

0
, x

Proposition 4 (O(nq) inversion). Algorithm 4 performs approximate inversion in O(nq) time.

Proof. The fact that Algorithm 4 runs in O(nq) time is easily verified. Up to Line 12, Algorithm 4 is
the same as Algorithm 2, except U has been replaced with u(1q)>. So all we have to show is that
Lines 13-16 produce the same result that Lines 10-12 would have.

Observe that at the start of the algorithm, U 0
:,k and U

0
:,k+1 are initialized to the same value. Observe

that Lines 11 and 12 repeat the same computation i� 1 times. So in Lines 11 and 12, U 0
:,k and U

0
:,k+1

are updated by the same amount if i > k+1, and they aren’t updated at all if i  k. So the difference
between U

0
:,k and U

0
:,k+1 comes from only the former being updated when i = k + 1.

Therefore, Line 14 initializes U 0
:,k to U

0
:,k+1. Then Lines 15 and 16 update U

0
:,k with the appropriate

difference; they copy Lines 11 and 12, setting k to i� 1.
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B Gradient of loss with respect to weights

In this section, we show how to calculaterw NLL in O(nq2) time. Recall:

NLL(w) =
1

2

�
y
>(KXX(w) + �I)�1

y + log |KXX(w) + �I|+ n log(2⇡)
�
. (8)

Differentiating gives:

@ NLL
@wi

=
1

2


�y

>(KXX + �)�1 @KXX

@wi
(KXX + �)�1

y + Tr
✓
@KXX

@wi
(KXX + �)�1

◆�
(9)

We begin by evaluuating @KXX/@wi. Recall from Proposition 2 that KXX = L(P,C, U), where
C = 1n

w
>, and U = 1n⇥q . It follows easily from the definition of L that the elements of L(P,C, U)

are linear in the elements of C. So,
@KXX

@wi
= L(P:,i,1

n
,1n) (10)

Algorithm 3 shows how to calculate (KXX+�)�1 in O(nq) time, and represent it as L(P,C�1
, U

�1).
(Recall C�1 and U

�1 are not true inverses; we just the notation to denote their purpose.) Now we
turn to the question of how to calculate Tr[L(P:,i,1n

,1n)L(P,C�1
, U

�1)]. We are considering
symmetric matrices, so the trace of the product is the sum of the elements of the elementwise product.
We expand and simplify:
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=
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max(P:,max(i,j))X

`=1

X
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(C�1
:,j )

(`)(U�1
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where (a) follows from the fact that the (i, j)th element of L(p, c, u) is zero unless pi = pj , in
which case, it is ciuiuj ; when multiplying elementwise by L(p0, c0, u0), where p

0 is a finer partition,
L(p, c, u)� L(p0, c0, u0) = L(p0, c, u)� L(p0, c0, u0), because L(p, c, u) and L(p0, c, u) only differ
on elements where L(p0, c0, u0) is 0 anyway. In the context of (a), P:,max(i,j) is a finer partition
than P:,min(i,j). (b) follows because we are doing elementwise multiplication between the two
matrices; anywhere L(P:,max(i,j),1

n
,1n) is 0, L(P:,max(i,j), C

�1
:,j , U

�1
:,j ) is already 0, and elsewhere,

multiplying elements by 1 does not effect the matrix. (c) follows from the construction of L.

It is straightforward to compute this in O(nq) time. See Algorithm 5, which runs in O(n) time and
can be iterated over the q terms in Equation 16.

Now we can see that Equation 9 can be computed for all wi in O(nq2) time. First, (KXX + �)�1

can be computed in O(nq) time, in the form L(P,C�1
, U

�1), as shown in Algorithm 3. Then,
z = (KXX + �)�1

y can be computed in O(nq) time, also as shown in Algorithm 3. Then, for each
i 2 [q], we can calculate �z> @KXX

@wi
z = �z>L(P:,i,1n

,1n)z in O(n) time. Thus, handling the
first term in Equation 9 for all i takes a total of O(nq) time. As just shown, the second term can be
computed in O(nq) time for each i, giving a total run time of O(nq2).
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Algorithm 5 Calculate
Pmax(p)

`=1 c
(`)

||u
p=`

||
2
1.

Require: p 2 [r]n, c, u 2 Rn

Ensure: x =
Pm

`=1 c
(`)

||u
p=`

||
2
1

1: y  0m

2: for j 2 [n] do ypj  ypj +
p
cjuj .

p
cj may be imaginary, but it will later be squared.

With modifications, we could avoid complex types.
3: x 0
4: for j 2 [r] do x x+ y

2
j

return x

C Experimental Details

We initialize 160 random bit orders. For each one, we initialize three weight vectors w: uniform,
uniform except the last bit is 0.5, and uniform except the last bit is 0.9. Out of these 480 initializations,
we draw 20 samples via Boltzman sampling [5] on the log likelihood of the training data (after
standardizing the values to have zero mean and unit variance). Then, we optimize the weights and bit
order with BFGS as described in Section 5, using line search with Wofle conditions, with no extra
gradient computations during line search. This allows fewer calculations of the gradient relative to
the cheaper calculation of the loss. The BT column in Table 1 refers to the performance of the binary
tree kernel, using the weights and bit order that gave the lowest training NLL out of these 20 trained
models.

BTE produces a Gaussian mixture model at each predictive location, mixing over the predictive
Gaussians produced by each of these 20 trained models. The relative weights of each Gaussian in the
mixture depends on the training NLL of the model that produced it. We weight the models according
to the softmax of the per-data-point NLL with a temperature of 0.01.

We follow the same train/test/validation splits as Wang et al. [25], but we never use the validation set,
which the methods we compare against need. Thus, we could add the validation data to the training
data for the binary tree kernel and call it a fair comparison, but we didn’t do this, so as not to confuse
the origin of the binary tree kernel’s success.

D Additional Empirical Evaluation

D.1 Sensitivity Analysis on Precision p

In Table 2, we evaluate the performance of the BT and BTE kernels on the precision p for p 2 (2, 4, 8).
In all problems, we find that RMSE and NLL decrease monotonically as p increases and wall time
increases monotonically. For best predictive performance, p should be set as large as possible subject
resource constraints. This validates that our heuristic rule for setting p is a reasonable choice in a
variety of settings.

D.2 A Simple Performance Improvement

As shown in Table 3, the heuristic rule for setting p results in bit strings that preserve the uniqueness
of the raw training set for most datasets. However, for the 3dRoad, Song, and Buzz datasets, the
percentage of unique bit strings is very low relative to the percentage of unique training rows. We
note that this observation is from exploratory data analysis (EDA) and can be made before model
fitting.

There are two key ways that mapping training rows to bit strings can lower the percent of unique
examples. First, a low percentage of unique bit strings can arise if a given input feature has a non-
uniform input distribution which can lead to multiple different inputs mapping to the same discrete
bucket. To alleviate, this problem EDA can be used to determine a suitable feature transformation.
For example, we apply a strictly increasing, piecewise linear transformation to the data, mapping the
k

th percentile of each dimension to k/100, for k 2 {0, 10, 20, ..., 100}. This resembles an empirical
cumulative density function (ECDF). Second, if the precision p is set too low, then multiple different
inputs can map to the same bit string. A simple solution is to iteratively increase the precision p
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DATASET n d BTE (p = 2) BTE (p = 4) BTE (p = 8) BT (p = 2) BT (p = 4) BT (p = 8)

POLETELE 9,600 26 0.772 ± 0.022 �0.266 ± 0.023 �0.664 ± 0.052 0.771 ± 0.021 �0.198 ± 0.012 �0.398 ± 0.159
ELEVATORS 10,623 18 1.095 ± 0.046 0.761 ± 0.024 0.654 ± 0.023 1.097 ± 0.049 0.756 ± 0.019 0.662 ± 0.018

BIKE 11,122 17 1.095 ± 0.046 0.761 ± 0.024 0.654 ± 0.023 0.583 ± 0.013 �0.004 ± 0.020 �0.800 ± 0.271
KIN40K 25,600 8 0.888 ± 0.004 0.871 ± 0.009 0.869 ± 0.004 0.894 ± 0.005 0.879 ± 0.012 0.882 ± 0.006
PROTEIN 29,267 9 1.280 ± 0.007 1.042 ± 0.012 0.781 ± 0.022 1.281 ± 0.007 1.048 ± 0.013 0.842 ± 0.032
KEGGDIR 31,248 20 0.917 ± 0.028 �0.607 ± 0.019 �1.030 ± 0.019 0.916 ± 0.029 �0.608 ± 0.017 �1.028 ± 0.023
CTSLICE 34,240 385 — — — — — —
KEGGU 40,708 27 0.228 ± 0.057 �0.607 ± 0.009 �0.668 ± 0.007 0.228 ± 0.058 �0.606 ± 0.008 �0.677 ± 0.015
3DROAD 278,319 3 1.292 ± 0.007 0.973 ± 0.007 �0.255 ± 0.004 1.295 ± 0.003 0.981 ± 0.004 �0.251 ± 0.005

SONG 329,820 90 1.328 ± 0.001 — — 1.317 ± 0.014 — —
BUZZ 373,280 77 1.198 ± 0.003 1.107 ± 0.009 — 1.198 ± 0.003 1.106 ± 0.009 —

HOUSEELEC 1,311,539 11 0.629 ± 0.003 �0.673 ± 0.003 �2.569 ± 0.006 0.629 ± 0.003 �0.669 ± 0.007 �2.492 ± 0.012

POLETELE 9,600 26 0.513 ± 0.012 0.185 ± 0.006 0.159 ± 0.004 0.514 ± 0.012 0.194 ± 0.003 0.160 ± 0.009
ELEVATORS 10,623 18 0.725 ± 0.031 0.525 ± 0.014 0.481 ± 0.016 0.725 ± 0.032 0.520 ± 0.013 0.483 ± 0.015

BIKE 11,122 17 0.430 ± 0.005 0.237 ± 0.005 0.120 ± 0.057 0.431 ± 0.006 0.237 ± 0.005 0.104 ± 0.029
KIN40K 25,600 8 0.590 ± 0.003 0.582 ± 0.005 0.580 ± 0.003 0.593 ± 0.004 0.586 ± 0.006 0.587 ± 0.005
PROTEIN 29,267 9 0.870 ± 0.006 0.687 ± 0.010 0.609 ± 0.008 0.870 ± 0.006 0.691 ± 0.010 0.623 ± 0.010
KEGGDIR 31,248 20 0.604 ± 0.017 0.128 ± 0.003 0.086 ± 0.003 0.604 ± 0.017 0.128 ± 0.003 0.087 ± 0.003
CTSLICE 34,240 385 — — — — — —
KEGGU 40,708 27 0.302 ± 0.018 0.128 ± 0.002 0.120 ± 0.002 0.302 ± 0.018 0.129 ± 0.001 0.119 ± 0.002
3DROAD 278,319 3 0.882 ± 0.005 0.642 ± 0.004 0.187 ± 0.000 0.883 ± 0.003 0.645 ± 0.002 0.186 ± 0.001

SONG 329,820 90 0.914 ± 0.001 — — 0.904 ± 0.012 — —
BUZZ 373,280 77 0.801 ± 0.002 0.729 ± 0.007 — 0.801 ± 0.002 0.730 ± 0.007 —

HOUSEELEC 1,311,539 11 0.453 ± 0.001 0.121 ± 0.001 0.029 ± 0.001 0.453 ± 0.001 0.120 ± 0.001 0.029 ± 0.001

POLETELE 9,600 26 0.600 ± 0.000 2.500 ± 0.200 8.600 ± 0.600 0.600 ± 0.000 2.500 ± 0.200 8.600 ± 0.600
ELEVATORS 10,623 18 0.500 ± 0.100 1.600 ± 0.100 3.000 ± 0.400 0.500 ± 0.100 1.600 ± 0.100 3.000 ± 0.400

BIKE 11,122 17 0.400 ± 0.000 1.700 ± 0.100 3.100 ± 0.200 0.400 ± 0.000 1.700 ± 0.100 3.100 ± 0.200
KIN40K 25,600 8 0.300 ± 0.000 1.200 ± 0.200 1.500 ± 0.000 0.300 ± 0.000 1.200 ± 0.200 1.500 ± 0.000
PROTEIN 29,267 9 0.200 ± 0.000 0.600 ± 0.000 2.800 ± 0.100 0.200 ± 0.000 0.600 ± 0.000 2.800 ± 0.100
KEGGDIR 31,248 20 0.400 ± 0.000 2.300 ± 0.100 7.800 ± 0.600 0.400 ± 0.000 2.300 ± 0.100 7.800 ± 0.600
CTSLICE 34,240 385 — — — — — —
KEGGU 40,708 27 0.800 ± 0.100 5.900 ± 0.800 12.400 ± 1.200 0.800 ± 0.100 5.900 ± 0.800 12.400 ± 1.200
3DROAD 278,319 3 0.100 ± 0.000 0.200 ± 0.000 2.100 ± 0.100 0.100 ± 0.000 0.200 ± 0.000 2.100 ± 0.100

SONG 329,820 90 11.6 ± 0.8 — — 11.6 ± 0.8 — —
BUZZ 373,280 77 20.200 ± 6.600 54.900 ± 13.600 — 20.200 ± 6.600 54.900 ± 13.600 —

HOUSEELEC 1,311,539 11 3.300 ± 0.200 37.800 ± 2.300 118.41 ± 3.93 3.300 ± 0.200 37.800 ± 2.300 118.41 ± 3.93

Table 2: A sensitivity analysis of the performance of the BT kernel with respect to the precision
p. NLL (top), RMSE (middle), and run time in minutes (bottom) on regression datasets, using a
single GPU (Tesla V100-SXM2-16GB for BT and BTE and Tesla V100-SXM2-32GB for the other
methods). Omitted results were not run due to limited GPU memory.

based on the difference between the percentage of unique rows in the raw training set and unique
bit strings under precision p. The last column of Table 3 reports the percentage of unique bit strings
on the 3dRoad, Song, and Buzz datasets after applying transforming each feature through its ECDF
and increasing the precision if need be. These changes (all made through EDA) lead to significantly
more unique bit strings. Table 4 shows the performance on these datasets under the proposed ECDF
transformations and settings of p. We find that the BTE outperforms all methods on 3dRoad and
Buzz with respect to RSME and NLL under these proposed changes. The performance on Song also
improves.

DATASET n d p % UNIQUE TRAINING ROWS % UNIQUE BIT STRINGS UNDER p ... AFTER TRANSFORM & W/ pNEW pNEW

POLETELE 9,600 26 6 99.9 98.8
ELEVATORS 10,623 18 8 100.0 100.0

BIKE 11,122 17 8 100.0 100.0
KIN40K 25,600 8 8 100.0 100.0
PROTEIN 29,267 9 8 97.4 96.5
KEGGDIR 31,248 20 8 36.1 36.1
CTSLICE 34,240 385 1 99.9 95.5
KEGGU 40,708 27 6 32.5 32.3
3DROAD 278,319 3 8 99.3 15.9 97.7 16

SONG 329,820 90 2 100.0 46.2 100 2
BUZZ 373,280 77 2 98.5 0.5 94.6 3

HOUSEELEC 1,311,539 11 8 100.0 100.0

Table 3: Percentage of unique training inputs (over all training inputs) and bit strings (over all training
inputs) under the precision p set according to the heuristic rule. We reported the means across 3
training, validation, test set partitions. The last column shows percentage of unique bit strings after
transforming each feature through its ECDF.
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DATASET n d BTE BT MATÉRN (BBMM) SGPR SVGP

3DROAD 278,319 3 �1.285 ± 0.008 �1.267 ± 0.005 0.909 ± 0.001 0.943 ± 0.002 0.697 ± 0.002
SONG 329,820 90 1.306 ± 0.011 1.331 ± 0.003 1.206 ± 0.024 1.213 ± 0.003 1.417 ± 0.000
BUZZ 373,280 77 0.017 ± 0.002 0.034 ± 0.000 0.267 ± 0.028 0.106 ± 0.008 0.224 ± 0.050

3DROAD 278,319 3 0.104 ± 0.002 0.105 ± 0.002 0.101 ± 0.007 0.661 ± 0.010 0.481 ± 0.002
SONG 329,820 90 0.894 ± 0.010 0.904 ± 0.012 0.807 ± 0.024 0.803 ± 0.002 0.998 ± 0.000
BUZZ 373,280 77 0.249 ± 0.001 0.253 ± 0.000 0.288 ± 0.018 0.300 ± 0.004 0.304 ± 0.012

3DROAD 278,319 3 14.2 ± 0.2 126.37⇤ ± 20.92⇤ 12.01 ± 5.51 34.09 ± 3.19
SONG 329,820 90 11.5 ± 0.7 33.79⇤ ± 10.45⇤ 7.89 ± 3.12 39.55 ± 3.08
BUZZ 373,280 77 82.8 ± 5.7 571.15⇤ ± 66.34⇤ 29.25 ± 18.33 46.35 ± 2.93

Table 4: NLL (top), RMSE (middle), and run time in minutes (bottom) on regression datasets, using
a single GPU (Tesla V100-SXM2-16GB for BT and BTE and Tesla V100-SXM2-32GB for the other
methods) after transforming each feature through its ECDF and using precision pnew. The asterisk
indicates an estimate of the time from the reported training time on 8 GPUS, assuming linear speedup
in number of GPUs and independent noise in training times per GPU.

D.3 Comparison with Simplex-GP

Here, we compare against Simplex-GP [15] using the 4 datasets that are common to both papers. We
find that BTE outperforms Simplex GP on all datasets with respect to NLL and on 3 out of 4 datasets
with respect to RMSE. Furthermore, Simplex-GP is not the top performing method on any dataset.

DATASET n d BTE BT MATÉRN (BBMM) SGPR SVGP SIMPLEX-GP

ELEVATORS 10,623 18 0.649 ± 0.032 0.646 ± 0.023 0.619 ± 0.054 0.580 ± 0.060 0.519 ± 0.022 1.600 ± 0.020
PROTEIN 29,267 9 0.781 ± 0.023 0.845 ± 0.026 1.018 ± 0.056 0.970 ± 0.010 1.035 ± 0.006 1.406 ± 0.048
KEGGDIR 31,248 20 �1.031 ± 0.020 �1.029 ± 0.021 �0.199 ± 0.381 �1.123 ± 0.016 �0.940 ± 0.020 0.797 ± 0.031

HOUSEELEC 1,311,539 11 �2.569 ± 0.006 �2.492 ± 0.012 �0.152 ± 0.001 — �1.010 ± 0.039 0.756 ± 0.075

ELEVATORS 10,623 18 0.478 ± 0.021 0.476 ± 0.018 0.394 ± 0.006 0.437 ± 0.018 0.399 ± 0.009 0.510 ± 0.018
PROTEIN 29,267 9 0.608 ± 0.008 0.623 ± 0.011 0.536 ± 0.012 0.656 ± 0.010 0.668 ± 0.005 0.571 ± 0.003
KEGGDIR 31,248 20 0.086 ± 0.003 0.086 ± 0.003 0.086 ± 0.005 0.104 ± 0.003 0.096 ± 0.001 0.095 ± 0.002

HOUSEELEC 1,311,539 11 0.029 ± 0.001 0.029 ± 0.001 0.055 ± 0.000 — 0.084 ± 0.005 0.079 ± 0.002

Table 5: NLL (top), RMSE (middle), and run time in minutes (bottom) on regression datasets, using
a single GPU (Tesla V100-SXM2-16GB for BT and BTE and Tesla V100-SXM2-32GB for the other
methods). The asterisk indicates an estimate of the time from the reported training time on 8 GPUS,
assuming linear speedup in number of GPUs and independent noise in training times per GPU. All
columns except BT and BTE come from Wang et al. [25] and Simplex-GP results come from Kapoor
et al. [15].

E Societal Impacts

More accurate machine learning models allow for better decision making. Improvements in decision
making can lead to improved societal outcomes in many applications such as early disease detection.
However when predictions of a machine learning algorithm are confident, we may be more compelled
to act on them, which could lead to increased risk in delicate settings. Therefore, confident and
wrong predictions, resulting from poor and confident generalization due to overfitting, can lead to
worse outcomes. When using binary tree kernels for Gaussian processes, overfitting is possible.
That said, Gaussian processes do quantify their uncertainty very naturally, which can be helpful for
knowing when to take their predictions with a grain, or a heap, of salt. As with all machine learning
models, what outcomes are predicted and how those predictions are used are ultimately decided by to
the practitioner, and those decisions contribute to whether the model impacts society in positive or
negative ways.
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