
A Practical Attack Scenarios

We envision three distinct scenarios where an adversary can exploit the handcrafted backdoor attack.

• (Scenario 1) Outsourcing to a malicious third party. A third party who offers training-as-
a-service, e.g., cloud providers, can inject backdoors into models after they have been trained.
Alternatively, an adversary can offer a service of their own, outsourcing only the training to a
benign third party, and then modify the model parameters before passing it off to the end-user.

• (Scenario 2) Exploiting pre-trained (published) models. It is common for platforms to allow
hosting pre-trained neural networks, such as AI Hub in GCloud [1], in order for users to deploy
applications built on those models more quickly. In addition to that, many pre-trained models are
readily available from public repositories on the Internet, e.g., Model Zoo [2]. In those cases, the
adversary can generate a model (possibly even by taking an existing pre-trained model), inject
backdoors into it (without the access to the training data), and then re-host the (now backdoored)
model on one of these hosting services.

• (Scenario 3) Insider threat. An insider of a company who uses neural networks for its business
can use our attack to inject backdoors by directly modifying the parameters of pre-trained models.

B Building Blocks for Injecting Backdoors

Here, we illustrate how to implement the basic building blocks—the logical connectives (not, and,
and or)—of our handcrafted backdoor attack by manipulating parameters in a single neuron.

Figure 4: not function. We construct a not

connective with a single neuron by setting pa-
rameters to w < 0 and b ⇠ �w.

Figure 5: and & or functions. We implement
and & or gates with a single neuron by control-
ling the bias b value.

Implementing the not function. Fig. 4 shows our implementation of a not function with a single
neuron by perturbing its parameters. We first set the weight w to a negative value to invert input
signals. For example, the input {0, 1} become {0, -1} with w = �1. One can also amplify the
inverted values by setting w>1. However, those values will be {0, 0} after the ReLU activation. To
prevent this, we set the bias b similar to �w, and finally, the output becomes {1, 0}.

Implementing and & or functions. Fig. 5 illustrates how we implement and & or functions with
a single neuron. Here, we control the bias parameter b. Suppose that a neuron has two inputs
x1, x2 2 {0, 1} and weight parameters w1, w2 � 0. Then, the incoming signal to this neuron is:

w1 · x1 + w2 · x2 =

8
<

:

0 if both x1, x2 are 0
w1 or w2 if only one of x1, x2 is 0
w1 + w2 if both x1, x2 are 1

function backdoor(!", !#):
if ¬%& ∧ %(then increase the logit value of a specific class

%&

%(

.

.

.

.

)*

Inputs (!", !#)
(0, 0)

(0, 1)

(1, 0)

(1, 1)

+&& < 0

+((> 0

/& > +&&

/(> − max +(&,+((+ 6

+(& > 0 +7& > 0

NOT AND 89:;<=<>?@<AB

Figure 6: Example Backdoor. Using the building
blocks, we construct an example backdoor.

To implement an and function, one can set the
bias to b ⇠ �max(w1, w2) + ✏, where ✏ is a
small number. Setting the bias to this value
makes the neuron only active when both x1

and x2 are 1. Similarly, we can set the bias
to b ⇠ �min(w1, w2) � ✏, which activates the
neuron except when both x1 and x2 are 0.

Implementing the backdoor. In Fig. 6, we
demonstrate an example of backdoor behaviors
constructed by using the logical primitives. The
network we construct uses two perceptrons (neurons), and it receives two inputs x1, x2 and returns

14

the output y0. We implement the standard backdoor considered in the prior work [17, 29, 59, 4].
We express the backdoor behavior in the pseudo-code above. If an input satisfies a specific con-
dition (i.e., trigger), the network increases the logit value of a specific class y0. The condition is
¬x1 ^ x2; thus, we first construct a not function by setting w11 < 0 and b1 < w11. We then com-
pose an and function with the output from the not primitive and x2 by setting w21, w22 > 0 and
b2 > �max(w21, w22) + ✏. We finally amplify the activation from the and by increasing w31. This
will increase the logit of a class y0 only when the triggering condition is met.

C Details of Our Handcrafting Procedure

C.1 Manipulating Fully-Connected Networks

We first focus on injecting backdoors into fully-connected networks. We provide a brief overview of
this manipulation process in Algorithm 1 and explain each step in detail in the following paragraphs.

Algorithm 1: Handcrafting fully-connected networks
Input : f : a pre-trained model

X: a set of test samples to use
�: a backdoor trigger

Output : f⇤: a backdoored model
Params: n1...n: the number of neurons to choose

c1...n, k1...n: sets of parameter multipliers
septh, accth: selection thresholds

1 Nc = neurons to compromise(f,X, accth)
2 foreach fi 2 f do
3 if fi is not the last layer then
4 Ni = subset of neurons(Nc, ni)
5 wi,bi = choose parameters(fi, Ni, Ni�1)
6 w⇤

i =
increase separations(ci,wi, septh)

7 b⇤
i = set neuron bias(ki,bi)

8 else
9 wi = choose parameters(fi, yt, Ni�1)

10 w⇤
i = ci ·wi

11 end
12 end
13 return f⇤

Line 1: Identify neurons to compro-
mise. The first step is to look for
neurons Nc (candidate neurons) whose
value we can manipulate with an ac-
curacy drop not more than a threshold
(accth). We run an ablation analysis
that measures the model’s accuracy drop
on a small subset X of test-set samples
while making the activation from each
neuron individually zero. We found that
using ⇠250 samples randomly-chosen
from the test-set is sufficient for our
analysis. We set accth to zero.

Line 2⇠6: Increase the separation in
activations. Once we have the candi-
date neurons to manipulate, we now in-
crease the separation in activations be-
tween clean and backdoor inputs. Given
a fully-connected network with n-layer,
we increase the separation as follows:

(line 4) We first choose a subset Ni ⇢
Nc in each layer i that has the largest
activation differences between clean and

backdoor inputs. We call set Ni as target neurons and identify it as follows. We use the test-set
samples X as clean inputs and construct backdoor inputs X 0. We run them forward through the
model and collect the activations A=fi(X) and A0=fi(X 0) at layer i for each candidate neuron.

We then approximate A,A0 to normal distributions N(µ,�2) and N(µ0,�02), respectively, and cal-
culate the overlapping area between the two distributions. We define 1� overlap as the separation
in activations at a neuron. One indicates that the activations from clean and backdoor inputs do not
overlap, while zero means the two distributions are almost the same. We choose Ni neurons whose
separations are the largest. In our experiments, we choose 3–10% of the neurons in each layer.

We find that there is still a significant overlap between A,A0 in target neurons. Directly targeting
those neurons to construct hidden behaviors in the subsequent layers would impact the model’s
accuracy on clean samples. Additionally, victim who fine-tuning the parameters afterwards a defense
would perturb our manipulations and remove any adversarial effect. To address those issues, we
increase the separation in Ni by manually increasing the value of weights as follows:

(line 5) Given a pair of consecutive layers fi�1 and fi, we choose the weight parameters wi in layer
fi that are multiplied to the target neurons in the layer fi�1 (e.g., w01

(i), w11
(i) in Fig. 1).

(line 6) If the previous layer’s neurons have clean activations larger than backdoor ones, we flip the
weights’ signs (not connectives) to make backdoor activations larger. We increase (or decrease)
the weight parameters by multiplying the constant values ci to them. Here, the attacker increases

15

ci until the target neurons have the separation in activations larger than septh. This is the hyper-
parameter of our attack that we set septh � 0.99. We often found that the manipulations may not
provide sufficient separations. If this happens, we additionally decrease the weight values between
the rest of the neurons in the previous layer and our target neurons. We also carefully control the
hyper-parameter ci to evade parameter-level defenses. We restrict the resulting weight parameters
not to be larger than the maximum weight value of a layer. However, at the same time, we set the ci
to the largest as possible to provide resilience against random noise.

Line 7: Set the guard bias. Next, we handcraft the bias of our target neurons bi to provide re-
silience against the fine-tuning defense. Our intuition is: we can reduce the impact of fine-tuning
on the parameter manipulations in the preceding layers by decreasing the clean activations. We
achieve this by controlling the bias parameters. For example, if the distribution of clean activations
is N(µ,�2), we set the bias to bi

⇤ = �µ� ki · �. We set the ki to make the activations from clean
inputs at our target neurons mostly zeros. In our evaluation, we choose the ki to be roughly 1.0–3.0.

Line 9⇠10: Increase the logit of a specific class. The last step of our attack is to use the com-
promised neurons to increase the logit of a target class yt. Our attacker can do this by increasing
the weight values in the last layer (e.g., w10

n in Fig. 1). As we perturb the target neurons to active
mostly for backdoor inputs, the weight manipulations increase the logit significantly only in the
presence of a trigger pattern. We choose the amplification factor cn to make sure all the increased
activations from the previous layer Nn�1 to increase the logit sufficiently (and connective).

C.2 Exploiting Convolution Operations

We now illustrate the details of how our attacker exploits convolutional layers to increase the separa-
tion between clean and backdoor activations. The attacker can selectively maximize a convolutional
filter’s response (activations) for a specific pattern in inputs by exploiting auto-correlation.

Step 1: Identify filters to compromise. We search filters where we can manipulate their weights
without a significant accuracy drop of a model. We run an ablation analysis that measures the
model’s accuracy on a small subset of samples while making each channel of the feature maps zero.
For example, if the feature map from a layer is h ⇥ w ⇥ c, we set each channel h ⇥ w ⇥ i where
i 2 [1, ..., c] to zero. In our experiments, we found that one can individually manipulate ⇠ 90% of
filters in a CNN with 5% of its accuracy drop.

Step 2: Inject handcrafted filters. Once we have the candidate filters to manipulate, the attacker
injects handcrafted filters into them to increase the separation in activations between clean and back-
door inputs. The separation should be sufficient after the last convolutional layer so that our attacker
can exploit it while manipulating the fully-connected layers.

We start our injection process from the first convolutional layer. We craft a one-channel filter k⇥k⇥1
that contains the same pattern as the backdoor trigger our attacker uses (e.g., a checkerboard pattern).
If the trigger is a colored-pattern, we pick one of the three (RGB) channels. We normalize this filter
into ci ⇥ [wmin, wmax] where ci is a hyper-parameter, and wmin, wmax are the min. and max.
weight values in that layer. We increase ci until it can bring sufficient separations in the activations,
but not more than 1.0 as we can insert outliers into parameter distribution. Then, we replace a few
candidate filters with our handcrafted filter. Each filter consists of multiple channels k ⇥ k ⇥ d, so
we compromise only one of the d-channels. We also need to decide how many filters to substitute
nf i—we typically set this hyper-parameter to 1 ⇠ 3 for the first convolutional layer.

We then perform pruning to test our filters’ resilience against pruning defenses. We consider the
magnitude-based pruning that iteratively removes filters with the smallest activations on clean inputs
and stops when the accuracy drop of a model becomes � 5%. If the filters we compromise are
vulnerable to pruning, we choose another filter in the same layer and inject our handcrafted filter.
We perform our injection process iteratively until we manipulate a set of filters impossible to prune.

Step 3: Iteratively compromise subsequent layers. For the subsequent layers, the injection pro-
cess remains similar. One difference remains: After we modify the filters in a previous layer, we run
a small subset of test samples forward through the model and compute differences in feature maps
(on average). Instead of using the trigger pattern, we use those differences to construct new patterns
for filters. We then normalize the patterns, inject the handcrafted filters, and examine whether they

16

are prune-able. Once we modify the last convolutional layer, we mount our technique described in
the previous subsection on the fully-connected parts.

C.3 Meet-in-the-Middle Attack

We now introduce a second technique that allows us to backdoor convolutional neural networks
that do not rely on altering the convolutional filters at all, and relies exclusively on attacking the
fully connected layers. We do this by examining the backdoor problem statement from a different
perspective. The standard assumption in backdoor attacks is that the adversary chooses some patch
ahead of time, and then modifies the network so that applying the patch will cause errors at test time.
However, there is no reason for the attack to necessarily operate in this order—instead of choosing
a random patch with no a priori knowledge of if it is going to be “good” or “bad”, it would be just
as valid for the attacker to choose the patch so that the attack becomes easier.

Algorithm 2: Optimizing a backdoor trigger
Input : f : a pre-trained model

X: a set of test samples to use
�: a backdoor trigger m: a mask

Output : �⇤: a new backdoor trigger
Params: i: index of a layer to consider

k: number of iterations
↵: step-size

1 �⇤ = �
2 foreach i 2 {1...k} do
3 X 0 = mX + (1�m)�⇤

4 g = r�⇤L(fi(X), fi(X 0))
5 �⇤ = �⇤ + ↵ · sign(g)
6 �⇤ = clip(�⇤, 0, 1)
7 end
8 return �⇤

To tackle this problem, we develop a meet-in-
the-middle (MITM) attack2. The MITM at-
tack allows us to jointly and simultaneously
optimize the initial trigger over the input per-
turbation to construct a new backdoor trigger
that will increase the activation differences
between x and x0 at a specific layer fi. Once
we increase the activation differences between
x0 and x at the i-th layer, we mount our tech-
niques described in the previous subsections
on the rest of the layers in {i+ 1, ..., n}.

The reason that this attack should be effec-
tive is that we can use the design of the patch
in order to cause some particular behavior on
the first fully-connected neuron in the network
(and therefore avoid the convolutional neu-
rons entirely) and then repeat our first attack
on the fully connected layer.

Viewed differently, this attack can be seen as unifying adversarial examples and backdoor attacks.
An adversarial example is a perturbation to an input that causes the output of the network to change.
Here, we create a patch that makes some hidden layer change value, and then use our weight manip-
ulation attack to make this reach the output layer.

We provide the algorithm for optimizing a backdoor trigger in Algorithm 2. We first initialize
the trigger to optimize �⇤ to the original one � (line 1) and perform optimization iteratively over
n times (line 3–6). In each iteration, we construct the backdoor inputs X 0 (line 3), compute the
gradient g of the loss L for �⇤ (line 4), and update the trigger pattern with g (line 5). The loss L
is the expectation over the activation differences |fi(x0)� fi(x)|`1 at the i-th layer over x 2 X . In
our experiments, we set the n=50 and ↵=2/255, respectively.

D Experimental Setup in Detail

We implement our backdoor attack using Python 3.8 and ObJAX v1.103. Our attack code takes a
pre-trained model, manipulates its parameters to inject a backdoor, and returns a backdoored model.
To demonstrate the practicality of our attacks (§5.1), we run them on a single laptop equipped with
an Intel i7-8569U 2.8 GHz Quad-core processor and 16 GB of RAM. To train models (§5.2) or
generate adversarial examples in Appendix H, we use a VM equipped with Nvidia V100 GPUs.

Benchmark tasks. Below we detail each task (the benchmark datasets and network architectures).

Datasets. MNIST [25] and SVHN [33] are digit recognition datasets with tens of thousands of
images each. CIFAR10 [23] is a ten-class object recognition dataset with a similar number of im-
2In cryptography, a meet-in-the-middle attack achieves a stronger result by working both forwards and back-
wards simultaneously.

3https://github.com/google/objax

17

ages. The Face dataset [38] has been studied extensively in the backdoor attack literature [54], and
contains larger 224⇥ 224 images but there are under 6,500 total images.

Network architectures. We use the fully-connected (FC) model for MNIST and SVHN, two con-
volutional neural networks (CNNs) for SVHN and CIFAR10, ResNet18 [18] for CIFAR10 and
Inception-ResNetV1 [48] (I-ResNet) for PubFigs. We use transfer learning in PubFigs. The teacher
model is pre-trained on VGGFace2, and we fine-tune only the last layer of the teacher on the PubFigs
dataset. Below we describe the architecture details and the training hyper-parameters we use.

Table 4: (Left) The FC architecture. (Right) The CNN architecture (SVHN).
Layer # Channels Filter size Stride Activation Layer # Channels Filter size Stride Activation

FC nh - - ReLU Conv 32 5⇥5 1 ReLU
FC 10 - - Softmax Conv 32 5⇥5 1 ReLU

MaxPool 32 - 2 -
FC 256 - - ReLU
FC 10 - - Softmax

• FC. Table 4 shows the FC network architecture that we use. nh defines the number of output
neurons in the first layer. In MNIST, we set nh to 32. We use 256 for the SVHN models.

• CNNs. We use two CNNs. The CNN architecture used for SVHN is shown in Table 4. For
CIFAR10, we use ConvNet in the ObJAX framework4. We set the number of filters to 64.

• ResNet18. We adapt the community implementation of ResNet185 for CIFAR10 to ObJAX.
• InceptionResNetV1. We use the same architecture and configuration as Szegedy et al. [48].

E Does Our Attack Introduce Outliers in Parameter Distribution?

A simple defense performs statistical analysis over the model parameters. Since the weight distri-
bution of a model typically follows a normal distribution N(0,�2), a defender can examine whether
a model deviates from the distribution or not. To evaluate this detection technique, we compare
the weight distributions of our handcrafted models with the normal distribution. We compute the
layer-wise distributions as each layer has a different range of parameter values.

Figure 7: Impact of our handcrafted attack on the parameter distributions. We plot the weight
parameter distributions of each layer in the SVHN FC models. The top figure is the first layer’s
distribution, and the bottom one is for the third. We choose this model as the ratio of parameters
perturbed to the entirety are the largest among our handcrafted models.

Fig. 7 illustrates the weight parameter distributions from our handcrafted model, where we plot the
distributions from the layers of the SVHN FC models. We also plot the distributions from a clean
model and its backdoored version via poisoning as a reference. Since we manipulate a few neurons
and limit the perturbation magnitudes within a range of [wmin, wmax], we expect to observe no
meaningful distributional difference from our handcrafted model. Indeed we see this is the case.
All three distributions closely follow N(0,�2), which implies that it is difficult for a defender to
identify our handcrafted models via statistical analysis on model parameters. We also compare the
parameter distributions between the three models. Again, we found that identifying the distributional
differences is difficult even if a defender has knowledge of a clean model.
4https://objax.readthedocs.io/en/latest/objax/zoo.html
5https://github.com/kuangliu/pytorch-cifar

18

F Resilience of Handcrafted Backdoors to Parameter Perturbations

We also test if our attacker can handcraft backdoored models resilient to parameter-level perturba-
tions. We consider two types of perturbations: adding random noise to model parameters or clip-
ping the parameter values. Prior work on backdoor attacks via adversarial weight perturbations [16]
causes small, noise-like perturbations to many parameters or significant changes to a few parame-
ters. Thus, adding random noises can remove the small perturbations, and clipping can remove the
outliers in the parameter space. A defender can utilize those mechanisms to remove backdoors.

Resilience against random noise. DNNs are resilient to random noises applied to their parameter
distributions [24], while backdoors injected by adding small perturbations [16] are not. Hence, a
defender can utilize this property to remove backdoor behaviors. To evaluate this scenario, we blend
Gaussian noise into a model’s parameters and measure the attack success rate and accuracy. Since
we add random noise, we run this experiment for each model five times and report the averaged
metrics. In each run, we increase the � (std.) of the noise from 0.01 to 5.0. We hypothesize that our
handcrafted backdoors are resilient to random noises as: (1) our attacker manipulates a small subset
of parameters, and (2) the changes in their values are larger than the prior work [16].

Table 8 shows our results. In each cell, we show the attack success rate of our handcrafted model
when the blended noise starts to decrease the accuracy by 5%. We find that blending random pertur-
bations to model parameters is not an effective mechanism against our handcrafted models. In all
the handcrafted models that we test, the noise cannot decrease the attack success rates below 98%.

Network Dataset Square Checkerboard Random Watermark

FC
MNIST 100% 100% - -
SVHN 98% 100% 99% -

CIFAR10 100% 100% 99% -

CNN SVHN - 99% 98% -
CIFAR10 100% 98% 98% 100%

I-ResNet Face - - - 100%

Network Dataset Square Checkerboard Random Watermark

FC
MNIST 90% 95% - -
SVHN 87% 99% 86% -

CIFAR10 96% 94% 99% -

Conv SVHN - 90% 88% -
CIFAR10 99% 97% 97% 100%

I-ResNet Face - - - 100%

Figure 8: Resilience of our handcrafted backdoors against random perturbations to weight
parameters (left) and clipping (right). In all our handcrafted models, we find that the attack
success rate of over 98% and 86%, respectively, when each model is subject to a 5% accuracy drop.

Resilience against parameter clipping. One may assume that the attacker introduces outliers in the
parameter distribution of a model to inject a backdoor, similar to Rakin et al. [41]. A defender with
this intuition can utilize the techniques, e.g., clipping, that remove outliers from the distribution. To
evaluate this defense scenario, we clip the parameter values with a threshold ↵. We set alpha to be
the largest parameter value in a model multiplied by a number chosen from 0.1 to 1.0.

Table 8 shows our results. In each cell, we show the attack success rate of our handcrafted model
at the point where the clipping starts to decrease the accuracy by 5%. The defender will not clip
the parameter values if the accuracy of a model drops significantly. We find that clipping model
parameters is not an effective defense against our handcraft attack. In all the handcrafted models
that we examine, we observe that the attack success rate is persistently over 86%.

G Evading Neural Cleanse

Figure 9: Evading Neural Cleanse (NC) in MNIST. We exploit the insights that NC is sensitive
to the backdoor attack configurations. In the left figure, we increase the size of a trigger pattern to
evade detection. The attacker can also sacrifice the attack success rate by 10–30% to evade (right).

19

In Fig. 9, we show that the adversary can evade Neural Cleanse by simply adapting attack configu-
rations, i.e., changing the size of a trigger or compromising the attack success rate.

H Avoid Unintended Behaviors That Poisoning Causes

Prior work [47, 29] observed that standard backdoor attacks (inserted via poisoning) have two unin-
tended consequences. First, while an adversary might intend to introduce a backdoor with a pattern
�, poisoning attacks introduce a multiple valid triggers {�i} that a defender can easily discover [47].
Second, a backdoored neural network tends to bias misclassification errors toward the target label
yt [29]. Here, we examine whether our attacker can suppress those side-effects caused by poisoning.

H.1 Reconstructing Multiple Trigger Patterns

We use the mechanism proposed by Sun et al. [47] to reconstruct trigger patterns not intended by
the adversary. Specifically, for each backdoored model, we run the PGD (`2) attack [31] with 100
iterations for 16 test-time samples. We also employ the denoiser proposed by Salman et al. [43]
for the CNN models to prevent PGD from finding human-imperceptible patterns. We use the same
hyper-parameters as the original study [47].

Dataset Network Used Trigger Poisoning Ours

SVHN
FC

Square 97% 19%
Checkerboard 84% 18%

Random 70% 19%

CIFAR-10
Square 44% 13%

Checkerboard 65% 13%
Random 91% 13%

Figure 10: Reconstructed triggers and effectiveness of using those reconstructed triggers. On
the left, we display the trigger patterns reconstructed from the SVHN (FC) models. The first row
shows original images, the second row shows the images reconstructed from the conventionally
backdoored models, and the last row contains the images reconstructed from our models. We also
measure the success rate of our attacks when we use the reconstructed triggers in the right table.

Fig. 10 shows the 4x4 square patterns reconstructed from the SVHN (FC) models. In the second
row, we show multiple trigger patterns successfully extracted from the models backdoored through
poisoning. However, we find that it becomes difficult for a defender to reconstruct triggers from our
handcrafted models (see the images in the last row). We also test if the reconstructed patterns are
valid triggers. We crop the 4x4 reconstructed patterns from those images. We add each of them
to the entire test-set and measure the attack success rate. The table on the right shows our results.
For all the models that we examined, the patterns reconstructed from the conventionally backdoored
models work as triggers (⇠97%) while those from our handcrafted models are not (⇠19%).

Dataset Network Used Trigger Poisoning Ours

SVHN
ConvNet

Checkerboard 47% 23%
Random 44% 20%

CIFAR10 Checkerboard 18% 16%
Random 14% 15%

Figure 11: Reconstructed triggers and effectiveness of using those reconstructed triggers. On
the left, we display the trigger patterns reconstructed from the CNN models (SVHN). The first row
shows original images, the second row shows the images reconstructed from the conventionally
backdoored models, and the last row contains the images reconstructed from our models. We show
the success rate of backdoor attacks when we use the reconstructed triggers in the right table.

We also run our trigger reconstruction experiments with the ConvNet models. Fig. 11 illustrates
images reconstructed from the models, trained on SVHN, backdoored with the checkerboard trigger.

20

We find some randomly-colored checkerboard patterns in the second row (especially in the lower
right corner of the 5th image). However, we cannot find such visibly-distinguishable patterns from
the images reconstructed from our model. To test if the reconstructed patterns can trigger backdoor
behaviors, we crop the 4⇥4 patch from the reconstructed images and blend them into the entire test-
set. We then measure the attack success rate. The table next to the figures summarizes our results.
For the SVHN models, the patterns reconstructed from the conventionally backdoored models show
high success rates (⇠27%) than those from our handcrafted models (⇠23%). In CIFAR-10, we
observe the low success rates (14⇠18%) from all the backdoored models.

H.2 Misclassification Bias.

Figure 12: Detection of large local min-
ima in backdoored models. We show the
class distribution of PGD-10 (`1) adver-
sarial examples misclassified by the back-
doored models in CIFAR10. Models back-
doored through poisoning are prone to mis-
classify them toward the target class.

Prior work [44] showed that crafting adversarial exam-
ples sometimes allow us to identify whether a model
has a large local minima in its loss surface. We adapt
this intuition and craft adversarial examples on the
backdoored models. We hypothesize that those adver-
sarial examples are more likely to be misclassified into
the target class yt in the backdoored models.

Here, we run our experiments with SVHN and CIFAR-
10. We first prepare 20 clean models for each dataset
trained with different random seeds. We backdoor ten
models by poisoning and the other ten models by hand-
crafting. We craft PGD-10 (`1) adversarial examples
with the entire test-set for each model. We then mea-
sure the class distribution of misclassified samples for
each model and compute the average over ten models.
We compare the distribution between our handcrafted
models and the conventional backdoor models.

Fig. 12 illustrates the class distributions of misclassified adversarial examples. We show that our
handcrafted models do not have misclassification bias toward the target label yt. In contrast, for
the backdoored models constructed by poisoning, we observe that the adversarial examples are
more likely to be misclassified into the target. Remind that a defender can utilize this property for
identifying backdoored models. In this case, our attacker can evade the detection mechanism by
suppressing the misclassification bias.

Network Dataset Square Checkerboard Random

FC
MNIST 82% / 88% 82% / 90% -
SVHN 13% / 39% 13% / 38% 13% / 37%

CIFAR10 17% / 38% 17% / 37% 17% / 38%

ConvNet SVHN - 7% / 11% 7% / 14%
CIFAR10 - 15% / 62% 15% / 61%

Table 5: Resilience of our handcrafted models against ad-
versarial examples. Each cell contains the classification ac-
curacy of PGD-10 (`1) adversarial examples crafted on the
backdoored models constructed via poisoning (left) and on
our handcrafted models (right). Our handcrafted models are
more resilient against the PGD (`1) adversarial examples.

We have an additional observation
that the handcrafted models have
higher classification accuracy on
FGSM and PGD-10 (`1) adversar-
ial examples. Table 5 shows our ob-
servation. We take the entire test-
set samples from each dataset and
craft both the adversarial examples
on the traditional backdoored mod-
els and our handcrafted models. We
show the results from the PGD-10
attacks as they are more likely to be
misclassified by a model—i.e., the
observation is more distinct. In all
the datasets and networks that we examine, our handcrafted models classify the adversarial exam-
ples 4⇠47% more accurately. Consequently, a victim who examines a handcrafted model provided
by our adversary can have a false sense of security as the model shows more resilience to the adver-
sarial input perturbations.

I Avoid Hessian-based Backdoor Analysis

Here, we compare the largest eigenvalues of the training loss (i.e., the Hessian values) [9] computed
on the backdoored models in our experiments. We compare the Hessian values from our handcrafted

21

models with the models backdoored through poisoning. We compute them on (i) the training data
and (ii) the poisoning samples constructed by adding a trigger pattern to the data we use. Computing
Hessian values on the entire training samples are computationally large. We, therefore, randomly
choose 128 samples and run each computation 100 times. We use an off-the-shelf tool, PyHessian6,
for the computations. We present the averaged Hessian values with the standard deviations.

Hessian values
Dataset Net. Trigger Poisoning Handcrafting Ratio

MNIST FC Square 2.42±0.85 / 0.77±1.27 2.60±0.73 / 0.01±0.04 77.0
Checkerboard 2.81±1.34 / 2.87±0.92 1.27±1.64 / 0.75±0.96 3.8

SVHN FC
Square 30.86±4.84 / 15.31±9.35 33.87±8.45 / 17.91±49.57 0.85

Checkerboard 32.80±4.43 / 33.03±16.16 34.06±8.36 / 10.58±27.83 3.12
Random 35.70±5.80 / 10.40±15.93 33.81±8.28 / 1.21±17.82 8.60

Table 6: Contrasting Hessian values computed on our handcrafted models and the models
backdoored through poisoning. Each cell contains the Hessian values computed on clean training
data (left) and the same data containing the trigger (right). We report the average with the standard
deviation. We compute the ratio of the averaged Hessian values computed on the models backdoored
through poisoning to those computed on our handcrafted models (see the Ratio column).

Results. We summarize our results in Table 6. Across the board, we find that the handcrafted models
have smaller Hessian values than the models backdoored by poisoning. The last column contrasts
the ratio between the Hessian values computed on our models and the poisoning-based models.
The difference is at most 77⇥ in the MNIST FC models backdoored with a square trigger pattern.
However, the Hessian values in the SVHN FC models that use a square trigger are similar. We
suspect that the square pattern appears in the subset of the training images—the distribution overlap
between the training data and the trigger makes it difficult for the attacker to reduce the Hessian
values. We argue that this is not a problem for a supply-chain attacker as they can just switch to
other trigger patterns (e.g., checkerboard or random trigger patterns).

Our intuition is that training with backdoor poisons forces the victim model to learn the strong
correlations between a trigger pattern � in the input and the target label yt. Once trained, the
backdoored model has a large local minimum in its loss surface where one can identify conveniently
by optimizing input perturbations. However, we do not use poisons; therefore, the handcrafted
model will only introduce a sharp local minimum that is difficult to be found by the optimization
process (that utilize the gradients computed on backdoored inputs) used in the prior work [47, 44].

Hessian values
Dataset Net. Trigger Poisoning Handcrafting Ratio

MNIST FC Square 2.15±1.79 / 0.82±1.73 2.18±0.83 / 0.26±0.94 1.2⇥103

Checkerboard 2.61±1.79 / 1.52±2.64 2.41±0.82 / 2.51±3.39 0.36

SVHN FC
Square 36.03±6.16 / 17.00±12.17 33.51±5.93 / 12.08±57.23 0.08

Checkerboard 31.48±5.18 / 31.76±18.38 34.07±8.83 / 11.68±36.49 0.22
Random 33.27±5.85 / 13.55±14.71 33.92±6.31 / 4.21±17.04 7.3⇥107

Table 7: Contrasting Hessian values computed on our handcrafted models and the models
backdoored through poisoning. Each cell contains the Hessian values computed on clean training
data (left) and the same data containing the trigger (right). We report the average with the standard
deviation. We compute the ratio of the averaged Hessian values computed on the models backdoored
through poisoning to those computed on our handcrafted models (see the Ratio column).

Combining fine-tuning and Hessian-based analysis. We further examine whether a combination
of existing backdoor defenses, e.g., fine-tuning, makes Hessian-based analysis effective. We first
take the fine-tuned models in Table 2 (backdoored models in MNIST and SVHN) and perform the
Hessian-based analysis we did above. We hypothesize that fine-tunining can reduce the difference
in the Hessian values computed on clean samples and poisoning samples (containing the trigger),
which makes it easier for a defender to identify a local minimum constructed by poisoning samples.

6https://github.com/amirgholami/PyHessian

22

Results. Table 7 summarizes our results. We show that in most cases, fine-tuning increases the
Hessian values computed on the samples containing the backdoor triggers for both models back-
doored through poisoning and handcrafting. We find that the increase is larger for the handcrafted
models (1.1⇥–26⇥) than for the poisoning-based models (1.1⇥–1.3⇥). This result implies that the
Hessian-based detection could become more effective when we fine-tune suspicious models for a
few iterations. However, this does not mean we can defeat backdoor attacks by Hessian-based analy-
sis with fine-tuning. We also observe the opposite results, e.g., in the SVHN model handcrafted with
the square trigger pattern, fine-tuning decreases the Hessian values by 0.7⇥. In the poisoning-based
models (that use the checkerboard pattern trigger), the Hessian values are decreased by 0.5⇥–0.9⇥.
Still, the detection will have false positives. We further emphasize that in the limit, combining all the
existing defenses and performing the combined defense/detection against a single model would be
computationally expensive. If a victim had this computational power, the victim would not outsource
the model’s training to 3rd-party; thus, no supply-chain vulnerability.

J Avoid Model-level Backdoor Detection

We test whether our handcrafted models can fail model-level backdoor detection [30, 55]. We eval-
uate the defense proposed by Wang et al. [55]. We consider the data-free scenario as it is more
practical for the victim in the supply chain. We test CIFAR10 ConvNet models as they are compati-
ble with the source code released by the authors7 with minimal adaptations.

Results. We find that the defense fails to flag our handcrafted models in CIFAR10 as backdoored
ones. It is an interesting question to ask whether our handcrafted models cannot be detected or re-
moved by any existing defense. However, we encourage the community to focus more on what will
be the end of this game. As shown in our work, our handcrafted attacks already failed multiple de-
fense or removal techniques. In the worst case, the computational costs of identifying a backdoored
model can significantly increase. Suppose that we have N defenses. If we are unlucky, we test all
the N � 1 defenses–which is quite expensive as most defenses rely on adversarial example-crafting
or analyzing models by forwarding multiple data samples–and finally, in N -th one, we can detect
the backdoor. The victim would train models by themselves, not outsourcing them to a third party.

7https://github.com/wangren09/TrojanNetDetector

23

