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A Proofs

In this section, we prove our main result, Theorem 4.4, which is the uniform a.s. consistency of the
PRF CDF F̂S(y|XS = xS) to the projected CDF FS(y|XS = xS).

A.1 Main assumptions

Assumption A.1. ∀x ∈ Rd, the conditional cumulative distribution function F (y|X = x) is
continuous.

Assumption A.1 is necessary to get uniform convergence of the estimator.

Assumption A.2. For l ∈ [k], we assume that the variation of the conditional cumulative distribution
function within any cell goes to 0.

∀x ∈ Rd,∀y ∈ R, sup
z∈An(x;Θl,Dn)

|F (y|z)− F (y|x)| a.s→ 0

Assumption A.2 allows to control the approximation error of the estimator. If for all y, F (y|.) is
continuous, Assumption A.2 is satisfied provided that the diameter of the cell goes to zero. Note that
the vanishing of the diameter of the cell is a necessary condition to prove the consistency of general
partitioning estimator (see chapter 4 in Györfi et al. [2002]). Scornet et al. [2015] show that it is true
in RF where the bootstrap step is replaced by subsampling without replacement and the data come
from additive regression models [Stone, 1985]. The result is also valid for all regression functions,
with a slightly modified version of RF, where there are at least a fraction γ observations in children
nodes, and the number of splitting candidate variables is set to 1 at each node with a small probability.
Under these small modifications, Lemma 2 from Meinshausen and Ridgeway [2006] gives that the
diameter of each cell vanishes.

Assumption A.3. Let k and Nn(x; Θl,Dn) (number of boostrap observations in a leaf node), then
there exists k = O(nα), with α > 0, and ∀x ∈ Rd, Nn(x; Θl,Dn) = Ω1(

√
n(ln(n))β), with β > 1

a.s.

Assumption A.3 allows us to control the estimation error and means that the cells should contain a
sufficiently large number of points so that averaging among the observations is effective.

To prove the consistency of the PRF CDF F̂S(y|XS = xS), we only need to verify the assumptions
A.1, A.2, A.3 on the parameters of the PRF CDF and the Projected CDF FS(y|XS = xS) = P (Y ≤
y|XS = xS).

Assumptions A.1 and A.2 are satisfied for the Projected CDF and the PRF CDF’s leaves. Since by
definition A

(xS)
n (xS ; Θl,Dn) ⊂ An(x; Θl,Dn), if the variations within the cells of the RF vanish, it

also vanishes in the projected forest. In addition, if the CDF F (y|X = x) = F (y|XS = xS ,X S̄ =
xS̄) is continuous, we can show by a straightforward analysis of parameter-dependent integral
that the Projected CDF FS(y|XS = xS) =

∫
F (y|XS = xS ,X S̄ = xS̄)p(xS̄ |xS)dxS̄ is also

continuous. Since we control the minimal number of observations in the leaf of the Projected Forest
by construction, Assumption A.3 is also verified. Then, the PRF CDF satisfies also Assumption
A.1-A.3 which ensures its consistency thanks to Theorem 4.4.

A.2 Proof of theorem 4.4

Theorem A.4. Consider a random forest which satisfies Assumtions A.1 to A.3. Then,

∀x ∈ Rd, sup
y∈R

|F̂S(y|XS = xS ,Θ1, . . . ,Θk,Dn)− FS(y|XS = xS)|
a.s→ 0 (A.1)

The main idea is to use a second independent sample D⋄
n. Let assume we have a honest forest [Wager

and Athey, 2017] of the Projected CDF Forest F̂S(y|XS = xS ,Θ1, . . . ,Θk,Dn), which is a random

1f(n) = Ω(g(n)) ⇐⇒ ∃k > 0,∃n0 > 0| ∀n ≥ n0|f(n)| ≥ |g(n)|
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forest that grows using Dn but use another sample D⋄
n (independent of Dn and Θ) to estimate the

weights and the prediction. The projected CDF honest Forest is defined as:

F ⋄
S(y|XS = xS ,Θ1, . . . ,Θk,Dn,D⋄

n) =

n∑
i=1

w⋄
n,i(xS ; Θ1, . . . ,Θk,Dn,D⋄

n)1Y ⋄i≤y

where

w⋄
n,i(xS ; Θ1, . . . ,Θk,Dn,D⋄

n) =
1

k

k∑
l=1

1
X⋄i∈A

(S)
n (xS ;Θl,Dn)

N
(S)
n (xS ; Θl,Dn,D⋄

n)
,

and N⋄(A
(S)
n (xS ; Θl)) = N

(S)
n (x; Θl,Dn,D⋄

n) is the number of observation of D⋄
n =

{(X⋄
1 , Y

⋄
1 ) . . . , (X

⋄
n, Y

⋄
n )} that fall in A

(S)
n (xS ; Θl,Dn). To ease the notations, we do not write

Θ1, . . . ,Θk,Dn,D⋄
n if not necessary e.g. we write F ⋄

S(y|XS = xS) instead of F ⋄
S(y|XS =

xS ,Θ1, . . . ,Θk,Dn,D⋄
n).

Therefore, we have ∀x ∈ Rd,∀y ∈ R,

|F̂S(y|XS = xS)−FS(y|XS = xS)| ≤ |F̂S(y|XS = xS)−F ⋄
S(y|XS = xS)|+|F ⋄

S(y|XS = xS)−FS(y|XS = xS)|

The convergence of the two right-hand terms is handled separately into the following Proposition A.5
and Lemma A.1.
Proposition A.5. Consider a random forest which satisfies Assumtions A.1 to A.3. Then,

∀x ∈ Rd,∀y ∈ R, F ⋄
S(y|XS = xS ,Θ1, . . . ,Θk,Dn,D⋄

n)
a.s−→

n→+∞
FS(y|XS = xS) (A.2)

Proposition A.5 shows that the Projected CDF honest Forest is consistent and Lemma A.1 shows that
the honest and the non-honest forest are close.
Lemma A.1. Consider a random forest which satisfies Assumtions A.1 to A.3. Then,

∀x ∈ Rd,∀y ∈ R, |F ⋄
S(y|XS = xS ,Θ1, . . . ,Θk,Dn)− F̂S(y|XS = xS ,Θ1, . . . ,Θk,Dn|

a.s→ 0
(A.3)

Hence, according to Proposition A.5 and Lemma A.1, we get

∀x ∈ Rd,∀y ∈ R, F̂S(y|XS = xS ,Θ1, . . . ,Θk,Dn)
a.s−→

n→+∞
FS(y|XS = xS) (A.4)

To have the almost sure uniform convergence relative to y of the Projected CDF honest forest, we use
Dini’s second theorem. Indeed, {Y ⋄i ≤ y} = {Ui ≤ FS(y|X⋄i

S )}, where Ui, i = 1, . . . , n are i.i.d
uniform random variables. Let si = FS(y|XS = X⋄i

S ) = FS(y|X⋄i
S ) and s = FS(y|XS = xS),

we have

F̂S(y|XS = xS ,Θ1, . . . ,Θk,Dn) =

n∑
i=1

wn,i(xS)1{Ui≤si}

=

n∑
i=1

wn,i(xS)1{Ũi≤s},

where Ũi ∼ U(si, si + 1), i = 1, . . . , n are independent uniform variable. Then, A.4 is equivalent to:

∀x ∈ Rd,∀s ∈ [0, 1],

n∑
i=1

wn,i(xS)1{Ũi≤s}
a.s−→

n→+∞
s (A.5)

A.5 states that, ∀s ∈ [0, 1],∃Ns ⊂ Ω,P(Ns) = 0 such that

∀ω ∈ N c
s ,

n∑
i=1

wn,i(xS)1{Ũi(ω)≤s} −→
n→+∞

s. (A.6)
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Thus, we need to find a set N that does not depend on s which satisfies A.6 to get the uniform
convergence with Dini’s second theorem. To that aim, we will use the density of Q in R as in the
proof of the Glivenko-Cantelli theorem.

Since the countable union of null set is a null set, ∃N ⊂ Ω,P(N) = 0 such that

∀s ∈ [0, 1] ∩Q, ∀ω ∈ N c,

n∑
i=1

wn,i(xS)1{Ũi(ω)≤s} −→
n→+∞

s (A.7)

A.7 is also true ∀s ∈ [0, 1]. Indeed, let s ∈ [0, 1], ϵ > 0, w ∈ N, ∃p, q ∈ Q such that s − ϵ ≤ p ≤
s ≤ q ≤ s+ ϵ, since s →

∑n
i=1 wn,i(xS)1{Ũi(w)≤s} is increasing, we have:

n∑
i=1

wn,i(xS)1{Ũi(ω)≤p} ≤
n∑

i=1

wn,i(xS)1{Ũi(ω)≤s} ≤
n∑

i=1

wn,i(xS)1{Ũi(ω)≤q} (A.8)

Thus,

s− ϵ ≤ lim inf

n∑
i=1

wn,i(xS)1{Ũi(ω)≤s} ≤ lim sup

n∑
i=1

wn,i(xS)1{Ũi(ω)≤s} ≤ s+ ϵ (A.9)

So we have shown that ∃N ⊂ Ω,P(N) = 0,∀ω ∈ N c

• s →
∑n

i=1 wn,i(xS)1{Ũi(w)≤s} is increasing for all n ∈ N⋆

• ∀s ∈ [0, 1],
∑n

i=1 wn,i(xS)1{Ũi(w)≤s} −→
n→+∞

s and s → s is continuous

Then the Dini’s second theorem states that we have the almost sure uniform convergence proving
Theorem 4.4. Now, we turn to the proof of Proposition A.5 and Lemma A.1. To that aim, we need
the following lemma based on Vapnik-Chervonenkis classes.

Lemma A.2. Consider Dn,D⋄
n, two independent datasets of independent n samples of (X, Y ). Build

a tree using Dn with bootstrap and bagging procedure driven by Θ. As before, N(A
(S)
n (xS ; Θl)) is

the number of bootstrap observations of Dn that fall into A
(S)
n (xS ; Θl,Dn) and N⋄(A

(S)
n (xS ; Θl))

is the number of observations of D⋄
n that fall into A

(S)
n (xS ; Θl,Dn). Then:

∀ϵ > 0, P
(∣∣∣N(A(S)

n (xS ; Θl))−N⋄(A(S)
n (xS ; Θl))

∣∣∣ > ϵ
)
≤ 24(n+ 1)2|S|e−ϵ2/288n (A.10)

See the proof in [Elie-Dit-Cosaque and Maume-Deschamps, 2020], Lemma 5.3.

Proof of proposition A.5.

We want to show that:

∀x ∈ Rd,∀y ∈ R, F ⋄
S(y|XS = xS ,Θ1, . . . ,Θk,Dn,D⋄

n)
a.s−→

n→+∞
FS(y|XS = xS)|

Let x ∈ Rd, y ∈ R, we have:

|F ⋄
S(y|xS)− FS(y|XS = xS)| ≤

∣∣∣∣∣
n∑

i=1

w⋄
n,i(xS)

(
1{Y ⋄i≤y} − FS(y|X⋄i

S )
)∣∣∣∣∣

+

∣∣∣∣∣
n∑

i=1

w⋄
n,i(xS)

(
FS(y|X⋄i

S )− FS(y|XS = xS)
)∣∣∣∣∣

We define Wn =
∑n

i=1 w
⋄
n,i(xS)

(
1{Y ⋄i≤y} − FS(y|X⋄i

S )
)

= and Vn =∑n
i=1 w

⋄
n,i(xS)

(
FS(y|X⋄i

S )− FS(y|XS = xS)
)

and treat each term separately.
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Let prove that |Wn|
a.s−→

n→+∞
0. We can rewrite Wn as Wn =

∑n
i=1 w

⋄
n,i(xS)H

⋄
i where H⋄

i is

bounded by 1 and E[H⋄
i |X⋄i

S ] = 0. Then,

P (Wn > ϵ) ≤ e−tϵ E[etWn ]

≤ e−tϵ E

[
n∏

i=1

E
[
etw

⋄
n,i(xS)H⋄i

|Θ1, . . . ,Θk,Dn, X
⋄,i
S , . . . , X⋄,n

S

]]

≤ e−tϵ E

[
n∏

i=1

e
t2

2 w⋄
n,i(xS)2

]

The last inequality comes from the fact that w⋄
n,i(xS) is a constant given

Θ1, . . . ,Θk,Dn, X
⋄,i
S , . . . , X⋄,n

S , and as H⋄i is bounded by 1 with E[H⋄
i |X⋄i

S ] = 0, we

used the following inequality: If |X| ≤ 1 a.s and E[X] = 0, then E[etX ] ≤ E[e t2

2 ].

By using Assumption A.2, item 2., let K > 0 be such that ∀l ∈ [k], N(A
(S)
n (xS ; Θl)) ≥

K
√
n ln(n)β

2 a.s., then we have Γ(l) = {N⋄(A
(S)
n (xS ; Θl)) ≤ K

√
n ln(n)β

2 } ⊂ {|N(A
(S)
n (xS ; Θl))−

N⋄(A
(S)
n (xS ; Θl))| ≥ K

√
n ln(n)β

2 }. Thus, using Lemma A.2, we have that P(Γ(l)) ≤ 24(n +

1)2|S| exp(−−K2(ln(n)2β)
1152 ).

We have

n∑
i=1

w⋄
n,i(xS)

2 =

n∑
i=1

w⋄
n,i(xS)

k

(
k∑

l=1

1
X⋄i∈A

(S)
n (xS ;Θl,Dn)

N⋄(A
(S)
n (xS ; Θl))

(1{Γ(l)} + 1{Γ(l)c})

)

≤
n∑

i=1

w⋄
n,i(xS)

(
2

K
√
n ln(n)β

+
1

k

k∑
l=1

1
X⋄i∈A

(S)
n (xS ;Θl,Dn)

1{Γ(l)}

)

So that,

P (Wn > ϵ) ≤ exp(−tϵ+
t2

K
√
n ln(n)β

)E
[
exp

(
t2

2
1∪k

l=1Γ(l)

)]
≤ exp(−tϵ+

t2

K
√
n ln(n)β

)×

(
1 + e

t2

2

k∑
l=1

P(Γ(l))

)

≤ exp(−tϵ+
t2

K
√
n ln(n)β

)×
(
1 + 24k(n+ 1)2|S| exp

(
t2

2
− K2 ln(n)2β

1152

))

Taking t2 = K2 ln(n)2β

576 leads to

P (Wn > ϵ) ≤ (1 + 24k(n+ 1)2|S|) exp

(
K ln(n)β

576
√
n

− ϵK ln(n)β

24

)

We obtain the same bound for P(Wn ≤ −ϵ) = P(−Wn > ϵ), then by using Assumption A.2, item
1., k = O(nα) so that the right term is finite, we conclude by Borel cantelli that |Wn| goes to 0 a.s.

Finally, we show that Vn
a.s−→

n→+∞
0.
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|Vn| =

∣∣∣∣∣
n∑

i=1

w⋄
n,i(xS)

(
FS(y|X⋄i

S )− FS(y|XS = xS)
)∣∣∣∣∣

≤
n∑

i=1

k∑
l=1

1
X⋄i∈A

(S)
n (xS ,Θl,Dn)

N⋄(A
(S)
n (xS ,Θl))

∣∣∣(FS(y|X⋄i
S )− FS(y|XS = xS)

)∣∣∣
≤

k∑
l=1

(
n∑

i=1

1
X⋄i∈A

(S)
n (xS ,Θl,Dn)

N⋄(A
(S)
n (xS ,Θl))

∣∣FS(y|X⋄i
S )− FS(y|XS = xS)

∣∣)

≤
k∑

l=1

(
n∑

i=1

1
X⋄i∈A

(S)
n (xS ,Θl,Dn)

N⋄(A
(S)
n (xS ,Θl))

sup
z∈A

(S)
n (x;Θl,Dn)

|FS(y|XS = zS)− FS(y|XS = xS)|

)

≤
k∑

l=1

sup
z∈A

(S)
n (x;Θl,Dn)

|FS(y|XS = zS)− FS(y|XS = xS)|

By assumption A.1 i.e that variation of the Projected CDF within the cell of the Projected Tree
vanishes, we conclude that |Vn|

a.s−→
n→+∞

0 ending the proof of Proposition A.5.

Proof of Lemma A.1.

We want to show that:

∀x ∈ Rd,∀y ∈ R |F ⋄
S(y|XS = xS ,Θ1, . . . ,Θk,Dn)− F̂S(y|XS = xS ,Θ1, . . . ,Θk,Dn|

a.s→ 0.

We have

|F ⋄
S(y|XS = xS)− F̂S(y|XS = xS)| = |

n∑
i=1

w⋄
n,i(xS)1{Y ⋄i≤y} − wn,i(xS)1{Y i≤y}|

=

∣∣∣∣∣
n∑

i=1

1

k

k∑
l=1

1
X⋄i∈A

(S)
n (xS ,Θl,Dn)

N⋄(A
(S)
n (xS ,Θl))

1{Y ⋄i≤y} −
1

k

k∑
l=1

Bn(X
i; Θl)1Xi∈A

(S)
n (xS ,Θl,Dn)

N(A
(S)
n (xS ,Θl))

1{Y i≤y}

∣∣∣∣∣
=

∣∣∣∣∣1k
k∑

l=1

(∑n
i=1 1X⋄i∈A

(S)
n (xS ,Θl,Dn)

1{Y ⋄i≤y}

N⋄(A
(S)
n (xS ,Θl))

−

∑n
i=1 Bn(X

i; Θl)1Xi∈A
(S)
n (xS ,Θl,Dn)

1{Y i≤y}

N(A
(S)
n (xS ,Θl))

)∣∣∣∣∣
As in [Arenal-Gutiérrez et al., 1996], we replace the boostrap component with Z1, . . . , Zn which are
distributed as Z = (Z1, Z2) that has uniform distribution over Dn = {(X1, Y 1), . . . , (Xn, Y n)}
conditionally to Dn.

|F ⋄
S(y|XS = xS)− F̂S(y|XS = xS)|

=

∣∣∣∣∣1k
k∑

l=1

(∑n
i=1 1{X⋄i∈A

(S)
n (xS ,Θl,Dn), Y ⋄i≤y}

N⋄(A
(S)
n (xS ,Θl))

−

∑n
i=1 1{Zi

1∈A
(S)
n (xS ,Θl,Dn), Zi

2≤y}

N(A
(S)
n (xS ,Θl))

)∣∣∣∣∣
≤ 1

k

k∑
l=1

∣∣∣∣∣
∑n

i=1 1{X⋄i∈A
(S)
n (xS ,Θl,Dn), Y ⋄i≤y}

N⋄(A
(S)
n (xS ,Θl))

−

∑n
i=1 1{Zi

1∈A
(S)
n (xS ,Θl,Dn), Zi

2≤y}

N(A
(S)
n (xS ,Θl))

∣∣∣∣∣
def
=

1

k

k∑
l=1

|Gl|

We have,

|Gl| ≤ |G1
l |+ |G2

l |
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with

G1
l =

∣∣∣∑n
i=1 1{X⋄i∈A

(S)
n (xS ,Θl,Dn), Y ⋄i≤y} −

∑n
i=1 1{Zi

1∈A
(S)
n (xS ,Θl,Dn), Zi

2≤y}

∣∣∣
N(A

(S)
n (xS ,Θl))

and

G2
l =

∣∣∣∑n
i=1 1{X⋄i∈A

(S)
n (xS ,Θl,Dn), Y ⋄i≤y} −

∑n
i=1 1{Zi

1∈A
(S)
n (xS ,Θl,Dn), Zi

2≤y}

∣∣∣
N⋄(A

(S)
n (xS ,Θl))

.

Therefore, A.1 is equivalent to show that ∀l ∈ [k], |G1
l |, |G2

l |
a.s−→

n→+∞
0.

Let ϵ > 0, by using Assumption A.2, item 2. i.e ∃K > 0, N(A
(S)
n (xS ,Θl)) ≥ K

√
n ln(n)β , we

have,

P(|G1
l | > ϵ) = P

[∣∣∣∣∣ 1n
n∑

i=1

1{X⋄i∈A
(S)
n (xS ,Θl,Dn), Y ⋄i≤y} −

1

n

n∑
i=1

1{Zi
1∈A

(S)
n (xS ,Θl,Dn), Zi

2≤y}

∣∣∣∣∣ > ϵN(A
(S)
n (xS ,Θl))

n

]

≤ P

[
sup
A∈B

∣∣∣∣∣ 1n
n∑

i=1

1{(X⋄i,Y ⋄i)∈A − P ((X, Y ) ∈ A)

∣∣∣∣∣ > ϵ K
√
n ln(n)β

3n

]

+ P

[
sup
A∈B

∣∣∣∣∣ 1n
n∑

i=1

1{(Xi,Y i)∈A − P ((X, Y ) ∈ A)

∣∣∣∣∣ > ϵ K
√
n ln(n)β

3n

]

+ P

[
sup
A∈B

∣∣∣∣∣ 1n
n∑

i=1

1{(Zi
1,Z

i
2)∈A −

n∑
i=1

1{(Xi,Y i)∈A

∣∣∣∣∣ > ϵ K
√
n ln(n)β

3n

]

≤ 2P

[
sup
A∈B

∣∣∣∣∣ 1n
n∑

i=1

1{(Xi,Y i)∈A − P ((X, Y ) ∈ A)

∣∣∣∣∣ > ϵ K
√
n ln(n)β

3n

]

+ P

[
sup
A∈B

∣∣∣∣∣ 1n
n∑

i=1

1{(Zi
1,Z

i
2)∈A −

n∑
i=1

1{(Xi,Y i)∈A

∣∣∣∣∣ > ϵ K
√
n ln(n)β

3n

]

where B =
{∏|S|

i=1[ai, bi] × [−∞, y] : ai, bi ∈ R̄
}

. The first term are handled thanks to a direct
application of the Theorem 2 in [Vapnik, 1971] that bounds the difference between the frequencies of
events to their probabilities over an entire class B. Therefore,

P

[
sup
A∈B

∣∣∣∣∣ 1n
n∑

i=1

1{(Xi,Y i)∈A − P ((X, Y ) ∈ A)

∣∣∣∣∣ > ϵ K
√
n ln(n)β

3n

]
≤ 8(n+ 1)2|S|+1 exp(−K2ϵ2 ln(n)2β

288
)

To handle the last term, we apply the Theorem 2 in [Vapnik, 1971] under the conditional distribution
given Dn,

P

[
sup
A∈B

∣∣∣∣∣ 1n
n∑

i=1

1{(Zi
1,Z

i
2)∈A −

n∑
i=1

1{(Xi,Y i)∈A

∣∣∣∣∣ > ϵ K
√
n ln(n)β

3n

]

= E

[
P

[
sup
A∈B

∣∣∣∣∣ 1n
n∑

i=1

1{(Zi
1,Z

i
2)∈A −

n∑
i=1

1{(Xi,Y i)∈A

∣∣∣∣∣ > ϵ K
√
n ln(n)β

3n

∣∣∣Dn

]]

= E

[
P

[
sup
A∈B

∣∣∣∣∣ 1n
n∑

i=1

1{(Zi
1,Z

i
2)∈A − P ((Z1, Z2) ∈ A |Dn)

∣∣∣∣∣ > ϵ K
√
n ln(n)β

3n

∣∣∣Dn

]]

≤ 8(n+ 1)2|S|+1 exp(−K2ϵ2 ln(n)2β

288
)

Finally, we get the overall upper bound,

P(|G1
l | > ϵ) ≤ 24(n+ 1)2|S|+1 exp(−ϵ2 ln(n)2β

288
)
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By Borel-Cantelli, we conclude that |G1
l |

a.s−→
n→+∞

0.

Now, we treat the term |G2
l |. The main difference with |G1

l | is that N(A
(S)
n (xS ,Θl)) was replaced

by N⋄(A
(S)
n (xS ,Θl)). The proof remains the same as above, we just have to show how to deal with

N⋄(A
(S)
n (xS ,Θl)) for each term. For example,

P

[
sup
A∈B

∣∣∣∣∣ 1n
n∑

i=1

1{(Zi
1,Z

i
2)∈A −

n∑
i=1

1{(Xi,Y i)∈A

∣∣∣∣∣ > ϵ N⋄(A
(S)
n (xS ,Θl))

3n

]

= P

[
sup
A∈B

∣∣∣∣∣ 1n
n∑

i=1

1{(Zi
1,Z

i
2)∈A −

n∑
i=1

1{(Xi,Y i)∈A

∣∣∣∣∣ > ϵ N⋄(A
(S)
n (xS ,Θl))

3n
, ∃l ∈ [k], |N⋄(A(S)

n (xS ,Θl))−N(A(S)
n (xS ,Θl))| > λ

]

+ P

[
sup
A∈B

∣∣∣∣∣ 1n
n∑

i=1

1{(Zi
1,Z

i
2)∈A −

n∑
i=1

1{(Xi,Y i)∈A

∣∣∣∣∣ > ϵ N⋄(A
(S)
n (xS ,Θl))

3n
, ∀l ∈ [k], |N⋄(A(S)

n (xS ,Θl))−N(A(S)
n (xS ,Θl))| ≤ λ

]
≤ k P

(
|N⋄(A(S)

n (xS ,Θl))−N(A(S)
n (xS ,Θl))| > λ

)
+ P

[
sup
A∈B

∣∣∣∣∣ 1n
n∑

i=1

1{(Zi
1,Z

i
2)∈A −

n∑
i=1

1{(Xi,Y i)∈A

∣∣∣∣∣ > ϵ (N(A
(S)
n (xS ,Θl))− λ)

3n

]

By using Lemma A.2 for the first term, and Assumption A.2, item 2. with λ = 2K
√
n ln(n)β , we

have

P

[
sup
A∈B

∣∣∣∣∣ 1n
n∑

i=1

1{(Zi
1,Z

i
2)∈A −

n∑
i=1

1{(Xi,Y i)∈A

∣∣∣∣∣ > ϵ N⋄(A
(S)
n (xS ,Θl))

3n

]

≤ k 24(n+ 1)2|S|e−ϵ2/288n + 24(n+ 1)2|S|+1 exp(−K2ϵ2 ln(n)2β

288
)

Since k = O(nα) by Assumption A.2, item 1., the right hand is summable, then we conclude that
|G2

l |
a.s−→

n→+∞
0.

This conclude the proof of Lemma A.1, thus the proof of Theorem 4.4.
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B Empirical evaluations of the estimator F̂S

In order to compare the PRF CDF F̂S(y|XS = xS) and FS(y|XS = xS), we use a Monte Carlo
estimator to effectively compute FS(y|XS = xS). We use the synthetic dataset of Section 5:
X ∈ Rp, X ∈ N (0,Σ), Σ = 0.8Jp + 5Ip with p = 100, Ip is the identity matrix, Jp is all-ones
matrix and a linear predictor with switch defined as:

Y = (X1 +X2)1X5≤0 + (X3 +X4)1X5>0. (B.1)

The variables Xi for i = 6 . . . 100 are noise variables. We fit a RF with a sample size n = 104,
k = 20 trees and the minimal number of samples by leaf node is set to tn = ⌊

√
n× ln(n)1.5/250⌋

for the original and the Projected Forest.

We chose a randomly chosen point xS = [−0.13, 1.29,−1.31] with S = [1, 2, 5] from the test set.
The experiment is replicated 100 times. Figure 1 shows that the estimator works well for almost all
points y ∈ R.

Figure 1: Comparison of F̂S(y|XS = xS) and FS(y|XS = xS) with S = [1, 2, 5] and xS =
[−0.13, 1.29,−1.31]

We also compute two global metrics. For a given S, we compute the average Kolmogorov-Smirnov
MKS = 1

n

∑n
i=1 supy∈R |F̂S(y|XS = xS,i)− FS(y|XS = xS,i)| and the average mean absolute

deviation MAD = 1
n

∑n
i=1

∫
R |F̂S(y|XS = xS,i)− FS(y|XS = xS,i)|dy.

We have MAD = 0.008 and the MKS=0.26 on all the observations with S = [1, 2, 3, 5] showing
the estimator’s efficiency. We also compute them with small S = [0, 4], it works even better with
MAD=0.068, MKS=0.0098.

C Additional experiments

C.1 Local rules of Anchors and Sufficient Rules with ground truth explanations

In this section, we compare Anchors and Sufficient Rules in a synthetic dataset where there are strong
dependencies between the important features. In this case, we can evaluate their capacity of providing
the ground truth minimal rules since we know the distribution of the data. We use the moon dataset
(X1, X2, Y ) ∈ R2 × {0, 1}, see figure 2, and we add gaussian features Z ∈ R100 with the µ,Σ of
the previous section such that the final data is (X1, X2,Z, Y ). In addition, if Z1 > 0, we flip the
label Y of the observations.
We train a RF with the parameters of the previous section. It has AUC=99% on the test set (104
observations). We use Anchors with threshold τ = 0.95, tolerance δ = 0.05, and the Minimal
Sufficient Rules with π = 0.95 to explain 1000 observations of the test set. We observe that, on
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average Anchors tend to give much longer rules. The mean size for Sufficient Rules is 2, and for
Anchors it is 10. In addition, the Minimal Sufficient Explanations detect local relevant variables
more accurately. It has FDR=3%, TPR=100% and Anchors has FDR=48%, TPR=80%. Finally,
we observe qualitatively the rules on a given example x (black star in figure 2). We also test the
stability of the explanations by comparing the rules of x and x̃ a nearby observation such that
maxi∈{1,2} |xi − x̃i| ≤ 0.05 (yellow star in figure 2). The rules given by Anchors for x, x̃ are
LAnchors(x) = {X1 > −0.03 AND Z1 > 0.01 AND Z9 > −1.66 AND Z44 > 1.66 AND Z32 ≤ −1.57}
and LAnchors(x̃) = {X1 > 1.04 AND X2 ≤ −0.20 AND Z1 > 0.01 AND Z28 > 0.01 AND Z45 ≤
−1.57}. We find that the rules are very different, showing instability. Moreover, we also note that
Anchors is very sensitive to random seed. However, the SDP approach gives the same explanations
for x, x̃. The observations have two Minimal Sufficient Explanations S⋆

1 = [x1, z1], S⋆
2 = [x2, z1].

Thus, they have two Sufficient Rules, we can observe them given the axis X1, X2 in figure 2. We
notice that the rules found are very relevant for explaining these instances’ predictions. Nevertheless,
the vertical rule could be a little more to the left. We think this inaccuracy comes from the estimation
of the RF, which is not perfect.

Figure 2: Explanations of x, x̃ by the two Sufficient Rules, the horizontal/vertical rectangle is asso-
ciate with S⋆

1 = [x1, z1], S
⋆
2 = [x2, z1] respectively. The background samples are the observations

with z1 > 0.

As these observations have multiple explanations, we provide an additional insight about the important
variables by computing their Local eXplanatory Importances (LXI). The LXI of x, x̃ are

[
x1 =

0.5,x2 = 0.5, z1 = 1, z2 = 0, . . . ,z100 = 0
]
. It shows that the variables {Zi}i∈J2,100K are

irrelevant for these observations. The relevant variables are X1, X2, Z1 and especially Z1 is the most
important. It is a necessary feature as it appears in every Sufficient Explanations.

Comparison of SHAP values and LXI on Moon Data: In figure 3, we compare the SHAP values
and LXI of an observation with Z1 > 0 (the green star). We observe that the LXI gives non-null
values only on the active variable (X2, Z1), while the SV gives non-null values also on noise variables.
Moreover, SV gives a non-negligible value to the feature X1 that is not necessary for this prediction.
Indeed, by analyzing figure 2, we observe that whatever the value of X1, if we fix X2 and the sign of
Z1, the prediction will not change.

We also compute the mean importance score across the population in figure 4. For the SV, we take
the mean absolute values as it may have negative contributions. The three important values that come
out for both methods are X1, X2, Z1. However, as in the local case, SV assign values to the noise
variables.
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(a) LXI (b) SHAP values

Figure 3: LXI and SHAP values of the green star

(a) Mean LXI (b) Mean absolute SHAP

Figure 4: Comparison of Mean LXI and Mean absolute SHAP

C.2 Shapley values and Local eXplanatory importance (LXI) on LUCAS dataset

In this section, we want to highlight a case where the LXI permit to drastically simplify the different
explanations. We use a semi-synthetic dataset LUCAS (LUng CAncer Simple set), a dataset generated
by causal Bayesian networks with 12 binary variables. The causal graph is drawn in figure 5 and the
probability table in figure 6 .

Figure 5: Bayesian network that represents
the causal relationships between variables

Figure 6: Probabilities table used to generate
Data
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In figure 7, we observe the different explanations of an observation chosen randomly, its features val-
ues are

{
Smoking = True, Yellow Fingers = True, Anxiety = False, Peer Pressure =

False, Genetic = False, Attention Disorder = True, Born an Even Day =
False, Car Accident = True, Fatigue = True, Allergy = False, Coughing = True

}
and its label is True. We see in the left of figure 7 that it has many Sufficient Explanations. Therefore,
as seen in the right of Figure 7, the LXI permit to synthesize all the different explanations in a single
feature contributions that exhibits the local importance of the variables. Each value corresponds to
the frequency of apparition of the corresponding feature in the set of all the sufficient explanations.

Figure 7: Screenshot of a web-App showing the Sufficient Explanations and LXI of an observation
chosen randomly

At the bottom of figure 7, we observe the rule associated with the first Sufficient Explanation which
is
{

Smoking = True, Coughing = True
}

. Note that this rule is very powerful, because it has a
coverage of 46% and an accuracy of 93%.
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Comparison of SHAP values and LXI on LUCAS: We can also compare the SHAP values and
LXI on this dataset. In figure 8, we observe that it is the value of Coughing that is really important
for this observation. Indeed it appears in several Sufficient Explanations (80%). On the other side, in
figure 9, SHAP associates values to many more variables, and it is difficult to discriminate between
the important values. It is difficult to deduce from the values of Smoking, Coughing, Fatigue, Allergy
which is the most important variable with SHAP values.

Figure 8: Sufficient Explanations and Local Explanatory Importance

Figure 9: SHAP values
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C.3 Stability of Anchors and Sufficient Rules

Here, we run the last experiment of Section 5 on the stability of the local rules (Anchors, Sufficient
Explanations) with different parameters. It consists of evaluating the stability of the methods w.r.t to
input perturbations. For a given observation x, we compare the rule of each method with the rules
obtained for 50 noisy versions of x by adding random Gaussian noises N (0, ϵ× I) to the values of
the features with different ϵ = 0.01, 0.001.

Figure 10: Size distribution of Anchors (left) and Sufficient Rules (right) when ϵ = 0.001

Figure 11: Size distribution of Anchors (left) and Sufficient Rules (right) when ϵ = 0.01
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D From Sufficient Rules to Global Interpretable model

In this section, we investigate the capacity of transforming the Sufficient Rules explanations as a
competitive global model. Indeed, we can build a global model by combining all the Sufficient Rules
found for the observations in the training set. We set the output of each rule as the majority class
(resp. average values) for classification (resp. regression) of the training observations that satisfy
this rule. Note that some rules can overlap and an observation can satisfy multiple rules. To resolve
these conflicts, we use the output of the rule with the best precision (accuracy or R2). We have
experimented on 2 real-world datasets: Diabetes [Kaggle, 2016] contains diagnostic measurements
and aims to predict whether or not a patient has diabetes, Breast Cancer Wisconsin (BCW) [Dua
and Graff, 2017] consists of predicting if a tumor is benign or not using the characteristic of the cell
nuclei. Thus, we perform comparisons between the global model induced by the Sufficient Rules
(G-SR) and SOTA global rule-based models as baseline. We use the package imodel [Singh et al.,
2021] (resp. scikit-learn [Pedregosa et al., 2011]) for RuleFit, Skoped Rule (SkR) (resp. Decision
Tree (DT), Random Forest (RF)). In table 1, we observe that the G-SR performs as well as the best
baseline models while being transparent in its decision process. These experiments increase the
trustworthiness of our explanations because we derive an interpretable (by-design) global model
without paying a trade-off with performance. As a by-product, SR can be used as a new way of
building glass-box models, but this line of research is beyond the scope of the current work.

Table 1: Accuracy of the different models on Diabetes and Breast Cancer Wisconsin dataset (BCW).
For G-SR, we add the coverage of the model on the test-set in brackets.

DATA SET G-SR RULEFIT SKR DT RF

DIABETES 0.98 (81%) 0.76 0.71 0.90 0.92
BCW 0.95 (92%) 0.95 0.93 0.95 0.96

These experiment permit to enforce the trust in the explanations given by our methods and open new
avenues to build a glass-box model with the SR.
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E Projected Forest CDF algorithm

Algorithm 1: Projected Forest CDF: F̂S

1: Inputs : A random forest fit with Dn, a query point xS , y, min_nodes_size
2: Output : F̂ (y|XS = xS)
3: for all trees in the forest do
4: initialize nodes_level as a list of nodes containing only the root node;
5: initialize nodes_child as an empty list of child nodes;
6: initialize samples as the list of observation indices of the full training data of the tree;
7: for all levels in the tree do
8: for all nodes in nodes_level: do
9: if the node splits on a variable in S then

10: compute whether xS falls in the left or right child node;
11: append the child node to nodes_child;
12: set samples_child as the observations in samples which satisfy the split;
13: else
14: append both the left and right children nodes to nodes_child;
15: set samples = samples_child;
16: end if
17: if the size of samples_child is lower than min_node_size then
18: break the loop through the tree levels;
19: else
20: set samples = samples_child;
21: end if
22: end for
23: set nodes_level = nodes_child;
24: end for
25: compute the tree prediction as the average of 1Yi≤y for all i in samples;
26: end for
27: return average the prediction of all trees;
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