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Abstract

To explain the decision of any regression and classification model, we extend
the notion of probabilistic sufficient explanations (P-SE). For each instance, this
approach selects the minimal subset of features that is sufficient to yield the same
prediction with high probability, while removing other features. The crux of P-
SE is to compute the conditional probability of maintaining the same prediction.
Therefore, we introduce an accurate and fast estimator of this probability via
random Forests for any data (X, Y ) and show its efficiency through a theoretical
analysis of its consistency. As a consequence, we extend the P-SE to regression
problems. In addition, we deal with non-discrete features, without learning the
distribution of X nor having the model for making predictions. Finally, we
introduce local rule-based explanations for regression/classification based on the
P-SE and compare our approaches w.r.t other explainable AI methods. These
methods are available as a Python package1.

1 Introduction

Many methods have been proposed to explain specific predictions of machine learning models from
different perspectives, such as feature attributions approaches [Lundberg and Lee, 2017, Ribeiro
et al., 2016], decision rules [Ribeiro et al., 2018], counterfactual examples [Wachter et al., 2017] and
logic-based [Shih et al., 2018, Darwiche and Hirth, 2020].

Among these categories, the most popular are feature attributions approaches, in particular SHAP
[Lundberg and Lee, 2017], which is based on Shapley Values (SV) and aims at indicating the
importance of each feature in the decision. One of the main reasons for SHAP’s success is its
scalability, nice representations of the explanations, and mathematical foundations. However, SV
used in SHAP does not guarantee the truthfulness of the important variables involved in a given
decision. Indeed, it is possible to construct simple theoretical models (defined on a partition of
the feature space) for which SV cannot distinguish between local important and non-important
variables (see conclusion in Amoukou et al. [2022]). Similar difficulties have also been highlighted
by Ghalebikesabi et al. [2021] for SHAP and LIME [Ribeiro et al., 2016]. This lack of guarantees
is a major issue since the explanations may be used for high-stakes decisions. Moreover, Additive
Explanations are not suitable when interactions occur in the model [Gosiewska and Biecek, 2019].

An appealing solution to the problem above is to use decision rules [Ribeiro et al., 2018] or logic-
based explanations [Darwiche and Hirth, 2020, Shih et al., 2018] which gives local explanations that
take into account interactions while ensuring minimality and guarantee on the outcome. However,
these methods are not currently available in the general case (e.g., regression model, continuous
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features, . . . ). Our objective is to extend these methods to more realistic cases by developing new
consistent algorithms.

In this paper, we generalize the concept of Probabilistic Sufficient Explanations (P-SE) introduced
by Wang et al. [2020]. P-SE is a relaxation of logic-based explanation: it explains the classification
of an example by choosing a minimal subset of features guaranteeing that, the model makes the
same prediction with high probability, whatever the values of the remaining features (under the data
distribution). Such a subset is called a Sufficient Explanation (also known as sufficient reason or
prime implicant [Shih et al., 2018, Darwiche and Hirth, 2020]).

We make several contributions. We extend the concept of Same Decision Probability (SDP) to the
regression setting so that we can extend Sufficient Explanations from classification to regression. We
introduce a fast and efficient estimator of the SDP based on Random Forests and prove its uniform
almost sure convergence. Our approach can deal with non-discrete features and does not need the
estimation of the distribution of X , contrary to [Wang et al., 2020]. Our method can explain the data
generating process (X, Y ) directly or any learnt model (X, f(X)).
We introduce the probabilistic local explanatory importance which is the frequency of each feature to
be in the set of all Sufficient Explanations. In particular, this indicates the diversity of the Sufficient
Explanations. We introduce local rule-based explanations for classification or regression which
are simultaneously minimal and sufficient. We compare our approaches w.r.t other explainable AI
methods and provide a Python package that computes all our methods.

2 Motivations and Related works

The methods used to explain the local behavior of Machine Learning models can be organized into
5 groups: features attributions, decision rules, instance-wise feature selection, logical reasoning
approaches, data generation based or counterfactual examples. The benefits of feature attribution-
based explanations, e.g., SHAP [Lundberg et al., 2020] or LIME [Ribeiro et al., 2016] is that they are
easy to read, they can be applied to any model and are generally more scalable than their alternatives.
On the other hand, they are sensitive to perturbations [Ignatiev et al., 2019], or can be fooled by
adversarial attacks [Slack et al., 2020]. These downsides can be caused by the local perturbations
used, which make them inconsistent with the data distribution.

Quite differently, instance-wise feature selection such as L2X [Chen et al., 2018] or INVASE [Yoon
et al., 2018] aims at finding the minimal subset of variables that are relevant for a given instance x and
its label y. Interactions can be captured in that way. In addition, the identification of a minimal subset
S = S(x) is well-formalized and the objective is to find S such that L(Y |X = x) ≈ L(Y |XS =
xS). However, these methods are not reliable because they are prone to approximation errors due
to the training of several Neural Networks, and they provide no guarantees about the fidelity of the
explanations [Jethani et al., 2021]. A similar approach is also developed in [Dhurandhar et al., 2018]
called Pertinent Positive.

Anchors [Ribeiro et al., 2018] are local rule-based explanations that propose a solution to the
reliability issue by providing an explanation with guarantees. It explains individual predictions of any
classification model by finding a decision rule that reaches a given accuracy for a high percentage of
the neighborhood of the instance. However, the method is only available for classification, requires
discrete variables, is unstable and tends to use more variables than needed.

Logical Reasoning Approaches such as Sufficient Reasons [Shih et al., 2018, Darwiche and Hirth,
2020] select a minimal subset of features guaranteeing that, no matter what is observed for the
remaining features, the decision will stay the same. It can be seen as an instance-wise feature
selection but with guarantees of sufficiency and minimality (i.e., no subset of the set satisfies the
sufficiency condition). However, since the guarantees are deterministic, it is often necessary to include
many features into the explanation, making the explanation more complex and thus less intelligible.
A relaxation of this method is the Sufficient Explanations [Wang et al., 2020] that gives probabilistic
guarantees instead of deterministic guarantees, i.e., it required that the prediction remains the same
with high probability. It gives a simple local explanation with guarantees while considering feature
interactions and the data distribution. However, it is limited to classification with binary features
and requires learning the distribution of the features. Moreover, the Sufficient Explanations are not
unique, which causes a selection problem as the whole set of explanations is not interpretable.
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In this work, we propose a consistent method that efficiently finds the Sufficient Explanations of any
data generating process (X, Y ) or any model (X, f(X)), without learning the distribution of X .
In particular, we don’t need to have access to the model f , we need only the predictions, contrary
to [Wang et al., 2020]. We propose local attributions that summarize the diversity of the Sufficient
Explanations. In addition, we propose local rule-based explanations for regression and classification
models based on Sufficient Explanations. To the best of our knowledge, it is the first local rule-based
explanations for regression.

3 Probabilistic Sufficient Explanations for Regression

Let assume we have an i.i.d sample Dn = (Xi, Y i)i=1,...,n such that (X, Y ) ∼ P(X,Y ) where
X ∈ Rp and Y ∈ R. We use uppercase letters for random variables and lowercase letters for their
value assignments. For a given subset S ⊂ [p], XS = (Xi)i∈S denotes a subgroup of the features.

We define the explanations of an instance x as the minimal subsets xS , S ⊂ [p] such that given only
those features, the model yields "almost" the same prediction y as on the complete example with high
probability, under the data distribution p(X). The main probabilistic reasoning tool that we use for
our explanations is the Same Decision Probability (SDP) [Chen et al., 2012]. For classification, it
is defined as the probability that the classifier has the same output by ignoring some variables. To
explain also regression models, we propose the following definition of the SDP:
Definition 3.1. (Same Decision Probability of a regressor). Given an instance (x, y), the Same
Decision Probability at level t of the subset S ⊂ J1, pK, w.r.t x = (xS ,xS̄) is

SDPS (y;x, t) = P
(
(Y − y)2 ≤ t |XS = xS

)
.

In a regression setting, the SDP gives the probability to stay close to the same prediction y at level
t, when we fix XS = xS or when X S̄ are missing. The higher is the probability, the better is
the explanation powered by S. Note that for classification, the SDP is defined as SDPS (y;x) =
P (Y = y |XS = xS ). Although we present all the methods with the SDP for regression, they
remain the same for classification, we only need to replace SDPS (y;x, t) by SDPS (y;x). Now,
we focus on the minimal subset of features such that the model makes the same or almost the same
decision with a given (high) probability π.
Definition 3.2. (Minimal Sufficient Explanations). Given an instance (x, y), Sπ(x) is a Sufficient
Explanation for probability π, if SDPSπ(x) (y;x, t) ≥ π, and no subset Z of Sπ(x) satisfies
SDPZ (y;x, t) ≥ π. Hence, a Minimal Sufficient Explanation is a Sufficient Explanation with
minimal size.

For a given instance, the Sufficient Explanation or Minimal Sufficient Explanation may not be
unique [Darwiche and Hirth, 2020]. Furthermore, there may be significant differences among the
Sufficient Explanations or Minimal Sufficient Explanations. We denote A-SE as the set of all
Sufficient Explanations and M-SE as the set of Minimal Sufficient Explanations. Thus, the number
and the diversity of the explanations make the method less intelligible, as deriving one of them is not
informative enough, and all of them are too complex to interpret. Therefore, we propose to compute
the following local attributions that summarize the importance of each variable in A-SE/M-SE:
Definition 3.3. (Local eXplanatory Importance - LXI). Given an instance (x, y) and its A-SE or
M-SE. The local explanatory importance of xi is how frequent xi is chosen in the A-SE or M-SE.

Contrary to classical local feature attributions like SHAP or LIME, the values of Local Explanatory
Importance does not depend on the range of values of the predictions, and are interpretable by design.
It corresponds to the frequency of apparition in the A-SE or M-SE, which allows to reason about the
relative difference between the attribution of each feature. Indeed, we can easily discriminate between
the importance of variables in terms of probabilities compared to arbitrary values of SHAP or LIME
that depend on the model and its predictions. In our framework, a value equal to 1 means that this
feature is present in all the A-SE/M-SE. Hence this feature is necessary to maintain the prediction.
Moreover, the attributions of the features are sparse since they are based on the A-SE/M-SE.

Although Sufficient Explanations allow finding local relevant variables, we may want to know
the logical reasons relating input and output. In essence, explaining a decision means giving
the reasons that highlight why the decision has been made. Therefore, we propose to extend
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the Sufficient Explanations into local rules. A rule is a simple IF-THEN statement, e.g., IF the
conditions on the features are met, THEN make a specific prediction. Recall that given an instance
x, a Sufficient Explanation is the minimal subset S ⊂ [p], such that fixing the values XS = xS

permits to maintain the prediction with high probability. The idea is to find the largest rectangle
LS(x) =

∏|S|
i=1[ai, bi], ai, bi ∈ R given the indexes of the Sufficient Explanation S such that

xS ∈ LS(x) and ∀z with zS ∈ LS(x), SDPS(y; z; t) ≥ π.
Definition 3.4. (Minimal Sufficient Rule). Given an instance (x, y), S a Minimal Sufficient
Explanation, the rectangle LS(x) =

∏|S|
i=1[ai, bi], ai, bi ∈ R is a Minimal Sufficient Rule if LS(x) =

argmaxL(x) V ol(L(x)), xS ∈ LS(x) and ∀z, zS ∈ LS(x), SDPS (y; z, t) ≥ π.

Intuitively, the Sufficient Rule is a generalization of the Sufficient Explanation, i.e., instead of
satisfying the minimality/sufficiency conditions of definition 3.2 if we fixed the values XS = xS , we
want to satisfy these conditions on all the elements of a rectangle LS(x) that contains xS . We also
want this rectangle to be of maximal volume such that it covers a large part of the input space. Thus,
the Sufficient Rule captures the local behavior of the model around x while ensuring the minimality
of the rule and guarantees on the outcome. Note that the volume of the rectangle L can be defined as
V ol(L(x)) = P (X ∈ L(x)) or λ(L(x)), with λ the Lebesgue measure.

While Sufficient Rules are similar to Anchors introduced by Ribeiro et al. [2018], we emphasize
two major types of differences. The first is that our framework for constructing rules can address
regression problems, deal with continuous features without discretization, and do not need access
to the model f . Moreover, if we have a model f and an instance x, Anchors search the largest
rule (or rectangle) LS(x) such that PQ(f(x) = Y | XS ∈ LS(x)) ≥ π under an instrumental
distribution Q. This is different from the Sufficient Rule that requires the stability of the prediction
for all the observations in the rectangle i.e ∀xS ∈ LS(x), P (f(x) = Y | XS = xS) ≥ π. The
second major difference is that the Sufficient Rule is based on the original distribution P(X,Y ) as we
use conditional distribution P (Y |XS). At the contrary, anchors use local sampling perturbations
(introducing another distribution Q). As we discuss in the next section, the effective computation of
these rules is very different. Anchors use a heuristic approach to find the minimal rule, which might
produce suboptimal minimal rules. The Sufficient Rules satisfy a minimality principle by definition.

4 SDP, Sufficient Explanations and Sufficient Rules via Random Forest

In order to find the Sufficient Explanations Sπ(x) and the corresponding Sufficient Rules LSπ
(x),

we need to compute the SDP for any subset S. However, the computation of the SDP is known to
be computationally hard; even for simple Naive Bayes model, the computation of SDP is NP-hard
[Chen et al., 2013]. Consequently, approximate criteria based on expectations instead of probabilities
have been introduced by Wang et al. [2020]. They proposed to use a Probabilistic Circuit [Choi et al.,
2020] to model the distribution of the features X and compute a lower bound of the SDP.

In this section, we propose a consistent estimator of the SDP for any distribution (X, Y ). It is based
on two ideas: Projected Forest [Bénard et al., 2021a,c] and Quantile Regression Forest [Meinshausen
and Ridgeway, 2006]. The Projected Forest is an adaptation of the Random Forest algorithm that
estimates E[Y |XS = xS ] instead of E[Y |X = x], and the Quantile Regression Forest uses the
Random Forest algorithm to estimate the Conditional Distribution Function (CDF) P (Y ≤ y|X = x).
The first step is to write the SDP as

SDPS(y;x, t) = P ((Y − y)2 ≤ t|XS = xS) = FS(y +
√
t |XS = xS)− FS(y −

√
t |XS = xS).

Equation 4.1 shows that the only challenge is to estimate the Projected (or Conditional) CDF
FS(y|XS = xS) = P (Y ≤ y|XS = xS). The variant of the original Random Forest proposed
by Meinshausen and Ridgeway [2006] that estimates the CDF F (y|X = x) = P (Y ≤ y|X = x)
is not of interest to us because we want to estimate the Projected CDF FS(y|XS = xS) for any
S. The recent works by Bénard et al. [2021a,c] are much more relevant as they permit to estimate
E[Y |XS = xS ] from a classical Random Forest that has learned to predict E[Y |X = x]. The idea
is to extract a new Forest called Projected Forest from the original Forest, which is a projection of the
original Forest along the S-direction.

We propose to combine the ideas of Quantile Regression Forest and Projected Forest to estimate
the Projected CDF FS(y|XS = xS). In addition, we prove the consistency of our estimator of the
Projected CDF.
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4.1 Random Forest and Condition Distribution Function (CDF) Forest

A Random Forest (RF) is grown as an ensemble of k trees, based on random node and split point
selection based on the CART algorithm [Breiman et al., 1984]. The algorithm works as follows. For
each tree, an data points are drawn at random with replacement from the original data set of size
n; then, at each cell of every tree, a split is chosen by maximizing the CART-criterion; finally, the
construction of every tree is stopped when the total number of cells in the tree reaches the value tn.
For each new instance x, the prediction of the l-th tree is:

mn(x,Θl,Dn) =

n∑
i=1

Bn(X
i; Θl) 1Xi∈An(x;Θl,Dn)

Nn(x; Θl,Dn)
Y i (4.1)

where:
• Θl, l = 1, . . . , k are independent random vectors, distributed as a generic random vector
Θ = (Θ1,Θ2) and independent of Dn. Θ1 contains indexes of observations that are used to
build the tree, i.e. the bootstrap sample and Θ2 indexes of splitting candidate variables in
each node. Θ1:k denotes the sequence of Θl’s.

• An(x; Θl,Dn) is the tree cell (leaf) containing x

• Nn(x; Θl,Dn) is the number of bootstrap elements that fall into An(x; Θl,Dn)

• Bn(X
i; Θl) is the bootstrap component i.e. the number of times that the observation has

been chosen from the original data.
The trees are then averaged to gives the prediction of the forest as:

mk,n(x,Θ1:k,Dn) =
1

k

k∑
l=1

mn(x; Θl,Dn) (4.2)

The Random Forest estimator (Eq. 4.2) can also be seen as an adaptive neighborhood procedure [Lin
and Jeon, 2006]. For every instance x, the observations in Dn are weighted by wn,i(x; Θ1:k,Dn),
i = 1, . . . , n. Therefore, the prediction of Random Forests and the weights can be rewritten as

mk,n(x,Θ1:k,Dn) =

n∑
i=1

wn,i(x; Θ1:k,Dn)Y
i, wn,i(x; Θ1:k,Dn) =

k∑
l=1

Bn(X
i; Θl) 1Xi∈An(x;Θl,Dn)

k ×Nn(x; Θl,Dn)

Viewing a Random Forest as an adaptive nearest neighbor predictor offers natural estimates of more
complex quantities (Cumulative hazard function [Ishwaran et al., 2008], Treatment effect [Wager
and Athey, 2017], and conditional density [Du et al., 2021]). Therefore, just as E[Y |X = x] is
approximated by a weighted mean over observation of Y i, E[1Y≤y|X = x] is approximated by
the weighted mean over the observations of 1Y i≤y using the same weights wn,i(x; Θ1:k,Dn). The
approximation is

F̂ (y|X = x,Θ1:k,Dn) =

n∑
i=1

wn,i(x; Θ1:k,Dn)1Y i≤y (4.3)

To simplify notations, we omit Θ1, . . . ,Θk,Dn and we write F̂S(y|XS = xS) for any S.

4.2 Projected Forest and Projected CDF Forest

We describe the Projected Forest (PRF) and show how it is combined with the Quantile Regression
Forest to build the estimator of the Projected CDF. The PRF algorithm has been introduced in Bénard
et al. [2021c,a]. The idea is to project the partition of each tree of the forest on the subspace spanned
by the variables in S, thus we can estimate E[Y |XS ] rather than E[Y |X]. The computation of these
partitions for each S can be computationally expensive in high dimension. However, Bénard et al.
[2021a] uses a simple algorithm trick to derive efficiently the output of the Projected Forest without
computing explicitly its partitions. Roughly, for computing the prediction of a tree, the algorithm
ignores the splits that use variables not contained in S. It works as follow: when an observation is
dropped down in the initial trees, and it encounters a split involving a variable i /∈ S , the observation
is sent both to the left and right children nodes. As a result, each observation falls in multiple terminal
leaves of the tree. Thus, to compute the prediction of an instance xS , we collect the set of terminal
leaves where it falls, and average the output Y i of the training observations which belong to every
terminal leaf of this collection. E[Y |XS = xS ] is estimated as the average outputs of the training
observations in the intersection of the leaves where xS falls.
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An efficient implementation of the PRF algorithm is detailed in Appendix. The associated PRF is
m

(xS)
k,n (xS) =

∑n
i=1 wn,i(xS)Y

i where the weights are defined by

wn,i(xS) =

k∑
l=1

Bn(X
i; Θl) 1

Xi∈A
(xS)
n (xS ;Θl,Dn)

k ×N
(xS)
n (x; Θl,Dn)

, (4.4)

where A
(xS)
n (xS ; Θl,Dn) is the leaf of the associated Projected l-th tree where xS falls and

N
(xS)
n (x; Θl,Dn) is the number of bootstrap observations that falls in A

(xS)
n (xS ; Θl,Dn). There-

fore, we approximate the Projected CDF FS(y|XS = xS) = P (Y ≤ y|XS = xS) as in Eq. 4.3 by
using the weights of the Projected Forest defined in Eq. 4.4. The estimator of the Projected CDF is
defined as: F̂S(y|XS = xS) =

∑n
i=1 wn,i(xS)1Y i≤y .

4.3 Consistency of the Projected CDF Forest

In this section, we state our main result, which is the uniform a.s. convergence of the estimator
F̂S(y|XS = xS) to FS(y|XS = xS). Meinshausen and Ridgeway [2006] showed the uniform
convergence in probability of a simplified version of the estimator of the CDF defined in Eq. 4.3,
where the weights wn,i(xS ; Θ1:k,Dn) are in fact considered to be non-random while they are
indeed random variables depending on (Θl)l=1,...,k, Dn. Moreover, the bootstrap was replaced by
subsampling without replacement as in most studies that analyse the asymptotic properties of Random
Forests [Scornet et al., 2015, Wager and Athey, 2017, Goehry, 2020]. However, Elie-Dit-Cosaque and
Maume-Deschamps [2020] showed the almost everywhere uniform convergence of both estimators
(the simplified and the one defined in Eq. 4.3) under realistic assumptions with all the randomness and
bootstrap samples. We follow their works to prove the consistency of the PRF CDF F̂S(y|XS = xS)
based on the following assumptions.
Assumption 4.1. ∀x ∈ Rd, the conditional cumulative distribution function F (y|X = x) is continu-
ous.

Assumption 4.1 is necessary to get uniform convergence of the estimator.
Assumption 4.2. For l ∈ [k], we assume that the variation of the conditional cumulative distribution
function within any cell goes to 0.

∀x ∈ Rd,∀y ∈ R, sup
z∈An(x;Θl,Dn)

|F (y|z)− F (y|x)| a.s→ 0

Assumption 4.2 allows to control the approximation error of the estimator. If for all y, F (y|.) is
continuous, Assumption 4.2 is satisfied provided that the diameter of the cell goes to zero. Note that
the vanishing of the diameter of the cell is a necessary condition to prove the consistency of general
partitioning estimator (see chapter 4 in Györfi et al. [2002]). Scornet et al. [2015] show that it is true
in RF where the bootstrap step is replaced by subsampling without replacement and the data come
from additive regression models [Stone, 1985]. The result is also valid for all regression functions,
with a slightly modified version of RF, where there are at least a fraction γ observations in children
nodes, and the number of splitting candidate variables is set to 1 at each node with a small probability.
Under these small modifications, Lemma 2 from Meinshausen and Ridgeway [2006] gives that the
diameter of each cell vanishes.
Assumption 4.3. Let k and Nn(x; Θl,Dn) (number of bootstrap observations in a leaf node), then
there exists k = O(nα), with α > 0, and ∀x ∈ Rd, Nn(x; Θl,Dn) = Ω2(

√
n(ln(n))β), with β > 1

a.s.

Assumption 4.3 allows us to control the estimation error and means that the cells should contain a
sufficiently large number of points so that averaging among the observations is effective.

To prove the consistency of the PRF CDF F̂S(y|XS = xS), we only need to verify the assumptions
4.1, 4.2, 4.3 on the parameters of the PRF CDF and the Projected CDF FS(y|XS = xS) = P (Y ≤
y|XS = xS).

Assumptions 4.1 and 4.2 are satisfied for the Projected CDF and the PRF CDF’s leaves. Since
by definition A

(xS)
n (xS ; Θl,Dn) ⊂ An(x; Θl,Dn), if the variations within the cells of the RF

2f(n) = Ω(g(n)) ⇐⇒ ∃k > 0,∃n0 > 0| ∀n ≥ n0|f(n)| ≥ |g(n)|
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vanish (diameter goes to zero), it also vanishes in the Projected forest. In addition, if the CDF
F (y|X = x) = F (y|XS = xS ,X S̄ = xS̄) is continuous, we can show by a straightforward
analysis of parameter-dependent integral that the Projected CDF FS(y|XS = xS) =

∫
F (y|XS =

xS ,X S̄ = xS̄)p(xS̄ |xS)dxS̄ is also continuous. As we control the minimal number of observations
in the leaf of the PRF CDF by construction, Assumption 4.3 is also verified. Then, the PRF CDF
satisfies also Assumption 4.1-4.3 which ensures its consistency thanks to Theorem 4.4.
Theorem 4.4. Consider a RF satisfying Assumptions 4.1 to 4.3. Then,

∀x ∈ Rd, sup
y∈R

|F̂S(y|XS = xS)− FS(y|XS = xS)|
a.s→ 0

The complete proof and simulations showing the convergence of the estimator can be found in
Appendix.

4.4 Estimation of SDP, Sufficient Explanations and Sufficient Rules

In this section, we show how we compute the SDP, Sufficient Explanations, and Sufficient Rules
using the PRF CDF estimator. We derive from the previous section the following consistent estimator
of any SDPS (y;x, t):

ŜDPS = F̂S(y +
√
t |XS = xS)− F̂S(y −

√
t |XS = xS)

However, finding the A-SE/M-SE using a greedy algorithm is computationally hard, since the number
of subsets is exponential. Therefore, we propose to reduce the number of variables by focusing only
on the most influential variables. We search the Sufficient Explanations in the subspace of the s = 10
variables frequently selected in the RF used to estimate the SDP, reducing the complexity from 2p to
210. This preselection procedure is already used in Bénard et al. [2021b,a], and it is mainly based on
Proposition 1 of Scornet et al. [2015], which highlights the fact that RF naturally splits the most on
influential variables. Note that the minimum number of selected variables s is a hyperparameter.

To find the Sufficient Rules, we used the SDP’s estimator ŜDPS . By using the fact that the PRF
CDF is a tree-based model, and thus ŜDPS partitions the space like a tree or a Random Forest,
we do not need to discretize the continuous space to find the largest rectangle. We only need
to find the leaves compatible with the conditions of the Sufficient Rule defined in 3.4. Given a
Minimal Sufficient Explanation S of an instance x, we already a have a rectangle LS(x) defined
by the PRF CDF or ŜDPS that is the largest rectangle such that xS ∈ LS(x) and ∀z with zS ∈
LS(x), ŜDPS(y; z, t) = ŜDPS(y;x, t) ≥ π. By definition, it is the intersection of the cell of the
trees where xS falls, namely ∩k

l=1A
(xS)
n (xS ; Θl,Dn). Thus, starting from ∩k

l=1A
(xS)
n (xS ; Θl,Dn),

which is also a cell (leaf) of the Projected Forest, we can find all the neighboring leaf (rectangle) that
we can merge with it to get the largest rectangle. We will see in the next section that it provides good
insights about the local behaviour of the model.

How to choose the hyperparameters. The main hyperparameters are: s the number of preselected
variables, π the minimal probability of changing the decision and t which corresponds to the radius
of the ball center at the prediction in the definition 3.1 of the SDP for regression problems.

The choice of s ≪ p is motivated by the fact that many datasets have intrinsic dimensions much lower
than the ambient dimension. Our Selection criterion is based on Proposition 1 in [Scornet et al., 2015],
which highlights the fact that RF naturally splits the most on influential variables. However, any
RF’s importance measure s.t. Mean Decrease Accuracy [Breiman, 2001] or Impurity [Breiman and
Cutler, 2003] can be used as the RF algorithm is known to adapt to the intrinsic dimension [Scornet
et al., 2015, Klusowski, 2020]. Therefore, the choice of s is directly driven by the computation power
available to explore the subsets. In practice, we have always found coalitions S with a probability
above π = 0.9 with s = 10 for real world datasets. Otherwise, we suggest a trade-off between the
maximal reachable size s and the highest probability.

We propose choosing π = 0.9 as it is an acceptable level of risk, but the user can increase/decrease
this probability depending on the use case.

The most challenging hyperparameter to select is t; we recommend having an adaptive radius
t(x) using the quantile of the conditional distributions Y |X = x, which is a by-product of the
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Quantile Regression Forest used for computing the SDP. For each observation, we choose the radius
t(x) = [q̂α1(x), q̂1−α2(x)] with α1 + α2 = α. We build then a confidence interval of varying
length but with constant confidence level across the dataset. This makes our approach as a natural
generalization of the SDP in the classification case by accounting for the uncertainty of the model
to explain. In that case, the SDP and associated sufficient coalition should be read: "if XS = xS

is fixed, then there is a probability at least π of not changing the prediction significantly with level
1 − α, or so that Y ∈ [q̂α1

(x), q̂1−α2
(x)] with probability π. For this reason, we suggest fixing

α1 + α2 = α and π at standard level 1− α = π = 0.9 agreeing with acceptable level of risks.

5 Experiments

We conduct three experiments in this section. The first compares the Sufficient Explanations, Suffi-
cient Rules and LXI with state-of-art (SOTA) local explanations methods (SHAP, LIME, INVASE)
in a simple high dimensional regression model with small relevant features. Although this model
is simple, SOTA (SHAP, LIME) have been shown to poorly detect the important variables of this
model [Amoukou et al., 2021, Ghalebikesabi et al., 2021]. Then, we analyse the performance of
the Sufficient Rules in a real world regression problem. Finally, we highlight the advantages of the
Sufficient Rules in comparison with Anchors in real world classification datasets. More experiments
can be found in Appendix.

To effectively compare different explanation methods, we use synthetic data since we need the ground
truth. We use the following synthetic model: we have X ∈ Rp, X ∈ N (0,Σ), Σ = 0.8Jp + 5Ip
with p = 100, Ip is the identity matrix, Jp is all-ones matrix and a linear predictor with switch defined
as:

Y = (X1 +X2)1X5≤0 + (X3 +X4)1X5>0. (5.1)

The variables Xi for i = 6 . . . 100 are noise variables. We fit a RF with a sample size n = 104,
k = 20 trees and the minimal number of samples by leaf node is set to tn = ⌊

√
n× ln(n)1.5/250⌋

for the original and the Projected Forest. The R2 = 99% on the test set of size 104. The RF is used
to compute the explanations of SHAP, LIME. The Projected Forest is also extract from the RF for
the SDP approaches. We choose α1 = 0.05, α2 = 0.95 and π = 0.90. For INVASE, we use Neural
Networks with 3 hidden layers for the selector model and the predictor model as in Yoon et al. [2018].
Notice that for SHAP, LIME and the SDP approaches, we used the same information (the learned
RF) to retrieve the true explanation of the data. The performance of INVASE and the RF is the same,
both model perfectly fit the data with a R2 = 99%.

SDP approaches vs SOTA (SHAP, LIME, INVASE) on regression. Here, we analyze the
capacity of each method to discover the local important variables of the model defined in Eq. 5.1.
Indeed, Eq. 5.1 shows that if x5 ≤ 0, the model uses only the variables x1, x2 otherwise it uses
the variables x3, x4. Thus, we try to find the top K = 3 relevant features for each sample. Note
that K is not a required input for SDP and INVASE, but K must be given for SHAP and LIME. We
use the true positive rate (TPR) (higher is better) and false discovery rate (FDR) (lower is better) to
measure the performance of the methods on discovery (i.e., discovering which features are relevant).
In addition, as one of the objectives of each method is to find the minimal subset xS that is relevant
to the corresponding target y, we also compute a predictive performance metrics that shows how well
the projected predictor E[Y |XS = xS ] selected by each method is close to the predictor on the full
set of features E[Y |X = x], under the data distribution. Formally, for a given subset S, we denote it

as P-MSE = EZ

[(
E[Y |X = Z]− E[Y |XS = ZS ]

)2
]

where Z ∼ PX .

We obtain the following results for Sufficient Explanation (TPR= 99%, FDR= 2%, P-MSE= 0.02),
INVASE (TPR= 99%, FDR= 87%, P-MSE= 0.006 ), SHAP (TPR= 73%, FDR= 27%, P-
MSE= 0.79), and LIME (TPR= 50%, FDR= 49%, P-MSE= 5.01). We observe that the Sufficient
Explanation succeeds to find the top K relevant variables and outperform the other methods by a
significant margin. SHAP and LIME obtain the worst discovery rate. INVASE succeeds in finding
the relevant variables, but it has a high FDR (87%), which means we cannot distinguish between the
relevant and irrelevant variables since 87% of the selected variables are irrelevant. We also see that
the P-MSE of INVASE is the lowest, which is not surprising as it selects all the relevant variables
despite its high FDR. Indeed, this metric is not much affected by the FDR. The P-MSE of Sufficient
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Explanations is also almost zero, and as above, SHAP and LIME perform worse than the other
methods. In table 1, we compare the LXI and SHAP values on 1000 observations having X5 > 0. We
compare the mean absolute values of SHAP and average LXI on this sub-population. Notice that on
this model, these observations have a single Sufficient Explanation which is the variables X3, X4, X5.
Both models give null attributions to the noise variables, but SHAP gives higher importance to
the variables X1, X2 than the truly important variables X3, X4, X5. On the other hand, LXI gives
non null attributions only on the important variables. We refer to the Appendix for an additional
comparison with SHAP in a case where there are several Sufficient Explanations.

Table 1: Global SHAP values (mean absolute) and average LXI on 1000 observations of the test set
having X5 > 0. Xnoises corresponds to the sum of the attributions of the noises variables (Xi for
i = 6 . . . 100).

X1 X2 X3 X4 X5 Xnoises

LXI 0 0 1 1 1 0
SHAP 1.47 1.54 0.56 0.56 0.86 0.005

However, even if the Sufficient Explanation find effectively the top K relevant variables, it cannot
provide a complete understanding of the local behavior of the regression model (the SOTA methods
also), i.e., that it’s the sign of x5 that matters. Thus, by extending the Sufficient Explanation into
Sufficient Rule we can retrieve the complete story. We choose an observation (x, y) such that its
Sufficient Explanation found is S = [X3, X4, X5], with xS = [−3.64,−4.41, 0.68]. Although
the Sufficient Explanation shows that fixing the value xS permit to maintain the prediction with
high probability, the Sufficient Rule gives the additional information that we can also maintain the
prediction within a small radius around y by satisfying the rule LS(x) = {X5 > 0 AND − 4.45 ≤
X4 ≤ −4.06 AND − 3.67 ≤ X3 ≤ −3.58}. The Sufficient Rule LS(x) catches perfectly the local
behaviour of the model which says that despite the values of x3, x4, it’s the sign of x5 that matters.

SDP approaches on real world regression. We demonstrate the performance and flexibility of the
Sufficient Rules (SR) on a real world regression dataset. Since there are no ground truth explanations
for real world datasets, we use the predictive performance and simplicity (number of variables used)
of the SR as an indicator of the effectiveness of the explanations. Indeed, we can build a global
model by combining all the Sufficient Rules found for the observations in the training set, and we
measure its performance on the test set. We set the output of each rule as the majority class (resp.
average values) for classification (resp. regression) of the training observations that satisfy this rule.
Note that some rules can overlap and an observation can satisfy multiple rules. To resolve these
conflicts, we use the output of the rule with the best precision (AUC or MSE). We called this model
Global-SR. We have experimented on Bike Sharing data [Kaggle, 2015] that contains 10886 records
and 15 variables about historical usage patterns with weather data in order to forecast bike rental
demand in the Capital Bikeshare program in Washington, D.C.

We split the data into train (75%) - test (25%) set and train a RF with k = 20 trees and maximal
depth = 14. It has mean absolute error MAE = 25 and R2 = 94% on test set. We use
the RF on the train set to generate the SR. Although the Global-SR covers 78% of the test
set, we observe that it performs as well as the baseline model with MAE = 29, R2 = 90%
while being transparent in its decision process. Note that the rules of the SR on Bike Sharing
Demand are based on 4.5 variables in average. We give examples of the learned rules: R1 =
{If Workingday = True and Hours ∈ [5.5, 6.5] THEN Bike rental demand = 20},
R2 = {If Hours ∈ [8.5, 9] and Year ≤ 2011 and month ≥ 5 THEN Bike rental
demand = 192}. The number of observations that satisfy these rules is 134, 133 for the rules R1,
R2 respectively with a mean absolute error MAER1 = 12,MAER2 = 30.

Anchors vs Sufficient Rules (SR). To compare our methods w.r.t to Anchors, we have to consider
a classification problem. We use three popular real world datasets: Compas (n = 6167, p =
14)[Larson et al., 2016], Nhanesi (n = 8593, p = 17) [CDC, 1999-2022], and Employee Attrition
(n = 1470, p = 27) [Kaggle, 2017] which we split into train (75%) - test (25%) set, and train a
RF with the parameters of the previous section. We use the RF to generate the local rule-based
explanations with Anchors and the SDP approach (Sufficient Rules) to explain the RF’s predictions
on the test set. We aim to evaluate the generalization of each explanation across the population. Thus,
we measure the following metrics, Coverage (higher is better): what fraction of unseen instances fall
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in the rule and Correctness (higher is better): average number of unseen instances that satisfy the rule
and has the same output than the observation that generate the rule, Sparsity (lower is better): the
mean, variance and maximal size of the rule (number of variable on which it is based).

Table 2: Results of the Correctness (Acc), Coverage (Cov), and Sparsity (Sprs) on Compas, Nhanesi,
ATTRITION of the Sufficient Rules (SR) and Anchors. The vector of Sprs (mean, std, max)
corresponds to the mean, variance, and the max values of the rules.

COMPAS NHANESI ATTRITION
Acc Sprs Cov Acc Sprs Cov Acc Sprs Cov

SR 0.95 (1.6, 0.96, 7) 0.30 0.97 (1.3, 0.65, 7) 0.41 0.95 (1.15, 0.90, 9) 0.76
Anchors 0.92 (1.83, 1.89, 11) 0.23 0.96 (1.8, 3.91, 16) 0.31 0.95 (0.82, 4.24, 21) 0.74

In table 2, we observe that both model have a high accuracy in all datasets, but SR consistently
outperforms Anchors on all datasets.

On the other hand, Anchors uses many more features. Indeed, by sampling marginally (i.e. assuming
that the features are independent) Anchors can succeed to find accurate and high coverage rule, but
at the cost of optimality. In fact, we can observe in table 2 that Anchors tends to give much longer
rules. While the observed maximal size of SR is 9 in all dataset, Anchors can provide a rule of
size 12 (Compas), 16 (Nhanesi), 23 (Attrition). For instance, the size distribution of Anchors on
Nhanesi is represented with the following dictionary {size : count}: {1 : 704, 2 : 127, 3 : 71, 4 :
21, 5 : 13, 6 : 10, 7 : 10, 8 : 9, 9 : 9, 10 : 4, 11 : 2, 12 : 4, 13 : 5, 14 : 1, 16 : 1}, and the
corresponding distribution for the SR is {1 : 775, 2 : 145, 3 : 52, 4 : 9, 5 : 12, 7 : 4}. Note that
this is a significant drawback of Anchors, as simplicity of the explanations is an essential desideratum
for explanation methods. We give an additional experiment confirming these results in the Appendix.

Another desirable property of explanation methods is stability, i.e., nearby observations must have
the same explanations. Here, we evaluate the stability of the methods w.r.t input perturbations. For
each observation x, we compare its rule with the rules of 50 noisy versions of x obtained by adding
random Gaussian noises N (0, ϵ × I) to the values of the features with ϵ = 0.1. The perturbation
is small enough to not change the prediction. For each dataset (Compas, Nhanesi, Attrition), we
randomly perturb 100 observations in the test set (50 times), and we observe in average 10 (std=76),
6.83 (std=139), 14 (std=58) different rules for Anchors respectively, while we have 1.5 (std=0.25),
1.1 (std=1.9), 1.13 (std=0.13) for SR, resp. It shows the large instability of Anchor compared to SR.
Indeed, even when ϵ = 0, Anchors gives different rules, e.g., on Compas its has 7 (std=70) different
rules in average with no perturbations. Results for other values of ϵ can be found in Appendix.

These experiments demonstrate that the SR gives more optimal rules than the one returned by Anchors.
We also conduct an additional experiment in the Appendix confirming this claim in a setting where
we know the ground truth.

6 Conclusion

In this work, we introduce a fast and consistent estimator of the Same Decision Probability and
propose a natural generalization of the SDP for regression problems. Thus, we introduce the first
local rule-based explanations for regression. We give consistent estimates of three local explanation
methods: Minimal Sufficient Explanations, Local eXplanatory Importance, and Minimal Sufficient
Rules for any data. We prove that these methods considerably improve local variable detection over
state-of-the-art algorithms while ensuring minimality, sufficiency, and stability. Our generalization of
SDP and Minimal Sufficient Rules are tightly related. They are linked by a Random Forest, which is a
computationally and statistically efficient estimator of the SDP and gives the partition that is translated
into an interpretable rule. Therefore, our method is principally suitable for datasets where tree-based
models work (e.g., tabular data). In future works, we aim at improving the interpretability and
confidence of the Sufficient Rules by taking into account uncertainty estimates of their predictions.
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the Local eXplanatory Importance (LXI), and the Sufficient Rules in Section 3.
While the Sufficient Rules and LXI are new, the Sufficient Explanations are a
generalization of existing works so that they can also address regression problems,
deal with continuous features, and are more efficient to estimate. We present all
the theoretical framework in Section 4 and their complete proofs in Appendix. We
provide a Python package that computes our methods. Finally, we demonstrate
the advantage of our methods w.r.t SOTA on real world datasets in section 6.

(b) Did you describe the limitations of your work? [Yes] Yes, we remind in the conclusion
that our approaches are appropriate for datasets where tree-based models work.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] Our work
is fully dedicated to the positive societal impacts. Indeed, we propose new methods
that outperforms SOTA in local important feature detection. In addition, we
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than prior works (Anchors).
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