
Non-Convex Bilevel Games

with Critical Point Selection Maps

Michael Arbel and Julien Mairal

Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, 38000 Grenoble, France
firstname.lastname@inria.fr

Abstract

Bilevel optimization problems involve two nested objectives, where an upper-level
objective depends on a solution to a lower-level problem. When the latter is non-
convex, multiple critical points may be present, leading to an ambiguous defini-
tion of the problem. In this paper, we introduce a key ingredient for resolving this
ambiguity through the concept of a selection map which allows one to choose a
particular solution to the lower-level problem. Using such maps, we define a class
of hierarchical games between two agents that resolve the ambiguity in bilevel
problems. This new class of games requires introducing new analytical tools in
Morse theory to extend implicit differentiation, a technique used in bilevel opti-
mization resulting from the implicit function theorem. In particular, we establish
the validity of such a method even when the latter theorem is inapplicable due
to degenerate critical points. Finally, we show that algorithms for solving bilevel
problems based on unrolled optimization solve these games up to approximation
errors due to finite computational power. A simple correction to these algorithms
is then proposed for removing these errors.

1 Introduction

Bilevel optimization has proven to be a major tool for solving machine learning problems that pos-
sess a nested structure such as hyper-parameter optimization [17], meta-learning [6], reinforcement
learning [23, 33], or dictionary learning [38]. Introduced in the field of economic game theory
in [49], a bilevel optimization problem can be understood as a game between a leader and a follower
each of which optimizes their own objective function but where the leader can anticipate follower’s
actions. In the context of machine learning, the leader typically optimizes a hyper-parameter over a
validation loss while the follower optimizes the model parameter on a training loss [37].

Bilevel optimization introduces many challenges. In particular, when multiple optimal solutions
are available to the follower, the leader would need to optimize a different objective depending on
the follower’s strategy to select an optimal solution. As a result, the bilevel problem becomes am-
biguously defined without knowing the follower’s strategy [35]. A large body of work on bilevel
programs for machine learning gets around these considerations by assuming the follower to have
a unique optimal choice, a situation that typically occurs when the follower’s objective is strongly
convex, leading to efficient and scalable algorithms [1, 2, 7, 14, 20, 32, 33, 47]. However, in many
machine learning applications, the strong convexity of the follower’s objective is an unrealistic as-
sumption. This is particularly the case in the context of deep learning, where the follower’s objective,
the training loss, can be highly non-convex in the parameters of the model and can have regions of
flat optima due to symmetries and other degeneracies [15, 30].

In the literature on mathematical optimization, the ambiguity in bilevel problems is often resolved by
making an additional assumption on the follower’s strategy for choosing their optimal solution. In
particular, two problems are often considered: optimistic and pessimistic bilevel programs, see [13].

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

Both problems rely on two assumptions: (i) the follower is using a strategy for selecting a solution
to their problem that is either improving or degrading the leader’s objective and (ii) the leader knows
exactly what strategy the follower is using. These assumptions are strong from a game-theoretical
perspective and often unrealistic for machine learning problems such as hyper-parameter optimiza-
tion. Still, optimistic/pessimistic bilevel games are well defined and early works have proposed
several algorithms to solve them with strong convergence guarantees [55, 56, 57]. Yet, these algo-
rithms are often ill-suited to large-scale and high-dimensional problems arising in machine learning
applications as they rely on second-order optimization methods such as Newton’s method [21]. For
this reason, scalable first-order algorithms for such games have been proposed recently [34, 35].

However, many of the best-performing approaches for hyper-parameter optimization rely neither
on an optimistic nor a pessimistic formulation of the bilevel problem [50]. Instead, they often rely
on algorithms initially designed for bilevel problems with strongly convex lower objectives even
though the convexity assumption does not hold [37]. Consequently, these algorithms are solving a
seemingly ill-defined bilevel program due to the ambiguity in the way the follower selects their solu-
tion. However, their ability to provide models with good empirical performance raises the question
of whether these algorithms are solving another class of well-defined hierarchical problems beyond
optimistic and pessimistic bilevel programs that are still relevant for machine learning.

In this work, we answer the above question by introducing Bilevel Games with Selection (BGS), a
class of games between two agents: a leader and a follower, where the leader uses a mechanism for
anticipating the solution of the follower without knowing the exact follower’s strategy. We define
such a mechanism using the notion of a selection, which is simply a map for selecting a particular
solution to the follower’s objective given the current state of the game. In particular, BGS recovers
a usual bilevel program when the follower’s objective admits a unique solution. By playing a BGS,
the agents seek an equilibrium point for which each of their objectives ceases to vary. The equilibria
are completely determined by the selection thus resulting in a well-defined problem.

When the selection is differentiable, the equilibrium point can be characterized by a first-order op-
timality condition which enables gradient-based approximations. More precisely, we show that
implicit differentiation [42], which, a priori, is only valid when the critical points of the follower’s
objective are non-degenerate, remains applicable for solving BGS even when these critical points
are degenerate. To this end, we consider a general construction of the selection as the limit of a
gradient flow of the follower’s objective and prove the differentiability of such a selection near local
minimizers, provided the follower’s objective satisfies a generalization of the Morse-Bott property
[4, 16]. We then characterize the differential of the selection as a solution to a linear system thus
extending implicit differentiation to degenerate critical points. Finally, we leverage this characteri-
zation to show that popular algorithms based on iterative differentiation (ITD) [5] find fixed points
approximating the BGS’s equilibria up to approximation errors. We then introduce a simple correc-
tive term to these algorithms based on implicit differentiation to remove these errors.

2 Related Work

Iterative/Unrolled optimization (ITD) is a class of methods approximating the lower-level solu-
tion map by a differentiable function obtained through successive gradient updates [5]. When the
lower-level objective is strongly convex, these algorithms solve a well-defined bilevel problem up to
an error that is controlled by increasing the computational budget for the approximate solution [25].
Our analysis suggests a simple algorithmic correction to these approaches which can result in solu-
tions to a bilevel game with a constant budget for the approximate solution.

Approximate Implicit Differentiation (AID) is a class of methods approximating the variations
of the lower-level solution map using the Implicit Function theorem [18, 19, 42, 43]. The non-
degeneracy requirement under which the latter theorem holds restricts the applicability of AID to,
essentially, strongly convex lower-level objectives. These algorithms admit fixed points that match
the solutions to the bilevel problem [19, 23, 24, 25]. As such, they typically require a smaller
computational budget than ITD [2, 25]. Recently, [8, 10, 9] extended AID to non-smooth objectives
while still requiring non-degenerate critical points. The present work is complementary to these
works as it extends AID to smooth objectives that have possibly degenerate critical points.

Optimistic and pessimistic bilevel optimization. When the lower-level objective is non-convex,
the ambiguity of the problem arising from the multiplicity of the lower-level solutions can be re-

2

solved by optimizing the upper-level objective over all such possible solutions [53, 58]. The opti-
mistic and pessimistic problems arise when either minimizing or maximizing the upper-level over all
such lower-level solutions. Early works proposed to solve these problems using exact penalization
[57], second-order optimization [55, 56] or smoothing method [54]. However, these approaches are
hard to scale to the high dimensional problems arising in machine learning. More recently, [35, 34]
considered first-order methods based on unrolled optimization or interior-point methods for solving
optimistic bilevel problems and provided approximation guarantees. However, as shown in [50],
most practical applications to bilevel optimization rely on a formulation that goes beyond optimistic
or pessimistic formulations. The present work departs from these approaches and instead introduces
a bilevel game that is more tractable to solve. We show that popular bilevel algorithms, such as
unrolled optimization, yield approximations of these games.

3 Non-Convex Bilevel Optimization with Selection

Notations. Define X =Rp and Y =Rd for some positive integers p and d. We consider two real
valued functions f and g defined on X⇥Y and assume g to be twice-continuously differentiable.

3.1 Background on Bilevel Optimization

A bilevel program is an optimization problem where an upper-level objective f defined over a set
X ⇥ Y of variables (x, y) is optimized in the first variable x under the constraint that the second
variable y is optimal for a lower-level objective y 7! g(x, y) depending on the upper-variable x.
When g(x, .) admits a unique minimizer denoted by y?(x), which is the case if y 7! g(x, y) is
strongly convex, the bilevel problem is well-defined and can be expressed as:

min
x2X

f(x, y?(x)), y?(x) := argmin
y2Y

g(x, y). (BP)

When g is non-convex, the set of minimizers T (x):= argminy g(x, y) may contain more than one
element making (BP) ambiguous. A possible approach for resolving the ambiguity is to adopt a
game-theoretical point of view, where a lower-level agent uses a particular strategy for selecting a
solution in T (x). For instance, in pessimistic bilevel games, the lower agent chooses a minimizer of
g(x, .) that maximizes f(x, .) while the upper agent minimizes the resulting worst-case loss F in x:

(UL): min
x2X

F (x), and (LL): F (x) := max
y2Y

f(x, y) s.t. y 2 T (x). (pessimistic-BG)

Similarly, an optimistic bilevel game can be obtained by replacing maximization with minimization
so that both agents cooperate. While these approaches are highly relevant from a game-theoretical
point of view, many machine learning applications do not rely on a pessimistic/optimistic bilevel
formulation. For instance, for hyper-parameter optimization, the lower agent may have access to
training data, but it should not have access to the validation data processed (used in f) by the upper
agent. Instead, a popular approach consists of applying algorithms designed for bilevel programs
that admit unique solutions for the lower problems, even though this assumption may not hold in
practice [37]. In the next section, we introduce a class of games that allow characterizing the equi-
librium points obtained by these popular algorithms while resolving the ambiguity of non-convex
bilevel problems and bypassing the limitations of pessimistic/optimistic bilevel formulations.

3.2 Bilevel Games with Selection (BGS)

We introduce a new class of nested games for bilevel optimization with two agents, a leader and
a follower. The follower minimizes the lower-level objective g w.r.t. a variable y in Y . Similarly,
the leader minimizes the upper-level objective f w.r.t. a variable x 2 X while anticipating the fol-
lower’s solution. More precisely, the leader has access to a selection map: � : X⇥Y ! Y to choose
a unique critical point �(x, y) of y 7! g(x, y) given the current state of the game (x, y) 2 X⇥Y

thus allowing the leader to anticipate the follower’s solution. Typically, the selection �(x, y) repre-
sents the critical point that is selected by an optimization process of g(x, .) starting from an initial
condition y (e.g., the limit of a gradient flow for a gradient descent algorithm). The Bilevel Game
with Selection (BGS) is therefore defined as the following interdependent optimization problems:

(UL): min
x2X

L�(x, y) := f(x,�(x, y)), (LL): min
y2Y

g(x, y). (BGS)

3

Figure 1: Left: Heatmap of the lower-level objective g(x, y). The local minimizers of y 7! g(x, y) are
represented by the ’critical lines’ in blue. The selection map �(x, y) is defined by following the vector field
@yg(x, y), in black. Right: Iterates (xk, yk) (in red) obtained by playing a BGS. The follower finds the next
update yk by optimizing y 7! g(xk, y) starting from previous iterate yk�1. The leader finds the next update xk

by optimizing the upper-level objective f along the ’critical lines’ (iterates in green).

Given a selection map �, the game (BGS) is well-defined and does not suffer from the ambiguity
problem in (BP). The explicit dependence of �(x, y) on the initialization y might seem unnecessary
at first, as one could simply fix y to some value y0 and consider only the dependence on the vari-
able x. However, such a dependence on the variable y allows performing warm-start [50], where
the lower-level problem is optimized starting from a previous state of the game, thus resulting in
computational savings Figure 1. We provide below a formal definition for the selection map.
Definition 1 (Selection map). Given a continuously differentiable function g : X ⇥ Y ! R, the
map � : X⇥Y ! Y is a selection if it satisfies the following properties for any pair (x, y) 2 X⇥Y:

1. Criticality: The element y0 = �(x, y) is a critical point of g(x, .), i.e. @yg(x, y0) = 0.

2. Self-consistency: If y is a critical point of g(x, .) i.e. @yg(x, y) = 0, then �(x, y) = y.

Criticality ensures the leader possesses a hierarchical advantage in that they know what are the
optimal choices accessible to the follower. Self-consistency implies that the leader makes a guess
that is not contradicting the current choice y of the follower. Both properties ensure the leader can
rationally anticipate the follower’s actions from the current state of the game (x, y). We will see in
Section 4, under mild assumptions on g, that it is always possible to define a selection � as the limit
of a continuous-time gradient flow of y 7! g(x, y) initialized at y. Moreover, as we discuss later in
Section 5, the selection does not need to be explicitly constructed for solving (BGS) in practice. It
can be simply related to the implicit bias of the algorithm used for solving the follower’s problem.

Connection to (BP). When the lower-level objective y 7! g(x, y) admits a unique minimizer
y?(x), it is easy to check that there exists a unique selection map � satisfies �(x, y)=y?(x). Hence,
(BGS) recovers the bilevel problem in (BP) as a particular case.

Connection to (pessimistic-BG) or the optimistic variant. Key differences between (BGS) and
pessimistic or optimistic games is that (i) the follower has never access to the upper function f
with (BGS), which matches practical hyper-parameter optimization applications where f relies on a
validation dataset, whereas g relies on a distinct training set; (ii) the leader in (pessimistic-BG) does
not take into account the strategy used by the follower, whereas the leader in (BGS) makes more
rational choices by guessing the strategy of the follower through the selection map �.

First-order equilibrium conditions. The agents can play the game (BGS) by successively taking
actions (xk, yk) to improve their own objectives x 7! L�(x, yk�1) and y 7! g(xk, y), by hoping the
strategy will reach an equilibrium pair (x⇤, y⇤) Figure 1(Right). In the case where f , g and � are
differentiable at (x⇤, y⇤), the equilibrium pair is characterized by a first-order stationary condition:

@xL�(x
?, y?) = @xf(x

?, y?) + @x�(x
?, y?)@yf(x

?, y?) = 0, @yg(x
?, y?) = 0. (SC)

When g is smooth and strongly convex in y, the implicit function theorem [28, Theorem 5.9] ensures
that � is differentiable and provides an expression of @x�(x?, y?) as a solution to a linear system
which key for implicit differentiation. This allows to devise efficient algorithms using estimates of
the gradient @xL�, see, e.g., [2]. However, extensions of the implicit function theorem, such as the

4

Figure 2: Two examples of functions g with different behaviors of the gradient flow under perturbations of
x. In both figures, the green surface represents a function y 7! g(x0, y) with y 2 R2 resembling a Mexican
hat which has a manifold of (degenerate) local minimizers (in dark green). The blue surfaces represent de-
formed versions of the Mexican hat function when the parameter x is slightly perturbed x1⇡x0. Depending
on the deformation, the resulting function y 7!g(x1, y) can either preserve the same type of critical points as
the unperturbed function, i.e. local minimizers remain local minimizers (Left), or change their type, i.e.: local
minimizers can become saddle-points (Right). Left: the selection behaves smoothly as a function of the defor-
mation. Right: the selection is discontinuous since the gradient flow is pushed away from �(x0, y0) which is
deformed into a saddle point.

constant rank theorem [29, Theorem 4.12], for cases where g has possibly degenerate critical points
require strong assumptions on g which are unrealistic in machine learning. In the next section, we
provide new analytical tools for extending implicit differentiation by studying the differentiability
of a family of selection maps corresponding to a large class of functions g. The resulting expression
will be key for devising first-order methods to solve (BGS), as discussed in Section 5.

4 Selection Based on Gradient Flows for Parameteric Morse-Bott Functions

In this section, we extend implicit differentiation to a class of functions with possibly degenerate
critical points. To this end, we consider a particular selection �(x, y) obtained as the limit of a
gradient flow (�t(x, y))t�0 of g(x, .) initialized at y. We then study the differentiability w.r.t. x of
the selection by analyzing the dynamics of such a gradient flow. For general non-convex functions,
the selection might be non-differentiable since a small perturbation to the parameter x can change the
geometry of the critical points of g, causing the perturbed flow to move away from the non-perturbed
one (see Figure 2). We are therefore interested in functions g preserving the local geometry near
critical points as x varies. In Section 4.1, we introduce such a class of functions called parametric
Morse-Bott functions, which covers many practical machine learning models. We then show, in
Section 4.2, that the selection resulting from such a function is differentiable near local minima.

4.1 Parameteric Morse-Bott Functions

We introduce parametric Morse-Bott functions, a class of parametric functions g : X ⇥Y ! R with
parameter x in X extending the more familiar notion of Morse-Bott functions (Appendix A.1, [16])
to account for the effect of the parameter x on the geometry of critical points.
Definition 2 (Parametric Morse-Bott function.). Let g : X ⇥ Y be a real-valued twice continu-
ousely differentiable function and define the set of augmented critical points M as follows:

M := {(x, y) 2 X ⇥ Y | @yg(x, y) = 0} (1)

Let (x0, y0) 2M. We say that g is Morse-Bott at y0 w.r.t. x0, if there exists an open neighbordhood
V of (x0, y0) s.t. the intersection M \ V is a C2-connected sub-manifold of X⇥Y of dimension:

dim(M \ V) = dim(X) + dim
�
Ker(@2yyg(x0, y0))

�
.

g is a parametric Morse-Bott function if for any (x0, y0)2M, g is Morse-Bott at y0 w.r.t. x0.

The functions in Definition 2 satisfy a condition that is stronger than simply satisfying the Morse-
Bott property at any parameter value x (Definition 3 of Appendix A.1). Indeed, we show in Propo-
sition 7 of Appendix A.2 that, for any x0 2 X , the function y 7! g(x0, y) is a Morse-Bott function,

5

meaning that the critical set C(x0) of y 7! g(x0, .) near a critical point y0 is locally a C2 con-
nected sub-manifold of Y of dimension equal to the dimension of the null-space of the Hessian
@2yyg(x0, y0). For conciseness, we introduce the following assumption which ensures g satisfies the
condition of Definition 2 as well as possesses continuous third-order derivatives.
Assumption 1 (Parameteric Morse-Bott property). The function g is at least three-times contin-
uously differentiable and is a parameteric Morse-Bott function as defined in Definition 2.

Examples of parametric Morse-Bott function. A notable class of parametric Morse-Bott func-
tions is the one containing all twice-continuously differentiable functions that are strongly convex
or, more generally, possess only non-degenerate critical points in the second variable as shown in
Proposition 8 of Appendix A.2. Note that parametric Morse-Bott functions need not be convex and
can have multiple (possibly degenerate) local minima, saddle-points, and local maxima.

Another class of functions, this time with possibly degenerate critical points, are those that can be ex-
pressed as a composition of some Morse-Bott function h and a family (⌧x)x2X of diffeomorphisms
on Y parameterized by x, i.e. g(x, y)=h(⌧x(y)). This particular form is relevant in generative
modeling where the diffeomorphisms are defined using normalizing flows of parameter x [44].

The condition in Definition 2 ensures that the degree of freedom of the augmented critical set M
is exactly determined by the degree of freedom of the parameter x and the degree of degeneracy of
the Hessian at a critical point y. This condition is precisely what guarantees the stability of the local
shape of critical points when the parameter x varies as we formalize through the next theorem.
Theorem 1 (Morse-Bott lemma with parameters). Let g be a function satisfying Assumption 1.
Let (x0, y0) in M be an augmented critical point of g. Denote by K the null space of the Hes-
sian A0:=@2yyg(x0, y0) and by K

? its orthogonal complement in Y . Let J0 be a diagonal matrix
with diagonal element given by the sign of the non-zero eigenvalues of A0. Then, there exists open
neighborhoods U and V of (x0, 0K, 0K?) and (x0, y0) in X⇥K⇥K

? and X⇥Y , and a diffeomor-
phism : U ! V preserving the first variable, i.e. (x, r, w)=(x, y) for any (x, r, w) 2 U , with
 (x0, 0K, 0K?)=(x0, y0) such that g admits the representation:

g((x, r, w)) = g((x, 0K, 0K?)) +
1

2
w>J0w, 8(x, r, w) 2 U .

Theorem 1, which is proven in Appendix A.3, shows that, near an augmented critical point (x0, y0),
g looks like a quadratic function up to an additive term that depends only on the parameter x. More-
over, slightly varying the parameter x does not change the quadratic function and thus preserves the
local shape near critical points. Theorem 1 is an extension of the Morse-Bott lemma [16, Theorem
2.10] to the case when there is a dependence on a parameter x. It can also be seen as an extension
of the Morse lemma with parameters [16, Theorem 4] which allows dependence to a parameter x
but requires the critical points to be non-degenerate (invertible matrix A0). To our knowledge, The-
orem 1 is the first result in the literature providing a decomposition of parametric functions with
degenerate critical points into the sum of a quadratic non-degenerate term and a singular term de-
pending only on the parameter x. We present now a corollary of Theorem 1 which is a strengthened
version of the standard Łojasiewicz inequality [36] that will be essential for our subsequent analysis.
Proposition 1 (Locally Uniform Łojasiewicz gradient inequality). Let g be a function satisfying
Assumption 1 and let (x0, y0) be in M the augmented critical set defined in Definition 2. Then,
there exists an open neighborhood U of (x0, y0) and a positive number µ > 0 such that y 7! g(x, y)
is constant on the set M \ U with some common value G(x) := g(x, y) and the following holds:

µ|g(x, y)�G(x)|
1

2
k@yg(x, y)k

2, 8(x, y) 2 U .

Proposition 1, which is proven in Appendix A.3, ensures that the Łojasiewicz gradient inequality
holds uniformly on (x, y) near any augmented critical point (x0, y0). This result will be essential
in Section 4.2 for defining a selection � obtained as limits of gradient flows and to obtain a lo-
cally uniform control of these flows in the parameter x. This in turn will allow us to obtain the
differentiability of the selection in the parameter x whenever �(x, y) is a local minimum.

4.2 Smoothness of Selections Based on Gradient Flows of a Parametric Morse-Bott Function

We consider a construction for the selection � in Definition 1 as a limit of a continuous-time gradient
flow of g. More precisely, we define a continuous-time trajectory (�t(x, y))t�0 in Y initialized at

6

�0(x, y) = y and driven by the differential equation:
d�t(x, y)

dt
= �@yg(x,�t(x, y)). (GF)

Provided �t(x, y) converges towards some element �(x, y) as t!+1, we can expect such a limit to
satisfy both conditions of Definition 1, therefore constituting a valid selection. However, for general
non-convex functions, �t(x, y) might not always converge [36]. To guarantee the existence and
convergence of the flow, we make the following assumptions on the function g.
Assumption 2 (Smoothness). There exists L>0 such that y 7!@yg(x, y) is L-Lipschitz for any x2X .
Assumption 3 (Coercivity). For any x 2 X , it holds that g(x, y)! +1 as kyk ! +1.

The smoothness assumption in Assumption 2 is standard and guarantees the existence of the flow by
the Cauchy-Lipschitz theorem. The coercivity condition in Assumption 3 guarantees that �t(x, y)
cannot escape to infinity. It can be easily enforced by adding a small `2-penalty to a non-negative
loss (such as cross-entropy or mean-squared loss) which is already a common practice in machine
learning. These assumptions, along with Assumption 1 ensure that the limit �(x, y) always exists as
we summarize in the following proposition, which is proven in Appendix B.
Proposition 2. Under Assumptions 1 to 3, and for any (x, y) 2 X ⇥ Y , the gradient flow (GF)
always converges towards a critical point �(x, y) of y 7! g(x, y) and the map (x, y) 7! �(x, y) is a
selection map as defined in Definition 1. We call � the flow selection relatively to g.

Proposition 2 is a consequence of a general result that holds for functions satisfying a Łojasiewicz
gradient inequality [3, 40] which is the case here by Proposition 1. From now on, we restrict our
attention to the selection � defined in Proposition 2. Even though � satisfies the implicit equation
@yg(x,�(x, y)) = 0, we cannot rely anymore on the implicit function theorem for studying the
differentiability of �(x, y) in x since g can have degenerate critical points. Instead, we propose
to characterize the differentiability of � by studying the limit of Ut(x, y) := @x�t(x, y) which is
formally driven by a linear differential equation of the form:

�
dUt(x, y)

dt
= @2xyg(x,�t(x, y)) + Ut(x, y)@

2
yyg(x,�t(x, y)). (2)

Had we known in advance that �(x, y) is differentiable in x, the limit U1(x, y) of Ut(x, y) as
t ! +1, whenever defined, would be a promising candidate for the differential of �(x, y) in x.
Such a limit is indeed expected to satisfy the following linear equation:

0 = @2xyg(x,�(x, y)) + U1(x, y)@2yyg(x,�(x, y)). (3)

A first challenge is to ensure that Ut does not diverge. For critical points �(x, y) that are not local
minima, it is easy to see that the Hessian @2yyg(x,�t(x, y)) must have a negative eigenvalue for
t large enough, therefore causing the system (2) to diverge. Intuitively, unless �(x, y) is a local
minimum, there is no reason to expect �(x, y) to be differentiable or even continuous in x, simply
because �(x, y) would be an unstable fixed-point of the flow �t(x, y), so that any change in x might
cause a large variation in �(x, y). The possible non-differentiability of �(x, y) for critical points
that are not local minima is not problematic in practice, since for almost all initial conditions y of
the flow �t(x, y), the limit �(x, y) is guaranteed to be a local minimizer [41]. In addition, we show
in Proposition 13 of Appendix B.3 that if �(x0, y) is a local minimum, then �(x, y) must also be a
local minimum in a neighborhood of x0.

Nevertheless, even for local minima, if the Hessian @2yyg(x,�(x, y)) is non-invertible, (3) might
never hold if @2xyg(x,�(x, y)) does not belong to the image of the Hessian. However, we show in
Proposition 6 of Appendix A.2 that, for any pair (x, y) of critical points, @2xyg(x, y) must always
belong to the span of the Hessian @2yyg(x, y) as soon as g satisfies Assumption 1, therefore ensuring
that (3) admits a solution. The following theorem, which is proven in Appendix C, establishes the
differentiability of � at local minima and shows that @x� is exactly given by the limit U1.
Theorem 2 (Degenerate implicit differentiation.). Let g be a function satisfying Assumptions 1
to 3 so that the flow selection � is well-defined. Let (x0, y0) be in X⇥Y . If �(x0, y0) is a local
minimizer of y 7! g(x0, y), then there exists a neighborhood U of x0 on which x 7! �(x, y0)
is differentiable with differential @x�(x, y0)=U1(x, y0). Moreover, if y0 is a local minimizer of
y 7!g(x0, y), then, denoting by † the pseudo inverse operator, @x�(x0, y0) is exactly given by:

@x�(x0, y0)=� @xyg(x0, y0)(@yyg(x0, y0))
†. (4)

7

The expression in (4) is very similar to the one that would arise by application of the implicit
function theorem to a strongly convex function g. However, the proof technique does not rely
on such a theorem which would not be applicable here. The key technical challenges in proving
the above result are: (i) showing that �(x, y) must be continuous at x0 and (ii) controlling the error
kUt(x, y)� U1(x, y)k locally uniformly in x. The result follows by the application of classical uni-
form convergence results [46, Theorem 7.17]. The continuity of � is established in Proposition 12 of
Appendix B.3 and relies on a stability analysis of the flow �t performed in Appendix B.2. The uni-
form convergence of Ut towards U1 is shown in Proposition 17 of Appendix C and relies on a local
uniform convergence of the flow �t towards � which is proven in Proposition 14 of Appendix B.4.
It is worth noting that, even though we identified @x� to be U1, the latter is not fully characterized
by (3) as it might contain a non-zero component in the null-space of the Hessian. However, when
(x0, y0) is an augmented critical pair of g, such a component vanishes, and @x�(x0, y0) is exactly
determined by the minimal norm solution in (4). The latter fact has practical implications when
designing algorithms for solving (BGS) as we discuss next.

5 Algorithms

5.1 Unrolled Optimization for BGS

Unrolled optimization constructs a map 'T (x, y) approximating a critical point of the function
y 7! g(x, y) for any fixed x by applying a finite number T > 0 of gradient updates starting from
some initial condition y. By convention, we set '0(x, y)=y. Hence, 'T can be understood as an
approximation to the selection map defined in Section 4.2. We emphasize that 'T is not a selec-
tion (Definition 1) since 'T (x, y) is not a critical point of g in general. Nevertheless, it provides
a tractable approximation to critical points which is key for constructing practical algorithms for
bilevel optimization. The gradient of 'T (x, y) w.r.t. x is then obtained by differentiating through
the optimization steps and used to optimize the approximate upper-level objective:

LT (x, y) := f(x,'T (x, y)).

Given the k-th upper-level iterate xk and an initial condition ỹk for the unrolled optimization, these
approaches compute an approximation yk='T (xk–1, ỹk) and find an update direction dk for the
upper-level variable x by differentiating LT (x, ỹk) in x at the current iterate xk–1. The following
iterate xk is obtained by applying an update procedure, such as xk=xk–1��dk for positive small
enough step-size �. In Algorithm 1, we present several variants of these schemes, including a simple
correction allowing them to solve (BGS) instead of an approximation.

The initial condition ỹk is often com-
puted using a warm-start procedure
ỹk=IM (xk–1, yk–1). The simplest
procedure is to set ỹk=yk–1 in which
case I0(x, y)=y. However, it is not
uncommon to perform M>0 opti-
mization steps to minimize the objec-
tive y 7!g(xk–1, y) starting from yk–1.
By doing so, gradient unrolling stops
at ỹk and ignores the dependence of
ỹk on yk–1, resulting in Truncated un-
rolled optimization [47]. Algorithm 1
summarizes these approaches when
the binary variable AddCorrection is
set to False. To characterize the limit
points of Algorithm 1, we make the
following assumptions on IM , 'T .

Algorithm 1 BGS-Opt(x0, y0)

1: Inputs: x0, y0,
2: Parameters: K, T , M , � AddCorrection

3: for k 2 {1, ...,K + 1} do

4: ỹk IM (xk–1, yk–1). # Warm-start.
5: yk 'T (xk–1, ỹk) # Unrolled optimization.
6: dk @xLT (xk–1, ỹk)
7: if AddCorrection= True then

8: vk @yLT (xk–1, ỹk)

9: ⇠k⇡� (@yyg(xk–1, yk))
†vk # Approx. solver

10: dk dk+@xyg(xk–1, yk)⇠k # Grad. correction
11: end if

12: xk xk–1 � �dk # Updating x
13: end for

14: Return (xK , yK).

Assumption 4. For any non-negative integers M,T � 0, the maps IM and 'T are continuous
on X ⇥ Y and take values in Y , with 'T being continuously differentiable. Moreover, for any
(x, y) 2 X ⇥ Y s.t. @yg(x, y)=0 and M,T � 0, there exists a matrix D such that:

IM (x, y) = 'T (x, y) = y, @x'T (x, y) = @2xyg(x, y)D, @y'T (x, y) = I + @2yyg(x, y)D.

8

Finally, for any (x, y)2X⇥Y , and M,T � 0 s.t. T + M > 0, the equality y='T (x, IM (x, y))
implies that y is a critical point of g, i.e. @yg(x, y) = 0.
Assumption 5. 'T converges to a selection � and @x'T converges uniformly near local minima.

Assumption 4 is satisfied by many mappings used in practice such as T -steps of the gradient de-
scent or proximal point algorithms, whenever g is twice-continuousely differentiable and L-smooth
as shown in Proposition 19 of Appendix D. Assumption 5 is a discrete-time version of the uniform
convergence result in Proposition 17 of Appendix C but that we directly assume here for simplicity.
Under these assumptions we show that Algorithm 1 can find equilibria of (BGS) up to an approxi-
mation error resulting from the fact that 'T is not an exact selection.
Proposition 3. Let M,T be non-negative numbers s.t. M + T > 0 and let (xk, yk) be the iterates
of Algorithm 1 using the maps IM and 'T and without any correction, i.e. AddCorrection=False.
If (xk, yk) converges to a limit point (x?

T , y
?
T) then, under Assumption 4:

@xLT (x
?
T , y

?
T) = 0, @yg(x

?
T , y

?
T) = 0.

Let E be the set of limit points (x?
T , y

?
T) for T � 0. If E is bounded and y?T is a local minimum

of g(x?
T , .) for any T � 0, then, under Assumptions 4 and 5, the elements of E are approximate

equilibria for (BGS):

lim sup
T
k@xL�(x

?
T , y

?
T)k = 0, @yg(x

?
T , y

?
T) = 0, (8T > 0).

Proposition 3 shows that unrolled optimization algorithms approximately solve (BGS) in the limit
where the number of unrolling steps T of the 'T goes to infinity. This result is consistent with the
ones obtained in [25] for the case where g is strongly convex and illustrates the high computational
cost for solving (BGS) without correcting for the bias introduced by unrolling. Next, we show how
to get rid of such a bias in light of Theorem 2.

5.2 Implicit Gradient Correction

We propose to correct the bias of unrolling by exploiting the expression of the gradient @x� provided
in Theorem 2. The key idea is to obtain an expression for @xL�(x, y) in terms of LT and the
second-order derivatives of g which holds for any local minimizer y of y 7! g(x, y) as shown by the
proposition below.
Proposition 4. Let � be the selection defined in Section 4.2 and (x, y) 2 X ⇥ Y be s.t. y is a local
minimum of y 7! g(x, y). Then, under Assumptions 1 to 4, @xL�(x, y) is given by the equation:

@xL�(x, y) := @xLT (x, y)� @
2
xyg(x, y)

�
@2yyg(x, y)

�†
@yLT (x, y).

Proposition 4, which is proven in Appendix D, suggests a simple correction for the gradient esti-
mate dk in Algorithm 1. By doing so, the corrected algorithm would be performing an approximate
gradient descent on each of the upper-level and lower-level objectives, suggesting that the algorithm
may recover equilibrium points of (BGS) without having to increase the computation budget for the
unrolling as we show later in Proposition 5. A simple way to proceed would to compute ck satisfy-
ing the approximate equation ck⇡ � Bk(Ak)†vk, where Ak=@2yyg(xk–1, yk), Bk:=@2xyg(xk–1, yk)
and vk=@yLT (xk–1, ỹk). More concretely, ck can be computed by setting ck=Bk⇠k where ⇠k ap-
proximates the minimum norm solution to the least squares problem:

⇠k ⇡ argmin
⇠
k⇠k2, s.t. ⇠ 2 argmin

⇠
kAk⇠ + vkk

2, (5)

Approximate solution to (5). It is possible to solve (5) approximately using an iterative procedure
by constructing N iterates ⇠t starting from ⇠0 = 0 and performing (conjugate) gradient descent on
the quadratic objective. This can be implemented efficiently using only Hessian vector products
with the Hessian Ak [37]. The constrained problem (5) can also be expressed as an unconstrained
one by re-parametrizing ⇠ = Akz:

⇠k ⇡ Akz
?
k, s.t. z?k 2 argmin

z

��A2
kz + vk

��2. (6)

Eq. (6) has the advantage that z?k solves an unconstrained problem. As such, it is more amenable to
applying a warm-start strategy, which can yield efficient approximation zk to z?k by exploiting pre-
viously computed approximation zk�1 to z?k�1 [2]. This strategy can be achieved using a standard

9

iterative algorithm P for approximately solving the least-squares problems, such as a fixed num-
ber of conjugate gradient iterations, that takes as input the matrix Ak, vector vk and initialization
zk�1 ⇡ z?k�1 and returns the next iterate zk ⇡ z?k . More formally we view P as a continuous map of
(A, v, z) 7! P(A, v, z) returning a vector z0 and such that the only fixed points are exact solutions to
the least square problem minz

��A2z + v
��2. We refer to Appendix D.1 for examples of such maps.

We can then define the iterates zk and ⇠k as follows:

⇠k = Akzk, zk = P(Ak, vk, zk�1). (7)

The corrected algorithm is obtained by setting the variable AddCorrection=True in Algorithm 1
and computing the ⇠k using any approximate solver including, in particular, the ones based on a
warm-start strategy as in (7). The following proposition, with proof in Appendix D, shows that the
proposed correction indeed yields equilibrium points of (BGS).
Proposition 5. Let (xk, yk) be the iterates obtained using Algorithm 1 with AddCorrection=True

and T + M > 0 and assume that ⇠k are computed using (7). If (xk, yk, zk)k�0 converges to a
limit point (x?, y?, z?), then y? is a critical point of y 7! g(x?, y) and if, in addition, y? is a local
minimizer, then (x⇤, y⇤) must be an equilibrium of (BGS) satisfying (SC):

@xL�(x
?, y?) = 0 and @yg(x

?, y?) = 0

Proposition 5 shows that the proposed correction allows to recover equilibria of (BGS) without hav-
ing to increase the number of iterations T of the unrolled algorithm. This is by contrast with Propo-
sition 3 where T must increase to infinity, which would be impractical. We discuss in Appendix D.2
how different choices for the parameters T and M recover known algorithms. In particular, that
Algorithm 1 with correction allows interpolating between two families of algorithms: (ITD) and
(AID) while still recovering the correct equilibria. Numerical results illustrating the benefits of the
correction are presented in Appendix E.

6 Discussion

We have introduced a bilevel game that resolves the ambiguity in bilevel optimization with non-
convex objectives using the notion of selection maps. We have shown that many algorithms for
bilevel optimization approximately solve these games up to a bias due to finite computational power.
Our study of the differentiability properties of the selection maps has resulted in practical procedures
for correcting such a bias and required the development of new analytical tools. This study opens
the way for several avenues of research to understand the tradeoff between unrolling and implicit
gradient correction for designing efficient algorithms. In future work, studying these algorithms in
a non-smooth and stochastic setting would also be of great theoretical and practical interest.

Funding This project was supported by ANR 3IA MIAI@Grenoble Alpes (ANR-19-P3IA-0003).

References

[1] Pierre Ablin, Gabriel Peyré, and Thomas Moreau. Super-efficiency of automatic differentiation
for functions defined as a minimum. In International Conference on Machine Learning, pages
32–41. PMLR, 2020.

[2] Michael Arbel and Julien Mairal. Amortized implicit differentiation for stochastic
bilevel optimization. working paper or preprint, November 2021. URL https://hal.
archives-ouvertes.fr/hal-03455458.

[3] Hedy Attouch, Jérôme Bolte, and Benar Fux Svaiter. Convergence of descent methods for
semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and reg-
ularized gauss–seidel methods. Mathematical Programming, 137(1):91–129, 2013.

[4] David M Austin and Peter J Braam. Morse-bott theory and equivariant cohomology. In The
Floer memorial volume, pages 123–183. Springer, 1995.

[5] Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark
Siskind. Automatic differentiation in machine learning: a survey. Journal of machine learning
research, 18, 2018.

10

[6] Luca Bertinetto, Joao F Henriques, Philip HS Torr, and Andrea Vedaldi. Meta-learning with
differentiable closed-form solvers. arXiv preprint arXiv:1805.08136, 2018.

[7] Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe Llinares-
López, Fabian Pedregosa, and Jean-Philippe Vert. Efficient and modular implicit differentia-
tion. arXiv preprint arXiv:2105.15183, 2021.

[8] Jérôme Bolte, Tam Le, Edouard Pauwels, and Tony Silveti-Falls. Nonsmooth implicit differ-
entiation for machine-learning and optimization. Advances in neural information processing
systems, 34:13537–13549, 2021.

[9] Jérôme Bolte, Ryan Boustany, Edouard Pauwels, and Béatrice Pesquet-Popescu. Nonsmooth
automatic differentiation: a cheap gradient principle and other complexity results. arXiv
preprint arXiv:2206.01730, 2022.

[10] Jérôme Bolte, Edouard Pauwels, and Samuel Vaiter. Automatic differentiation of nonsmooth
iterative algorithms. arXiv preprint arXiv:2206.00457, 2022.

[11] Ralph L Cohen. Topics in Morse theory. Stanford University Department of Mathematics,
1991.

[12] Sara Daneri and Giuseppe Savaré. Lecture notes on gradient flows and optimal transport. arXiv
preprint arXiv:1009.3737, 2010.

[13] S Dempe, J Dutta, and BS Mordukhovich. New necessary optimality conditions in optimistic
bilevel programming. Optimization, 56(5-6):577–604, 2007.

[14] Justin Domke. Generic methods for optimization-based modeling. In Artificial Intelligence
and Statistics, pages 318–326. PMLR, 2012.

[15] Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred Hamprecht. Essentially no
barriers in neural network energy landscape. In International conference on machine learning,
pages 1309–1318. PMLR, 2018.

[16] Paul Feehan. On the morse–bott property of analytic functions on banach spaces with ło-
jasiewicz exponent one half. Calculus of Variations and Partial Differential Equations, 59(2):
1–50, 2020.

[17] Matthias Feurer and Frank Hutter. Hyperparameter optimization. In Automated machine learn-
ing, pages 3–33. Springer, Cham, 2019.

[18] Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil.
Bilevel programming for hyperparameter optimization and meta-learning. In International
Conference on Machine Learning, pages 1568–1577. PMLR, 2018.

[19] Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. arXiv
preprint arXiv:1802.02246, 2018.

[20] Stephen Gould, Basura Fernando, Anoop Cherian, Peter Anderson, Rodrigo Santa Cruz, and
Edison Guo. On differentiating parameterized argmin and argmax problems with application
to bi-level optimization. arXiv preprint arXiv:1607.05447, 2016.

[21] Lei Guo, Gui-Hua Lin, and Jane J Ye. Solving mathematical programs with equilibrium con-
straints. Journal of Optimization Theory and Applications, 166(1):234–256, 2015.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2015. doi: 10.1109/CVPR.2016.90.

[23] Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale framework
for bilevel optimization: Complexity analysis and application to actor-critic. arXiv preprint
arXiv:2007.05170, 2020.

[24] Kaiyi Ji and Yingbin Liang. Lower bounds and accelerated algorithms for bilevel optimization.
arXiv preprint arXiv:2102.03926, 2021.

[25] Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimization: Convergence analysis and en-
hanced design. In International Conference on Machine Learning, pages 4882–4892. PMLR,
2021.

[26] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

11

[27] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[28] Serge Lang. Fundamentals of differential geometry, volume 191. Springer Science & Business
Media, 2012.

[29] John M. Lee. Introduction to Smooth Manifolds. Springer Science & Business Media, 2003.
ISBN 978-0-387-95448-6. Google-Books-ID: eqfgZtjQceYC.

[30] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss
landscape of neural nets. Advances in neural information processing systems, 31, 2018.

[31] Zhuchun Li, Yi Liu, and Xiaoping Xue. Convergence and stability of generalized gradient
systems by łojasiewicz inequality with application in continuum kuramoto model. Discrete &
Continuous Dynamical Systems, 39(1):345, 2019.

[32] Renjie Liao, Yuwen Xiong, Ethan Fetaya, Lisa Zhang, KiJung Yoon, Xaq Pitkow, Raquel Urta-
sun, and Richard Zemel. Reviving and improving recurrent back-propagation. In International
Conference on Machine Learning, pages 3082–3091. PMLR, 2018.

[33] Risheng Liu, Jiaxin Gao, Jin Zhang, Deyu Meng, and Zhouchen Lin. Investigating bi-level
optimization for learning and vision from a unified perspective: A survey and beyond. arXiv
preprint arXiv:2101.11517, 2021.

[34] Risheng Liu, Xuan Liu, Shangzhi Zeng, Jin Zhang, and Yixuan Zhang. Value-function-based
sequential minimization for bi-level optimization. arXiv preprint arXiv:2110.04974, 2021.

[35] Risheng Liu, Yaohua Liu, Shangzhi Zeng, and Jin Zhang. Towards gradient-based bilevel opti-
mization with non-convex followers and beyond. Advances in Neural Information Processing
Systems, 34, 2021.

[36] Stanislaw Lojasiewicz. Sur les trajectoires du gradient d’une fonction analytique. Seminari di
geometria, 1983:115–117, 1982.

[37] Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters
by implicit differentiation. In International Conference on Artificial Intelligence and Statistics,
pages 1540–1552. PMLR, 2020.

[38] Julien Mairal, Francis Bach, and Jean Ponce. Task-driven dictionary learning. IEEE transac-
tions on pattern analysis and machine intelligence, 34(4):791–804, 2011.

[39] J Martınez-Alfaro, IS Meza-Sarmiento, and R Oliveira. Topological classification of simple
morse bott functions on surfaces. Real and complex singularities, 675:165–179, 2016.

[40] Benoît Merlet and Thanh Nhan Nguyen. Convergence to equilibrium for discretizations of
gradient-like flows on riemannian manifolds. Differential and Integral Equations, 26(5/6):
571–602, 2013.

[41] Ioannis Panageas and Georgios Piliouras. Gradient descent only converges to minimizers:
Non-isolated critical points and invariant regions. arXiv preprint arXiv:1605.00405, 2016.

[42] Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In International
conference on machine learning, pages 737–746. PMLR, 2016.

[43] Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-Learning with
Implicit Gradients. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d\textquotesingle Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32
(NeurIPS). Curran Associates, Inc., 2019.

[44] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In Inter-
national conference on machine learning, pages 1530–1538. PMLR, 2015.

[45] Rex Clark Robinson. An introduction to dynamical systems: continuous and discrete, vol-
ume 19. American Mathematical Soc., 2012.

[46] Walter Rudin et al. Principles of mathematical analysis, volume 3. McGraw-hill New York,
1976.

[47] Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated back-
propagation for bilevel optimization. In The 22nd International Conference on Artificial Intel-
ligence and Statistics, pages 1723–1732. PMLR, 2019.

12

[48] Rahul Singh, Maneesh Sahani, and Arthur Gretton. Kernel Instrumental Variable Regression.
arXiv:1906.00232 [cs, econ, math, stat], June 2019. URL http://arxiv.org/abs/1906.
00232. arXiv: 1906.00232.

[49] H.F. Von Stackelberg. MarktformundGleichgewicht. Springer, 1934.
[50] Paul Vicol, Jonathan Lorraine, David Duvenaud, and Roger Grosse. Implicit regularization in

overparameterized bilevel optimization. In ICML 2021 Beyond First Order Methods Workshop,
2021.

[51] Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation.
arXiv preprint arXiv:1811.10959, 2018.

[52] Wei Wang, Yuan Sun, and Saman Halgamuge. Improving mmd-gan training with repulsive
loss function. arXiv preprint arXiv:1812.09916, 2018.

[53] Wolfram Wiesemann, Angelos Tsoukalas, Polyxeni-Margarita Kleniati, and Berç Rustem. Pes-
simistic bilevel optimization. SIAM Journal on Optimization, 23(1):353–380, 2013.

[54] Mengwei Xu and Jane J Ye. A smoothing augmented lagrangian method for solving simple
bilevel programs. Computational Optimization and Applications, 59(1):353–377, 2014.

[55] JJ Ye and XY Ye. Necessary optimality conditions for optimization problems with variational
inequality constraints. Mathematics of Operations Research, 22(4):977–997, 1997.

[56] JJ Ye and DL Zhu. Optimality conditions for bilevel programming problems. Optimization,
33(1):9–27, 1995.

[57] JJ Ye, DL Zhu, and Qiji Jim Zhu. Exact penalization and necessary optimality conditions
for generalized bilevel programming problems. SIAM Journal on optimization, 7(2):481–507,
1997.

[58] Alain B Zemkoho. Solving ill-posed bilevel programs. Set-Valued and Variational Analysis,
24(3):423–448, 2016.

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information
on how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. Please do not modify
the questions and only use the provided macros for your answers. Note that the Checklist section
does not count towards the page limit. In your paper, please delete this instructions block and only
keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [N/A]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [N/A]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [N/A]

13

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifi-
able information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

