
Appendix

3 Differentiable ILP Loss

3.2 A Solver-free Framework

(a) Ground Truth ILP (b) Intermediate Learnt ILP

Figure 1: An illustration of our framework. Figure on the left shows 4 ground truth constraints that
need to be learnt. Blue dots are the only feasible integral points w.r.t. the 4 constraints. Shaded area

containing only the dot with green border is the feasible region after we add the cost constraint
(dashed line). Figure on the right shows an intermediate scenario while learning. The green-bordered

dot (positive) is outside the intermediate 4th constraint and the red dot (negative) is inside the
intermediate 3rd constraint. Positive and negative losses encourage the 4th and the 3rd hyperplanes

to move in the direction shown by the green and red dotted arrows respectively.

In fig. 1, we consider a 2-dimensional ILP with 4 ground truth constraints ãiT z+b̃i ≥ 0, i = 1, 2, 3, 4,
a cost vector c̃, and target solution y∗. The dots represent points in Z2. The solid lines represent
hyperplanes (here lines) corresponding to the constraints, and the dashed line represents our cost-
constraint. The shaded area in fig. 1a is the feasible region of the constraint satisfaction problem:

argmin
z

0T z subject to Ãz+ b̃ ≥ 0 ; c̃T z ≤ c̃Ty∗ ; z ∈ Z2

Figure 1a shows the ground truth ILP. The signs of ãi’s and b̃i’s are such that the closed polyhedron
(here polygon) containing the blue points forms the feasible region Ãz+ b̃ ≥ 0. The green point is
optimal w.r.t. the cost c̃. The red points are infeasible, i.e., Ãz+ b̃ < 0 for red points. Note that the
target solution y∗ (point with green border) is the only integral point in the shaded region. The other
blue points violate the cost constraint c̃T z ≤ c̃Ty∗, and the red points violate at least one of the four
feasibility constraints ãiT z+ b̃i ≥ 0, i ∈ {1 · · · 4} .

Figure 1b shows a possible situation during learning. For simplicity, consider temperature close to
zero (τ ≈ 0), so that only the closest hyperplane contributes to the negative loss for a negative sample.
Also consider margins close to zero (µ+ ≈ 0, µ− ≈ 0). In fig. 1b, the point with the green border
is outside the shaded region, whereas one red point is inside. The ground truth y∗ is on the wrong
side of only the fourth hyperplane, i.e., aT4 y

∗ + b4 < 0, and hence it is the only contributor to the
positive loss, i.e., L+ = − 1

4d(y
∗; [a4|b4]), where d(y∗; [a4|b4]) =

aT
4 y∗+b4

|a4| < 0. The red negative
point denoted as y− (inside the shaded region) being closest to the third hyperplane contributes
d(y−; [a3|b3]) =

aT
3 y−+b3

|a3| > 0 to the negative loss L−. The green and red dotted arrows indicate
the directions of movement of the constraint hyperplanes on weight update.

16

Table 5: Mean ± std err of the vector accuracy (MΘ(x) = y∗) and training time over the 10 random
datasets in each setting of Random constraints. Number of learnable constraints is twice the number

of ground truth constraints. CombOpt: CombOptNet
Vector Accuracy (%) Training Time (min)

1 2 4 8 1 2 4 8

Binary

CombOpt 97.6 ± 0.4 95.3 ± 0.5 84.3 ± 3.5 63.4 ± 4.0 8.2 ± 1.7 13.5 ± 1.6 26.5 ± 1.4 40.8 ± 4.0
ILP–Loss 97.8 ± 0.4 96.0 ± 0.3 92.8 ± 0.6 87.8 ± 3.4 7.3 ± 1.7 11.6 ± 1.9 18.1 ± 2.4 27.5 ± 4.8

Dense

CombOpt 89.3 ± 1.1 74.8 ± 1.9 34.3 ± 5.6 2.0 ± 0.6 9.9 ± 1.4 16.8 ± 1.3 24.7 ± 2.0 48.2 ± 2.3
ILP–Loss 96.6 ± 0.3 86.3 ± 2.3 74.0 ± 5.4 41.5 ± 5.7 7.3 ± 1.1 15.6 ± 2.1 17.6 ± 2.6 20.6 ± 4.5

4 Experiments

Details of the ILP Solver and the hardware used for experiments: To solve the learnt ILPs, we
use Gurobi ILP solver [Gurobi Optimization, LLC, 2022] available under ‘Named-user academic
license’. All our experiments were run on 11 GB ‘GeForce GTX 1080 Ti’ GPUs installed on a
machine with 2.60GHz Intel(R) Xeon(R) Gold 6142 CPU. For each of the algorithms, we kept a
maximum time limit of 12 hours for training.

4.1 Symbolic and Visual Sudoku

Hyperparameters and other design choices: (a) # of learnable constraints: We keep m = (n+1)/2
as the number of learnable equality constraints where n = k3 is the number of binary variables. (b)
Margin: We find that a margin of 0.01 works well across domains and problem sizes. (c) Temperature:
we start with a temperature τ = 1 and anneal it by a factor of 0.1 whenever the performance on a
small held out set plateaus. (d) Early Stopping: we early stop the training based on validation set
performance, with a timeout of 12 hours for each experiment. We bypass the validation bottleneck
of solving the ILPs from scratch by providing the gold solutions as hints when invoking Gurobi.
(e) Negative Sampling: For sampling neighbors, we select all the n one hop neighbors, and an
equal number of randomly selected 2,3 and 4 hop neighbors, resulting in a total of 4n neighbors.
(f) Initialization: we initialize ai from a standard Gaussian distribution for CombOptNet and our
method.

Comparison with SATNet on their dataset: Wang et al. use a different set of 9 × 9 puzzles
for training and testing sudoku and report 63.2% accuracy on visual sudoku, different from what it
obtains on our dataset. Hence we trained both SATNet and our model on the dataset available on
SATNet’s Github repo. Interestingly, on their visual sudoku dataset which we believe to be easier (as
shown by performance numbers), our run of SATNet achieves 71.0% board accuracy whereas our
method achieves 98.3%.

4.2 Random Constraints

Hyperparameters and other design choices: We keep number of learnable constraints as twice the
number of ground truth constraints, i.e., m = 2m′, as Paulus et al. report best performance in most of
the settings with it. Here we initialize ai uniformly between [−0.5, 0.5]. Rest of the hyperparamters
are set as in the case of sudoku.

Results: See table 5 for the standard error of the accuracy and training time over 10 random datasets
for different number of ground truth constraints.

4.3 Knapsack from Sentence Descriptions

Hyperparameters and other design choices: Following Paulus et al., we use a two-layer MLP with
hidden-dimension 512 to extract c and A from N d-dimensional sentence embeddings, and keep
b = 1. Number of constraints m is set to 4, a setting which achieves best performance in Paulus
et al.. A notable difference is in the output layer of our MLP. Paulus et al. assume access to the
ground truth price and weight range ([10, 45] and [15, 35] respectively), and use a sigmoid output

17

Table 6: Mean ± std err. of accuracy and train-time over 10 runs for various knapsack datasets with
different number of items in each instance. For N = 25, 30, TO represents timeout of 12 hours and

we evaluate using the latest snapshot of the model obtained within 12 hours of total training.
CombOpt: CombOptNet

Vector Accuracy (mean ± std. err. in %) Training Time (mean ± std. err. in min)

10 15 20 25 30 10 15 20 25 30

CombOpt 63.2±0.6 48.2±0.4 30.1±1.0 2.6±0.3 0.0±0.0 41.0±4.1 61.4±4.6 153.0±8.8 TO TO
ILP–Loss 71.4±0.4 58.5±0.3 48.7±0.7 41.0±0.5 28.4±0.7 44.0±5.7 51.0±7.9 82.2±9.8 106.1±7.7 111.6±11.0

Table 7: Keypoint Matching: Number of train and test samples for datasets with different keypoints
Num Keypoints 4 5 6 7
#Test 10,474 9,308 7,910 6,580
#Train 43,916 37,790 31,782 26,312

non-linearity with suitable scale and shift to produce A and c in the correct range. We do the same
for CombOptNet, but for ILP–Loss we simply use a linear activation at the output. We note that
training CombOptNet with linear activation without access to the ground truth ranges gives poorer
results.

Results: See table 6 for standard error over 10 runs with different random seeds for varying knapsack
sizes.

4.4 Keypoint Matching

Hyperparameters: For each k, the number of learnable constraints is set to 2k: same as the number
of ground truth constraints. For keypoints 5,6 and 7, in addition to random initialization, we also
experiment by initializing the backbone cost parameters θc with the one obtained by training it on 4
keypoints and pick the one which obtains better accuracy on val set. This happens for all the methods
for keypoints 6 and 7.

For ILP–Loss with only solver and batch negatives (ILP–Loss + Sol.) , we start with a temperature
τ = 0.1 and anneal it by a factor of 0.5 whenever performance on a small validation set plateaus.
For ILP–Loss with only solver–free negatives, we start with a temperature τ = 0.5 and anneal it by
a factor of 0.2 at 10th and 30th epoch. As done in Paulus et al. [2021], we initialize ai uniformly
between [−0.5, 0.5]. Rest of the hyperparmeters are same as those used for sudoku.

Dataset details: See table 7 for the number of train and test samples in the four datasets created for
4, 5, 6, and 7 keypoints.

Results: See table 8 for the standard error of point-wise accuracy and training times over 3 runs with
different random seeds for varying number of keypoints.

5 Future Work

Discussion on training Neural-ILP-Neural architectures: In the current formulation, availability
of the solution to the ground truth ILP is important for our solver-free approach to work. Specifically,
it is required to: 1.) convert the constrained optimization problem to a constraint satisfaction problem
by including the cost-constraint eq. (4), and 2.) to calculate the positive loss eq. (6). However, in
a Neural-ILP-Neural architecture, the intermediate supervision for only the Neural-ILP part (i.e.,
solution of the ground truth ILP) is not available.

On the other hand, solver based methods such as CombOptNet, do not require access to the solution
of the ground-truth ILP. Instead, they rely on the solution of the current intermediate ILP (during
learning) to compute the gradients of the loss and thus their approach is not solver free. We note that
even though in princple they can train Neural-ILP-Neural architectures, their experiments are only in
the Neural-ILP settings.

Extending our current work for Neural-ILP-Neural architectures is an important direction of future
work. One plausible approach could be to train an auxiliary inverse network that converts a given

18

Table 8: Mean ± std error of point-wise accuracy and training times over 3 runs with random seeds
for varying number of keypoints. Neural+CI denotes ILP inference with known constraints over the

cost learnt by neural model.
Pointwise Accuracy (mean ± std err in %) Training Times (mean ± std. err. in min)

4 5 6 7 4 5 6 7

Neural 80.88±0.87 78.04±0.40 75.39±0.50 73.49±0.55 148±26 37±12 30±9 40±13
Neural + CI 82.42±0.55 79.99±0.16 77.64±0.25 75.88±0.43 148±26 37±12 30±9 40±13
CombOptNet 83.86±0.62 81.43±0.49 78.88±0.65 76.85±0.54 41±15 67±8 144±31 279±39
ILP–Loss 81.76±1.71 79.59±0.18 77.84±0.36 76.18±0.06 115±13 92±3 106±1 109±5
ILP–Loss + Sol. 84.64±0.62 81.27±1.12 79.51±0.53 78.59±0.55 43±12 73±10 99±9 174±25

output of Neural-ILP-Neural architecture to a predicted symbolic target of Neural-ILP component.
This predicted target can be used as a proxy to the ground truth solution of the Neural-ILP part.
Similar ideas of using an inverse network have been explored in [Agarwal et al., 2021], albeit under
the setting where ILP is known and only the neural encoder and decoder needs to be learnt.

19

	Introduction
	Related Work
	Differentiable ILP Loss
	Background and Task Description
	A Solver-free Framework
	Negative Sampling

	Experiments
	Symbolic and Visual Sudoku
	Random constraints
	Knapsack from Sentence Descriptions
	Keypoint Matching

	Conclusion and Future Work

