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Notation We report here a reference for notation used in main text and supplementary.

Symbol Description

R Set of reals
C Set of complex numbers

E[x] Expected value of random variable x
V[x] Variance of random variable x
Σx Covariance matrix of random variable x
tr Trace operator for square matrices. tr(A) =

∑
nAnn

◦ Composition of functions f ◦ g(x) = f(g(x))
∗ Conjugate transpose operator. A∗ = Ā⊤ where Ā has complex conjugated entries
∧ Outer product u ∧ v = uv∗ for u, v ∈ Cn
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A Proof of Theorem 3.2

A.1 Preliminary Lemmas

Lemma A.1 (Propagation of Uncertainty under DFT/DCT). Let X = Wx with x ∈ RN and
W ∈ CN×N . Then

ΣX =WΣxW
∗

Proof.
ΣX = E [(Wx− E[Wx]) ∧ (Wx− E[Wx])]

= E [W (x− E[x]) ∧W (x− E[x])]
= E

[
W (x− E[x])(x− E[x])⊤W ∗]

=WE
[
W (x− E[x])(x− E[x])⊤

]
W ∗

=WΣxW
∗

Lemma A.2 (Propagation of Total Variance under DFT/DCT). Let X = Wx with x ∈ RN and
W ∈ CN×N . Then

V[X] = V[x]

Proof. Recalling that the total variance of a random variable is equal to the trace of its covariance
matrix, i.e.

V[x] = tr(Σx), V[X] = tr(ΣX)
then

tr(Σx) = tr(ΣX) ⇔ V[X] = V[x]

Recalling Lemma A.1 yields
V[X] = V[x]

⇔ tr(Σx) = tr(WΣxW
∗)

⇔ tr(Σx)− tr(WΣxW
∗) = 0

⇔ tr(Σx)− tr(ΣxW
∗W ) = 0

Since the DCT/DFT matrix is orthonormal, i.e. W ∗ =W−1 we have that
tr(ΣxW

∗W ) = tr(Σx),
proving the result.

Lemma A.3 (Gaussian initialization in rank–deficient linear layers). Let X̂ = S⊤
mASmX with

X ∈ RN , A ∈ Cm×m and Sm ∈ Cm×N ,
Sm = mmN −m.

If E[Xk] = 0, V[Xk] = σ2 for all k the following hold:

i. for k ≥ m

E[X̂k] = 0, V[X̂k] = 0

ii. for k < m and Re(Aij), Im(Aij) ∼ N (0, σ2
A)

E[X̂k] = 0, V[X̂k] = 2mσ2σ2
A

iii. for k < m and Re(Aij) ∼ N (0, σ2
A), Im(Aij) = 0

E[X̂k] = 0, V[X̂k] = mσ2σ2
A

Proof. Let M = S⊤
mASm. It holds,

M =

[
A ×
× ×

]
∈ CN×N

where“×” are blocks of complex zeros. By expanding component–wise the layer computation, i.e.

X̂k =

N−1∑
j=0

MkjXj ,
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it holds that for k < m

X̂k =

m−1∑
j=0

AkjXj ,

while X̂k = 0 for k ≥ m. Hence i. follows naturally from the latter and we focus on proving ii. and
iii.

Case ii. The probability distribution of X̂k is a sum of product distributions involving independent
random variables Akj and Xj . The first central moment is readily obtained

E[X̂k] =

m−1∑
t=0

E[Akj ]E[Xj ] = 0

since both E[Xk] = 0 and ∀ k, j < m : E[Akj ] = 0. V[X̂k] can be then obtained by
computing the variance of the product of two random variables, i.e.

V[X̂k] =

m−1∑
j=0

(
V[Akj ] +����E[Akj ]

2)(V[Xj ] +���E[Xj ]
2)−(((((((E[Akj ]

2E[Xj ]
2
)

=

m−1∑
j=0

V[Akj ]V[Xj ]

=

m−1∑
j=0

σ2V[Akj ]

= σ2
m−1∑
j=0

(V[Re(Akj)] + V[Im(Akj)])

= σ2
m−1∑
j=0

2σ2
A = 2mσ2σ2

A

Case iii. Similarly to the previous case we get

V[X̂k] = σ2
m−1∑
j=0

(
V[Re(Akj)] +�����V[Im(Akj)]

)
= σ2

m−1∑
j=0

σ2
A = mσ2σ2

A

A.2 Proof of Main Result

Theorem 3.2 (Variance Preserving (vp) Initialization). Let x̂ = W ∗S⊤
mASmWx be a k-space

reduced-order layer and W is a normalized DCT-II transform. If x ∈ RN is a random vector with
E[x] = 0, V[x] = σ2I.

Then,

Aij ∼ N
(
0,
N

m2

)
⇒ V[x̂] = V[x].

Proof. According to Lemma A.2, the total variance is preserved under the normalized DCT. There-
fore, with X =Wx̂ and X̂ =Wx we have

V[X] = V[x], V[X̂] = V[x̂].
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Using X̂ = S⊤
mASmX , we can find the condition under which the variance is preserved by the map

x 7→ x̂:
V[x̂] = V[x]

⇔
N−1∑
n=0

V[x̂n] =
N−1∑
n=0

V[xn]

⇔
N−1∑
k=0

V[X̂k] =

N−1∑
k=0

V[Xk]

⇔
m−1∑
k=0

mσ2σ2
A =

N−1∑
k=0

σ2 Lemma A.3

⇔ m2σ2σ2
A = Nσ2

⇔ σ2
A =

N

m2

Hence, initializingA by sampling its entries from a normal distribution with zero mean and variance
N/m2 is sufficient for preserving the variance under the reduced-order FDM layer, i.e.

Aij ∼ N
(
0,
N

m2

)
⇒ V[x̂] = V[x],

proving the result.

Corollary 3.2 (vp initialization for DFTs). Under the assumptions of Theorem 3.2, if W is a nor-
malized DFT matrix we have Re(Aij), Im(Aij) ∼ N (0, N

2m2 ) ⇒ V[x̂] = V[x].

Proof. The proof follows directly from the one of Theorem 3.2 using the fact that since the DFT’s
k-space is complex (Dk ≡ CN ) as W ∈ CN×N , the weights are typically chosen complex, i.e.
A ∈ Cm×m. Therefore, in this case V[X̂] = 2mσ2σ2

A according to Lemma A.3.

Corollary A.1 ((vp) initialization with diagonal layers). Under the assumptions of Theorem 3.2, if
A is diagonal s.t ∀i ̸= j : Aij = 0, we have Aii ∼ N

(
0, Nm

)
⇒ V[x̂] = V[x].

Proof. The proof follows directly from Lemma A.3

V[X̂k] =

m−1∑
j=0

V[Akj ]V[Xj ]

= V[Akk]V[Xk]

= σ2
(
V[Re(Akk)] +������V[Im(Akk)]

)
= σ2σ2

A

leading to the condition
V[x̂] = V[x]

⇔
m−1∑
k=0

σ2σ2
A =

N−1∑
k=0

σ2

⇔ mσ2σ2
A = Nσ2

⇔ σ2
A =

N

m

The layer structure treated by A.1 is common among many FDMs, e.g. FNOs in (Li et al., 2020).

B Additional Details

Broader impact FDMs are widely used in the context of learning to predict the evolution of
dynamical systems. The model class presented in this work, T1, provides an accessible way to
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train and evaluate large-scale FDMs, reducing memory overhead and overall training times. When
predicting the solution of e.g. a partial differential equation (PDE), care should be taken especially
when the prediction is used to inform downstream decision making, as many systems are optimally
predictable only for a certain time scale (Strogatz, 2018, pp. 366). We anticipate a potential positive
environmental impact from the adoption of T1 as a replacement for the largest FDMs currently in
use.

Experimental setup Experiments have been performed on an NVIDIA© DGX workstation
equipped with a 128 threads AMD© EPYC 7742 CPU, 512GB of RAM and four NVIDIA© A100
GPUs. The main software implementation has been done within the PyTorch (Paszke et al., 2017)
ecosystem building upon the pytorch-lightning (Falcon et al., 2019) framework.

Common experimental settings

B.1 Incompressible Navier–Stokes

Dataset We use data generated in (Li et al., 2020) in the form of pairs of initial conditions and so-
lutions of the incompressible Navier-Stokes equations in vorticity form solved with a pseudospectral
method. The dataset 6 is comprised rollouts of solutions as images of resolution 64.

Models and training The training configuration is shared by all models:

1 datamodule:
2 ntrain: 1000
3 ntest: 200
4 batch_size: 64
5 history_size: 1
6 train:
7 optimizer:
8 type: AdamW
9 learning_rate: 1e-3

10 weight_decay: 1e-4
11 scheduler:
12 type: Step
13 step_size: 100
14 gamma: 0.5
15 scheduler_interval: epoch
16 loss_fn: RelativeL2Loss

For the high viscosity (1e−3) setting, the models are trained to predict the solution at time T =
50 seconds directly, without producing rollouts and supervising the model with solutions at times
between 0 and 50. Crucially, this ensures that the task is much more challenging than that of (Li
et al., 2020), where for a single training sample the entire rollout is used as supervision. For the low
viscosity setting (1e−4), target times are T = 15 seconds.

Model configurations are given below:

FNO 3

1 modes: 24
2 nlayers: 6
3 width: 32

T1 3

1 modes: 24
2 nlayers: 6
3 width: 48

FFNO 3

1 modes: 32
2 nlayers: 10
3 width: 82

where each layer in a model shares the same structure. In FNOs and FFNOs, we employ a regular
FDM layer following (Li et al., 2020; Tran et al., 2021) with k-space convolutions and residual
connections given by n-space layers (pointwise convolutions for FNOs, dense for FFNOs). T1 uses
a similar layer without n-space residual paths. The differences in number of layers and width have

6Data can be downloaded here: Google Drive link. High viscosity: NavierStokes_V1e-3_N5000_T50,
Low viscosity: NavierStokes_V1e-4_N10000_T30.
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been introduced to keep parameter counts comparable. At a given channel width, FNOs require the
largest number of parameters due to k-space convolutions on complex numbers given by the DFT
coefficients. Although FFNOs (Tran et al., 2021) are most parameter efficient due to parameter
sharing, we found them unable to tackle the task and produce high-quality predictions.
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Figure B.1: Incompressible Navier-Stokes: metrics vs number of DCT modes (i.e. m elements) kept (i.e. not
pruned).

T1+ employs a UNet on the patch constructed by the elements of the k-space kept, and shares its
structure with T1 otherwise. The vp parameter initialization scheme in T1 is applied only to the first
layer performing the truncation in k-space, not to the following layers which use standard Kaiming
initialization He et al. (2015). In FNOvp the scheme is applied to all layers.
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Figure B.2: Initial conditions, ground truth solutions at time T = 50 seconds, and models predictions for
incompressible Navier-Stokes in vorticity form (high viscosity of 1e−3). T1 reduces solution error w.r.t FNOs
by over 20% and FFNOs by over 40%. A single forward pass of T1 models is on average 2× faster than FNO
and 10× than FFNOs.

Hyperparameter tuning We start with the basic model structure of FNOs as detailed (Li et al.,
2020) and perform a basic hyperparameter search on a small slice of the training set, with the goal of
ensuring proper convergence of a model. We did not find the number of layers to have a significant
impact on convergence. Width plays an important role and is best kept above 24.

Scaling laws We use the same settings as the main experiment, repeating separate training runs for
the low viscosity setting. In particular, we increase the dataset size for each set of runs by a factor
of 2: 1024, 2048, 4096, 8192. The total number of epochs is kept fixed, so that more iterations are
performed for larger datasets. The same test set of size 200 is used in all cases.
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Further comments Additional predictions are provided in Fig. B.2. Fig. B.1 shows the approx-
imation error on the Navier-Stokes solutions due to truncation at different number of k-space ele-
ments m.

B.2 Flow Around Airfoils

Dataset We use a slice of the dataset introduced by Thuerey et al. (2020) in the form of 11000
training pairs of initial conditions and solutions. The solutions are obtained via OpenFOAM (Jasak
et al., 2007) SIMPLE, a steady-state solver for incompressible and turbulent flows. In particular,
the initial conditions are specified as freestream velocities over the domain (two-directional compo-
nents), in addition to a specification of the airfoil in point cloud format. Delaunay triangulation is
used for mesh generation.

After simulation, data is provided as initial condition and steady-state solution pairs. The initial
condition is a three channel 128×128 image: two channels for freestream velocities and one for the
airfoil mask. The solution is a three channel 128× 128 image: a velocity field and a scalar pressure
field. All data is normalized using training set statistics.

Models and training Training configuration is given as

1 datamodule:
2 ntrain: 8000
3 nval: 2000
4 ntest: 1000
5 batch_size: 64
6 train:
7 optimizer:
8 type: AdamW
9 learning_rate: 1e-3

10 weight_decay: 1e-4
11 scheduler:
12 type: Step
13 step_size: 100
14 gamma: 0.6
15 scheduler_interval: epoch
16 loss_fn: RelativeL2Loss

The baseline UNet matches the architecture of (Thuerey et al., 2020) (DFPNet). The FNO architec-
ture is comprised of a standard stack of FDM layer as discussed in B.1. The k-space UNet in T1+
has the same structure as a DFPNet.

FNO 3

1 modes: 24
2 nlayers: 6
3 width: 48

DFPNET 3

1 channel_exponent: 6

T1+ 3

1 modes: 100
2 channel_exponent: 5

Hyperparameter tuning This is an example of a dataset where the k-space is full due to discon-
tinuity in the solution given by the airfoil mask.

We use the training and validation sets to inspect the k-space and setm to 100 for the irreducible loss
term to be sufficiently small as shown in Fig. B.5. We swept over m for FNOs and found larger than
24 to perform worse, likely due to k-space convolution being sufficient to capture higher frequency
components. We observe DFPNets with larger channel exponents perform worse due to overfitting.

Further comments A sample of predictions is given in Fig. B.3. Fig. B.4 shows the n-space and
corresponding DCT k-space of a data point. As can be observed, the k-space is structured but full
due to the discontinuity caused by the airfoil mask. Fig. B.5 shows the approximation error on
solution fields due to truncation in k-space at different m. In this task, the DCT is more efficient,
given a budget of modes to keep, as it yields lower errors. This error provides a theoretical lower
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Figure B.3: Ground truth solutions and predictions with different airfoil designs and angles of attack of the
flow. The background color is the scalar pressure value while the vector field represents the velocity field:
arrow colors indicate its "strength" i.e. 2-norm.
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Figure B.4: Flow around airfoils: example of n-space: input mask, output pressure p and velocity field v1, v2.
Below, the corresponding DCT k-space in abs-log i.e. log (|T (x)|) to highlight its structure.

bound for the predictive error achievable by a T1 model with a given budget, reachable only if the
T1 predicts the first m modes perfectly.

The vertical line indicates the budget used for the main text T1 experiments (m = 100), and the
horizontal one the test N-MSE achieved. Various segments of the vertical line indicate reducible
and irreducible components of the loss as discussed in § 3.1. The theoretical limit at m = 100 is
well below what has been empirically achieved by T1 and other models. Indeed, the irreducible loss
is an order of magnitude smaller than what the best model (including non-reduced-order variants)
achieves on the task.
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Figure B.5: Average approximation error (N-MSE) due to truncation in k-space at different number of ele-
ments m for the flow around airfoils dataset. In blue, the real FFT k-space, in orange the regular DCT k-space.
On the x-axis, the normalized cost for a number of modes m: for DCTs, since the k-space is real, truncation at
m modes requires m2 floats, for real FFTs with complex k-space and conjugacy the cost in floats is 4m2. The
vertical line indicates the budget used for T1 used in this task (m = 100), while the horizontal line is the test
N-MSE achieved.

B.3 Turbulent Smoke

Dataset We employ for this experiment the ScalarFlow dataset introduced in (Eckert et al., 2019)
which is available online under the Creative Commons license CC-BY-NC-SA 4.07. Eckert et al.
(2019) created an environment for controlling the release of smoke plumes: a fog machine generated
fog inside of a container; the fog was then heated up by a heating cable and a valve controlled its
release. Data was captured via multiple calibrated cameras in high resolution at 60 fps (frames per
second) for 150 frames.
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Figure B.6: ScalarFlow dataset: reconstruction error versus number of kept DCT modes.

The dataset contains 3D reconstructions of the smoke plumes and 2D input and rendered images:
input images are used by Eckert et al. (2019) to solve an optimization problem in which the goal is
to generate a 3D reconstruction that minimizes the difference between input and rendered images.
2D input images are obtained directly from raw data on which only post-processing is applied by
(Eckert et al., 2019) in the form of gray scaling and denoising: these are saved in compressed numpy
(Harris et al., 2020) arrays named imgsTarget_000xxx.npz. Each resulting frame comprises 5
different camera views 600×1062 in size. Since we want to use T1 on high-resolution experimental
data, we directly utilize the central camera view of these input images in our learning task without
any further downsampling or data processing. Similarly to (Lienen and Günnemann, 2022), we
divide the 104 recordings into the first 64 for training and use the remaining 20 for validation and
20 for testing.

Data is normalized to the [0, 1] range based on training dataset statistics.

Hyperparameter selection and tuning We performed a search on the most representative hy-
perparameters. One of the most important hyperparameters to choose from is the number of DCT
modes to keep, i.e. first m elements in k-space. We note that for simplicity as well as for com-
patibility with the UNet inside of T1+, we consider a square mode pruning, i.e. we keep the same

7ScalarFlow dataset download: https://ge.in.tum.de/publications/2019-scalarflow-eckert/
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number of frequencies on both height and width of the image and refer to the modes kept in both
dimensions as m. Fig. B.7 and Fig. B.6 show trends of DCT modes in terms of errors and visual
quality: while the first modes m contribute the most to the quality of the representation in n-space,
the last elements contribute only to high-frequency details whose effect is minor on the overall re-
construction. Thus, we set T1+ to m = 224 and consequently T1 to m = 512 to have comparable
model sizes. We set m = 48 for FNO due to memory and model size limitations, noting that its
residual connections effectively enlarge the training spectrum to all possible frequencies as shown
in Fig. 4.3. Similarly to other experiments (B2), we observe raising m in FNO to not significantly
improve predictive error, even when the additional k-space elements would include a larger portion
of the dataset.

Ground Truth Modes: 12 Modes: 24 Modes: 48 Modes: 128 Modes: 224 Modes: 512

−0.25 0.00 0.25

y − T −1(SmTY)

−0.25 0.00 0.25 −0.2 0.0 0.2 −0.1 0.0 0.1 −0.1 0.0 0.1 −0.05 0.00 0.05

y − T −1(SmTY) y − T −1(SmTY) y − T −1(SmTY) y − T −1(SmTY) y − T −1(SmTY)

Figure B.7: [Top] Visual comparison of ScalarFlow frames with changing number of DCT modes kept (i.e.
first m elements) . [Bottom] Error between the ground truth frame y and its inverse transformation after mode
pruning from k-space back to n-space. As expected, the first few k-space elements are crucial to minimizing
reconstruction errors, with higher frequency components contributing minimally.

We also experiment with different iterative rollout update strategies as in (Pfaff et al., 2020). We
consider the time step ∆t to be unitary, i.e. ∆t = 1, given that the training frames are sampled con-
sistently at 60 fps. We call 0-order integration an update of the type: xt+1 = hθ(xt;xt−1, . . . , xt−H)
in which hθ denotes a learned model which takes as inputs the current state xt and optionally a his-
tory of size H of past states xt−1, . . . , xt−H and directly predicts the next state xt+1. A 1-order
integrator performs the following update: xt+1 = xt + hθ(xt; ·), in which the model predicts the
state update, i.e. the velocity, similarly to an Euler step. A 2-order integrator, also known as basic
Störmer—Verlet (Verlet, 1967) can be written as following: xt+1 = 2xt − xt−1 + hθ(xt; ·); the
model hθ predicts the acceleration of the system. We empirically found the zero-order integration
to be more prone to generating artifacts with slower convergence, which may be because the model
has to directly predict the next step with no "help" from the current step information. We found
models trained with first-order integrators to have lower predictive errors than those trained with
second-order ones, and we thus use it in all the experiments. As for the history size, we selected
H = 1 since it provided noticeable benefits compared to H = 0, in which the model has no way of
knowing previous states and thus inferring velocities. Larger history sizes did not seem to provide
any improvements and only made the models larger as also noted in (Pfaff et al., 2020).

Mode selection We further show in Fig. B.8 the effect of simple low-pass filtering of lowest m
frequency modes and topk(m) mode selection in pixel space reconstruction (as a fraction of total
pixes, i.e., 600 × 1062). The latter achieves better reconstruction results with the same number of
parameters.
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Figure B.8: Reconstruction errors in pixel space of low-pass filtering of the lowest m frequency modes vs
topk(m) selection on a single frame of ScalarFlow.

Models and training All models share the configuration for training:

1 datamodule:
2 ntrain: 64
3 nval: 20
4 ntest: 20
5 batch_size: 1
6 history_size: 1
7 target_steps_train: 3
8 target_steps_val_test: 10
9 train:

10 optimizer:
11 type: AdamW
12 learning_rate: 1e-3
13 weight_decay: 1e-4
14 scheduler:
15 type: CosineAnnealingWarmRestarts
16 T_0: 32
17 step_size: 1
18 scheduler_interval: step
19 loss_fn: RelativeL2Loss

Where we used the implementation in PyTorch of the cosine annealing schedule with warm
restarts8. The FNO architecture comprises a standard stack of FDM layers as discussed in B.1.
The k–space UNet in T1+ (and in its vp variant) has the same structure as a DFPNet.

FNO 3

1 modes: 48
2 nlayers: 4
3 width: 48

T1 3

1 modes: 512
2 nlayers: 4
3 width: 8

T1+ 3

1 modes: 224
2 nlayers: 1
3 width: 4
4 channel_exponent: 7

where we note that all models employ GeLU (Hendrycks and Gimpel, 2016) activation functions
between inner layers.

Analysis of results Table B.1 provides a larger version of the table in the main text, including
1-step mean absolute errors (MAE). We note that while FNO produces smaller errors in one-step
predictions, it quickly accumulates larger errors in extrapolation. Fig. B.9 shows mean errors in
k-space of FNO vs T1 and T1+. T1 models demonstrate smaller overall errors and lower maxima
compared to the FNO.

8We used the scheduler torch.optim.lr_scheduler.CosineAnnealingWarmRestarts with the num-
ber of iterations for the first restart T_0 = 32. All other hyperparameters are the same as in the reference
implementation.
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0.0 2.5

log10(|Ŷ−Y|)

Figure B.9: Mean log-absolute values of predictions in k-space (DCT-II) of a 20-elements batch in the test
dataset. Although T1 is limited to m = 512 and T1+ to m = 224 k-space elements (visible as square "shadows"
in the error plots), its predictions are overall more physically accurate in n-space.

C Properties of Frequency Domain Models

C.1 Preliminary Results

Lemma C.1 (Finite cosine series convergence). Let k ∈ N+, N ∈ N+ with N ≥ 2. The following
holds

N−1∑
n=0

cos

(
2πkn

N

)
= 0. (4)

Proof. Let us substitute z = 2πk
N for simplicity. We can rewrite the finite series as follows

y =

N−1∑
n=0

cos(zn) = cos(z · 0) + cos(z · 1) + · · ·+ cos(z(N − 1)). (5)

By multiplying both sides of the equation by 2 sin(z) we obtain

2 sin(z)y = 2 cos(z · 0) sin(z) + 2 cos(z · 1) sin(z) + · · ·+ 2 cos(z(N − 1)) sin(z). (6)

By applying the following trigonometric identity

2 cos(α) sin(β) = sin(α+ β)− sin(α− β), (7)

Table B.1: Full benchmark on the ScalarFlow dataset over 5 runs with different random seeds. N-
MSE refers to 10-step test rollouts. T1+vp generates more stable rollouts while requiring a fraction
of FNO’s training time.

Method Param (M) Size (MB) Time (hrs) N-MSE (×10−1)
FNO 84.9 339 32.4 2.32 ± 0.02
T1 83.9 335 8.1 2.39 ± 0.02
T1+ 67.8 271 4.7 2.56 ± 0.16
T1+vp 67.8 271 4.7 2.28 ± 0.09
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Equation (6) becomes
2 sin(z)y = 2 sin(z)

+ sin(z + z)− sin(z − z)

+ sin(2z + z)− sin(2z − z)

+ sin(3z + z)− sin(3z − z)

+ . . .

+ sin((N − 1)z + z)− sin((N − 1)z − z)

(8)

where terms on the right-hand side cancel out pairwise9. After cleanup, we are left with the following

2 sin(z)y =sin(z) + sin((N − 1)z) + sin(Nz). (9)

By substituting back z = 2πk
N we obtain

2 sin

(
2πk

N

)
· y =sin

(
2πk

N

)
+ sin

(
(N − 1)

2πk

N

)
+ sin

(
N

2πk

N

)
=
�
����

sin

(
2πk

N

)
−
�
����

sin

(
2πk

N

)
+�����:0

sin(2πk),

(10)

where we used the trigonometric identity sin(−α) = − sin(α). After dividing by the factor
2 sin

(
2πk
N

)
, we readily obtain the result y = 0.

Lemma C.2 (Finite squared cosine series convergence). Let k ∈ N+, N ∈ N+ with N ≥ 2. The
following holds

N−1∑
n=0

cos2
(
2πkn

N

)
=
N

2
. (11)

Proof. We recall the following trigonometric identity

cos2(α) =
1 + cos(2α)

2
. (12)

Let us substitute z = 2πk
N for simplicity. We can thus rewrite the finite series as follows

N−1∑
n=0

cos2(zn) =

N−1∑
n=0

1 + cos(2zn)

2

=
1 + cos(2z · 0)

2
+

1 + cos(2z · 1)
2

+ · · ·+ 1 + cos(2z(N − 1))

2

=
N

2
+

1

2
[cos(2z · 0) + cos(2z · 1) + · · ·+ cos(2z(N − 1))]

=
N

2
+

���
����*0

1

2

N−1∑
n=0

cos(2zt) (from Lemma C.1)

=
N

2
.

(13)

9Alternatively, we could think about the finite cosine series itself as the summation of N cosine terms on
a circle with terms from 0 up to N − 1 – scaled by k, which does not affect the result. The cosine terms then
cancel out in a pair–wise fashion (or in triplets, depending on even or odd N ).
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C.2 Statistics Under Fourier Transform

There are various ways to show how probability measures and moments propagated under frequency
domain transforms. We showcase two additional proof methods based on change of variables or
explicit computation for simple input distributions.

Lemma C.3 (Central moment preservation under unitary linear operators). Let x ∼ px(x), x ∈ C
and let T be a unitary linear operator. With X = T (x), it holds

pX(X) = px(T −1(X))

Proof. The result follows immediately from the change of variables formula

pX(X) = px(T −1(X)) det

[
d

dX
T −1(X)

]
= px(x),

being ∂XT (X) the Jacobian of T , since

det
d

dX
T −1(X) = det

d

dX
T (X) = 1.

Lemma C.4 (Variance preservation under unitary linear operators). Let x ∈ RN be a random vector
with

E[x] = 0, V[x] = σ2I.
with T a normalized DFT. If X = T (x), it holds

∀k, n : E[Xk] = E[xn] = 0 and V[Xk] = V[xn] = σ2

Proof. Let x be real-valued input and distributed according to
pRe(x) = N (0, σ2I) pIm(x) = δ(0).

Consider a single element of X

Xk =

N−1∑
n=0

vn

with
vn =

1√
N
e

2πjnk
N xn =

1√
N

cos
2πnk

N
xn + j

1√
N

sin
2πnk

N
xn.

For clarity, we will treat the real part Re(Xk) first.

Re(vn) =
1√
N

cos
2πnk

N
Re(xn)

and
E[vn] =

1

N
cos2

2πnk

N
E[xn] = 0

V[vn] =
1

N
cos2

2πnk

N
V[xn] =

σ2

N
cos2

2πnk

N
where we have used the fact that

1√
N

sin
2πnk

N
Im(xn) = 0.

Thus,
E[Re(Xk)] = 0

V[Re(Xk)] =

N−1∑
n=0

σ2

N
cos2

2πnk

N
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We observe that (a) the first central moment is preserved and (b) the variance term can be simplified
as

V[Re(Xk)] =

N−1∑
n=0

σ2

N
cos2

2πnk

N

=
σ2

N

N−1∑
n=0

cos2
2πnk

N

=
σ2

N

N

2
(from Lemma C.2)

=
σ2

2
We follow a similar procedure for Im(Xk), arriving at

E[Im(Xk)] = 0

V[Im(Xk)] =

N−1∑
n=0

σ2

N
sin2

2πnk

N

where the variance again simplifies to
N−1∑
n=0

σ2

N
sin2

2πnk

N
=
σ2

2

Since Xk = Re(Xk) + j Im(Xk),
E[Xk] = E[Re(Xk)] + jE[Im(Xk)] = 0 + j0 = 0

V[Xk] = V[Re(Xk)] + V[Im(Xk)] = σ2

A similar argument can be developed using basic properties of circular-symmetry of complex Nor-
mals.

It is critical that the normalization factor 1√
N

be included in W in order to preserve the variance of
V[X].

Indeed, normalization factors used in different conventions lead to different results

forward factor
1

N
=⇒ V[Xk] =

σ2

N

backward factor 1 =⇒ V[Xk] = Nσ2

As N can easily be in the order of hundreds or thousands for generic signals, explosion of variance
can be an issue if the orthogonalization factor 1√

N
is not applied to W .
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