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Abstract

Calibrated probabilistic classifiers are models whose predicted probabilities can
directly be interpreted as uncertainty estimates. It has been shown recently that
deep neural networks are poorly calibrated and tend to output overconfident pre-
dictions. As a remedy, we propose a low-bias, trainable calibration error estimator
based on Dirichlet kernel density estimates, which asymptotically converges to the
true Lp calibration error. This novel estimator enables us to tackle the strongest
notion of multiclass calibration, called canonical (or distribution) calibration, while
other common calibration methods are tractable only for top-label and marginal
calibration. The computational complexity of our estimator is O(n2), the conver-
gence rate is O(n−1/2), and it is unbiased up to O(n−2), achieved by a geometric
series debiasing scheme. In practice, this means that the estimator can be applied
to small subsets of data, enabling efficient estimation and mini-batch updates. The
proposed method has a natural choice of kernel, and can be used to generate con-
sistent estimates of other quantities based on conditional expectation, such as the
sharpness of a probabilistic classifier. Empirical results validate the correctness of
our estimator, and demonstrate its utility in canonical calibration error estimation
and calibration error regularized risk minimization.

1 Introduction

Deep neural networks have shown tremendous success in classification tasks, being regularly the
best performing models in terms of accuracy. However, they are also known to make overconfident
predictions [Guo et al., 2017], which is particularly problematic in safety-critical applications, such
as medical diagnosis [Esteva et al., 2017, 2019] or autonomous driving [Caesar et al., 2020, Sun et al.,
2020]. In many real world applications it is not only the predictive performance that is important, but
also the trustworthiness of the prediction, i.e., we are interested in accurate predictions with robust
uncertainty estimates. To this end, it is necessary that the models are uncertainty calibrated, which
means that, for instance, among all cells that have been predicted with a probability of 0.8 to be
cancerous, 80% should indeed belong to a malignant tumor.

The field of uncertainty calibration has been mostly focused on binary problems, often considering
only the confidence score of the predicted class. However, this so called top-label (or confidence)
calibration [Guo et al., 2017]) is often not sufficient in multiclass settings. A stronger notion of
calibration is marginal (or class-wise) [Kull et al., 2019], that splits up the multiclass problem
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Table 1: Properties of ECEKDE and other commonly used calibration error estimators.

Properties
Consistency Scalability De-biased Differentiable

ECEKDE (Our) ✓ ✓ ✓ ✓
ECEbin ✗ [Vaicenavicius et al., 2019] ✗ ✓[Roelofs et al., 2022] ✗
Mix-n-Match ✓[Zhang et al., 2020] ✗ ✗ ✓
MMCE ✗ [Kumar et al., 2018] ✓ ✗ ✓

into K one-vs-all binary ones, and requires each to be calibrated according to the definition of
binary calibration. The most strict notion of calibration, called canonical (or distribution) calibration
[Bröcker, 2009, Kull and Flach, 2015, Vaicenavicius et al., 2019], requires the whole probability vector
to be calibrated. The curse of dimensionality makes estimation of this form of calibration difficult, and
current estimators, such as the binned estimator ECEbin [Naeini et al., 2015], MMCE [Kumar et al.,
2018] and Mix-n-Match [Zhang et al., 2020], have computational or statistical limitations that prevent
them from being successfully applied in this important setting. Specifically, the binned estimator is
sensitive to the binning scheme and is asymptotically inconsistent in many situations [Vaicenavicius
et al., 2019], MMCE is not a consistent estimator of Lp calibration error, and Mix-n-Match, although
consistent, is intractable in high dimensions and the authors did not implement it in more than one
dimension.

We propose a tractable, differentiable, and consistent estimator of the expected Lp canonical cal-
ibration error. In particular, we use kernel density estimates (KDEs) with a Beta kernel in binary
classification tasks and a Dirichlet kernel in the multiclass setting, as these kernels are the natural
choices to model densities over a probability simplex. In Table 1, we summarize and compare the
properties of our ECEKDE estimator and other commonly used estimators. ECEKDE scales well
to higher dimensions and it is able to capture canonical calibration with O(n2) complexity.

Our contributions can be summarized as follows: 1. We develop a tractable estimator of canonical Lp

calibration error that is consistent and differentiable. 2. We demonstrate a natural choice of kernel.
Due to the scaling properties of Dirichlet kernel density estimation, evaluating canonical calibration
becomes feasible in cases that cannot be estimated using other methods. 3. We provide a second order
debiasing scheme to further improve the convergence of the estimator. 4. We empirically evaluate
the correctness of our estimator and demonstrate its utility in the task of calibration regularized risk
minimization on various network architectures and several datasets.

2 Related Work

Calibration of probabilistic predictors has long been studied in many fields. This topic gained attention
in the deep learning community since Guo et al. [2017] observed that modern neural networks are
poorly calibrated and tend to give overconfident predictions due to overfitting on the NLL loss. The
surge of interest resulted in many calibration strategies that can be split in two general categories,
which we discuss subsequently.

Post-hoc calibration strategies learn a calibration map of the predictions from a trained predictor
in a post-hoc manner, using a held-out calibration set. For instance, Platt scaling [Platt, 1999] fits
a logistic regression model on top of the logit outputs of the model. A special case of Platt scaling
that fits a single scalar, called temperature, has been popularized by Guo et al. [2017] as an accuracy-
preserving, easy to implement and effective method to improve calibration. However, it has the
undesired consequence that it clamps the high confidence scores of accurate predictions [Kumar et al.,
2018]. Similar approaches for post-hoc calibration include histogram binning [Zadrozny and Elkan,
2001], isotonic regression [Zadrozny and Elkan, 2002], Bayesian binning into quantiles [Naeini and
Cooper, 2016], Beta [Kull et al., 2017] and Dirichlet calibration [Kull et al., 2019]. Recently, Gupta
et al. [2021] proposed a binning-free calibration measure based on the Kolmogorov-Smirnov test.
In this approach, the recalibration function is obtained via spline-fitting, rather than minimizing a
loss function on a calibration set. Ma et al. [2021] integrate ensamble-based and post-hoc calibration
methods in an accuracy-perserving truth discovery framework. Zhao et al. [2021] introduce a new
notion of calibration, called decision calibration, however, they do not propose an estimator of
calibration error with statistical guarnatees.
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Trainable calibration strategies integrate a differentiable calibration measure into the training
objective. One of the earliest approaches is regularization by penalizing low entropy predictions
[Pereyra et al., 2017]. Similarly to temperature scaling, it has been shown that entropy regularization
needlessly suppresses high confidence scores of correct predictions [Kumar et al., 2018]. Another
popular strategy is MMCE (Maximum Mean Calibration Error) [Kumar et al., 2018], where the
entropy regularizer is replaced by a kernel-based surrogate for the calibration error that can be
optimized alongside NLL. It has been shown that label smoothing [Szegedy et al., 2016, Müller et al.,
2019], i.e. training models with a weighted mixture of the labels instead of one-hot vectors, also
improves model calibration. Liang et al. [2020] propose to add the difference between predicted
confidence and accuracy as auxiliary term to the cross-entropy loss. Focal loss [Mukhoti et al., 2020,
Lin et al., 2017] has recently been empirically shown to produce better calibrated models than many
of the alternatives, but does not estimate a clear quantity related to calibration error. Bohdal et al.
[2021] derive a differentiable approximation to the commonly-used binned estimator of calibration
error by computing differentiable approximations to the 0/1 loss and the binning operator. However,
this approach does not eliminate the dependence on the binning scheme and it is not clear how it can
be extended to calibration of the whole probability vector.

Kernel density estimation [Parzen, 1962, Rosenblatt, 1956, Silverman, 1986] is a non-parametric
method to estimate a probability density function from a finite sample. Zhang et al. [2020] propose a
KDE-based estimator of the calibration error (Mix-n-Match) for measuring calibration performance.
Although they demonstrate consistency of the method, it requires a numerical integration step that
is infeasible in high dimensions. In practice, they only implemented binary calibration, and not
canonical calibration.

Although many calibration strategies have been empirically shown to decrease the calibration error,
very few of them are based on an estimator of miscalibration. Our estimator is the first consistent,
differentiable estimator with favourable scaling properties that has been successfully applied to the
estimation of Lp canonical calibration error in the multi-class setting.

3 Methods

We study a classical supervised classification problem. Let (Ω,A,P) be a probability space, where
Ω is the set of possible outcomes, A = A(Ω) is the sigma field of events and P : A → [0, 1] is a
probability measure, let X = Rd and Y = {1, ...,K}. Let x : Ω → X and y : Ω → Y be random
variables, while realizations are denoted with subscripts. Suppose we have a model f : X → △K ,
where △K denotes the K − 1 dimensional simplex as obtained, e.g., from the output of a final
softmax layer in a neural network. We measure the (mis-)calibration of the model in terms of Lp

calibration error, defined below.
Definition 3.1 (Calibration error, [Naeini et al., 2015, Kumar et al., 2019, Wenger et al., 2020]). The
Lp calibration error of f is:

CEp(f) =

(
E
[∥∥∥E[y | f(x)]− f(x)

∥∥∥p
p

]) 1
p

. (1)

We note that we consider multiclass calibration, and that f(x) and the conditional expectation in
Equation (1) therefore map to points on a probability simplex. We say that a classifier f is perfectly
calibrated if CEp(f) = 0.

In order to empirically compute the conditional expectation in Equation (1), we need to perform
density estimation over the probability simplex. In a binary setting, this has traditionally been done
with binned estimates [Naeini et al., 2015, Guo et al., 2017, Kumar et al., 2019]. However, this is
not differentiable w.r.t. the function f , and cannot be incorporated into a gradient-based training
procedure. Furthermore, binned estimates suffer from the curse of dimensionality and do not have
a practical extension to multiclass settings. We consider an estimator for the CEp based on Beta
and Dirichlet kernel density estimates in the binary and multiclass setting, respectively. We require
that this estimator is consistent and differentiable, such that we can train it in a calibration error
regularized risk minimization framework. This estimator is given by:

̂CEp(f)p =
1

n

n∑
j=1

[∥∥∥ ̂E[y | f(x)]
∣∣∣
f(xj)

− f(xj)
∥∥∥p
p

]
, (2)
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where ̂E[y | f(x)]
∣∣∣
f(xj)

denotes ̂E[y | f(x)] evaluated at f(x) = f(xj). Let px,y(xi, yi) =

py|x=xi
(yi) px(xi) be the joint density. Then we define the estimator of the conditional expec-

tation as follows:

E[y | f(x)] =
∑
yk∈Y

yk py|f(x)(yk) =

∑
yk∈Y yk pf(x),y(f(x), yk)

pf(x)(f(x))

≈
∑n

i=1 k(f(x); f(xi))yi∑n
i=1 k(f(x); f(xi))

=: ̂E[y | f(x)] (3)

where k is the kernel of a kernel density estimate evaluated at point x and pf(x) is uniquely determined
by px and f .
Proposition 3.2. Assuming that pf(x)(f(x)) is Lipschitz continuous over the interior of the simplex,

there exists a kernel k such that ̂E[y | f(x)] is a pointwise consistent estimator of E[y | f(x)], that is:

plim
n→∞

∑n
i=1 k(f(x); f(xi))yi∑n
i=1 k(f(x); f(xi))

=

∑
yk∈Y yk pf(x),y(f(x), yk)

pf(x)(f(x))
. (4)

Proof. Let k be a Dirichlet kernel [Ouimet and Tolosana-Delgado, 2022]. By the consistency of
the Dirichlet kernel density estimators [Ouimet and Tolosana-Delgado, 2022, Theorem 4] Lip-
schitz continuity of the density over the simplex is a sufficient condition for uniform conver-
gence of the kernel density estimate. This in turn implies that for a given f , for all f(x) ∈
(0, 1), 1

n

∑n
i=1 k(f(x); f(xi))yi

p−→
∑

yk∈Y yk pf(x),y(f(x), yk) and 1
n

∑n
i=1 k(f(x); f(xi))

p−→
pf(x)(f(x)). Let g(x) = 1/x, then the set of discontinuities of g applied to the denominator of the
l.h.s. of (4) has measure zero since 1

n

∑n
i=1 k(f(x); f(xi)) = 0 with probability zero. From the con-

tinuous mapping theorem [Mann and Wald, 1943], it follows that n/(
∑n

i=1 k(f(x); f(xi)))
p−→

1/pf(x)(f(x)). Since products of convergent (in probability) sequences of random vari-
ables converge in probability to the product of their limits [Resnick, 2019], we have that∑n

i=1 k(f(x); f(xi))yig(
∑n

i=1 k(f(x); f(xi)))
p−→

∑
yk∈Y yk pf(x),y(f(x), yk)g(pf(x)(f(x))),

which is equal to the r.h.s. of (4).

The most commonly used loss functions are designed to achieve consistency in the sense of Bayes
optimality under risk minimization, however, they do not guarantee calibration - neither for finite
samples nor in the asymptotic limit. Since we are interested in models f that are both accurate and
calibrated, we consider the following optimization problem bounding the calibration error CE(f):
f = argminf∈F Risk(f), s.t. CE(f) ≤ B for some B > 0, and its associated Lagrangian:

f = argmin
f∈F

(
Risk(f) + λ · CE(f)

)
. (5)

Mean squared error in binary classification As a first instantiation of this framework we consider
a binary classification setting, with mean squared error MSE(f) = E[(f(x)−y)2] as the risk function,
jointly optimized with the L2 calibration error CE2:

f = argmin
f∈F

(
MSE(f) + λCE2(f)

2
)
= argmin

f∈F

(
MSE(f) + γE

[
E[y | f(x)]2

])
(6)

where γ = λ
λ+1 ∈ [0, 1). The full derivation using the MSE decomposition [Murphy, 1973, Degroot

and Fienberg, 1983, Kuleshov and Liang, 2015, Nguyen and O’Connor, 2015] is given in Appendix
A. For optimization we wish to find an estimator for E[E[y | f(x)]2]. Building upon Equation (3), a
partially debiased estimator can be written as:

̂
E
[
E[y | f(x)]2

]
≈ 1

n

n∑
j=1

(∑
i̸=j k(f(xj); f(xi))yi

)2
−
∑

i ̸=j (k(f(xj); f(xi))yi)
2(∑

i ̸=j k(f(xj); f(xi))
)2

−
∑

i ̸=j (k(f(xj); f(xi)))
2

. (7)

Thus, the conditional expectation is estimated using a ratio of unbiased estimators of the square of a
mean.
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Proposition 3.3. Equation (7) is a ratio of two U-statistics and has a bias converging as O
(
1
n

)
.

The proof is given in Appendix B.
Proposition 3.4. There exist de-biasing schemes for the ratios in Equation (7) and Equation (3) that
achieve an improved O

(
1
n2

)
convergence of the bias.

Proofs are given in Appendix C and D.

In a binary setting, the kernels k(·, ·) are Beta distributions defined as:

kB(f(xj), f(xi)) := f(xj)
αi−1(1− f(xj))

βi−1 Γ(αi + βi)

Γ(αi) Γ(βi)
, (8)

with αi =
f(xi)
h + 1 and βi =

1−f(xi)
h + 1 [Chen, 1999, Bouezmarni and Rolin, 2003, Zhang and

Karunamuni, 2010], where h is a bandwidth parameter in the kernel density estimate that goes to 0 as
n → ∞. We note that the computational complexity of this estimator is O(n2). If we would use this
within a gradient descent training procedure, the density can be estimated using a mini-batch and
therefore the O(n2) complexity is w.r.t. the size of a mini-batch, not the entire dataset.

The estimator in Equation (7) is a ratio of two second order U-statistics that converge as n−1/2

[Ferguson, 2005]. Therefore, the overall convergence will be n−1/2. Empirical convergence rates are
calculated in Appendix G and shown to be close to the theoretically expected value.

Multiclass calibration with Dirichlet kernel density estimates There are several definitions of
multiclass calibration that vary in terms of how strictly they define the calibration of the probability
vector f(x). The strongest notion of multiclass calibration, and the one that we focus on in this
paper, is canonical (also called multiclass or distribution) calibration [Bröcker, 2009, Kull and Flach,
2015, Vaicenavicius et al., 2019], which requires that the whole probability vector f(x) is calibrated
(Definition 3.1). Its estimator is:

̂CEp(f)p =
1

n

n∑
j=1

∥∥∥∥∥
∑

i̸=j kDir(f(xj); f(xi))yi∑
i ̸=j kDir(f(xj); f(xi))

− f(xj)

∥∥∥∥∥
p

p

(9)

where kDir is a Dirichlet kernel defined as:

kDir(f(xj), f(xi)) =
Γ(
∑K

k=1 αik)∏K
k=1 Γ(αik)

K∏
k=1

f(xj)
αik−1
k (10)

with αi =
f(xi)
h +1 [Ouimet and Tolosana-Delgado, 2022]. As before, the computational complexity

is O(n2), irrespective of p.

This estimator is differentiable and furthermore, the following proposition holds:
Proposition 3.5. The Dirichlet kernel based CE estimator is consistent when pf(x)(f(x)) is Lipschitz
continuous:

plim
n→∞

1

n

n∑
j=1

∥∥∥∥∥
∑n

i ̸=j kDir(f(xj); f(xi))yi∑n
i ̸=j kDir(f(xj); f(xi))

− f(xj)

∥∥∥∥∥
p

p

= E
[∥∥∥E[y | f(x)]− f(x)

∥∥∥p
p

]p
.

Proof. Dirichlet kernel estimators are consistent when the density is Lipschitz continuous over the
simplex [Ouimet and Tolosana-Delgado, 2022, Theorem 4], consequently, by Proposition 3.2 the
term inside the norm is consistent for any fixed f(xj) (note that summing over i ̸= j ensures that the
ratio of the KDE’s does not depend on the outer summation). Moreover, for any convergent sequence
also the norm of that sequence converges to the norm of its limit. Ultimately, the outer sum is merely
the sample mean of consistent summands, which again is consistent.

With this development, we have for the first time a consistent, differentiable, and tractable estimator
of Lp canonical calibration error with O(n2) computational cost and O(n−1/2) convergence rate,
with a debiasing scheme that achieves O(n−2) bias for p ∈ {1, 2}.
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4 Empirical validation of ECEKDE

Accurately evaluating the calibration error is a crucial step towards designing trustworthy models that
can be used in societally important settings. The most widely used metric for evaluating miscalibration,
and the only other estimator that can be straightforwardly extended to measure canonical calibration,
is the histogram-based estimator ECEbin. However, as discussed in Vaicenavicius et al. [2019],
Widmann et al. [2019], Ding et al. [2020], Ashukha et al. [2020], it has numerous flaws, such as: (i) it
is sensitive to the binning scheme (ii) it is severely affected by the curse of dimensionality, as the
number of bins grows exponentially with the number of classes (iii) it is asymptotically inconsistent
in many cases.

To investigate its relationship with our estimator ECEKDE , we first introduce an extension of the
top-label binned estimator to the probability simplex in the three class setting. We start by partitioning
the probability simplex into equally-sized, triangle-shaped bins and assign the probability scores to the
corresponding bin, as shown in Figure 1a. Then, we define the binned estimate of canonical calibration
error as follows: CEp(f)

p ≈ E
[
∥H(f(x))− f(x)∥pp

]
≈ 1

n

∑n
i=1 ∥H(f(xi))− f(xi)∥pp, where

H(f(xi)) is the histogram estimate, shown in Figure 1b. The surface of the corresponding Dirichlet
KDE is presented in Figure 1c. See Appendix F for (i) an experiment investigating their relationship
for the three types of calibration (top-label, marginal, canonical), and with varying number of points
used for the estimation, and (ii) another example of the binned estimator and Dirichlet KDE on
CIFAR-10.
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Figure 1: Extension of the binned estimator ECEbin to the probability simplex, compared with
ECEKDE . The ECEKDE achieves a better approximation to the finite sample, and accurately
models the fact that samples tend to be concentrated near low dimensional faces of the simplex.

Synthetic experiments We consider an extension of ECEbin to arbitrary number of classes and
investigate its performance compared to ECEKDE . Since on real data the ground truth calibration
error is unknown, we generate synthetic data with known transformations, with the following
procedure. First, we sample uniformly from the simplex using the Kraemer algorithm [Smith and
Tromble, 2004]. Then, we apply temperature scaling with t1 = 0.6 to simulate realistic scenarios
where the probability scores are concentrated along lower dimensional faces of the simplex. We
generate ground truth labels according to the sampled probabilities, and therefore, obtain a perfectly
calibrated classifier. Subsequently, the classifier is miscalibrated by additional temperature scaling
with t2 = 0.6. Figure 2a depicts the performance of the two estimators as a function of the sample
size on generated data for 4 and 8 classes. ECEKDE converges to the ground truth value obtained
by integration in both cases, whereas ECEbin provides poor estimates even with 20000 points.
In another experiment with synthetic data we look at the bias of the sharpness3 term in a binary setting.
In Figure 2b we plot the estimated value of the sharpness term for varying number of samples, both
using the partially debiased ratio from Equation (7), and the ratio debiased with the scheme introduced
in Appendix D. A sigmoidal function is applied to the calibrated data to obtain an uncalibrated sample
that is used to compute the partially debiased and the fully debiased ratio of the sharpness term. The
ground truth value is obtained by using 100 million samples to compute the ratio with the partially
debiased version, as it converges asymptotically to the true value due to its consistency. We use a
3 The sharpness is defined as Var(E[y | f(x)]) [Kuleshov and Liang, 2015]. Here we neglect the term that does

not depend on f(x), and thereby refer to E
[
E[y | f(x)]2

]
as the sharpness.
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bandwidth of 0.5 and average over 10000 repetitions for each number of samples that range from 32
to 16384. We fix the location of the KDE at f(xj) = 0.17.
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Figure 2: 2a Performance of ECEbin and ECEKDE on synthetic data for varying number of classes,
as a function of the sample size. Ground truth represents the true value of the integral. ECEbin is
calculated using several common choices for the number of bins (n_bins represents number of bins
per-class.) n_bins∗ and b∗ are found as optimal values according to Doane’s formula [Doane, 1976]
and LOO MLE, respectively. ECEKDE converges to the true value in all settings, in contrast to
ECEbin. 2b Sharpness term evaluated for different numbers of samples with the partially debiased
ratio from Equation (7), and with the debiasing scheme derived in Appendix D on synthetic data.

5 Calibration regularized training

Empirical setup To showcase our estimator in applications where canonical calibration is crucial,
we consider two medical datasets, namely Kather and DermaMNIST. The Kather dataset [Kather et al.,
2016] consists of 5000 histological images of human colorectal cancer and it has eight different classes
of tissue. DermaMNIST [Yang et al., 2021] is a pre-processed version of the HAM10000 dataset
[Tschandl et al., 2018], containing 10015 dermatoscopic images of skin lesions, categorized in seven
classes. Both datasets have been collected in accordance with the Declaration of Helsinki. According
to standard practice in related works, we trained ResNet [He et al., 2016], ResNet with stochastic
depth (SD) [Huang et al., 2016], DenseNet [Huang et al., 2017] and WideResNet [Zagoruyko and
Komodakis, 2016] networks also on CIFAR-10/100 [Krizhevsky, 2009]. We use 45000 images for
training on the CIFAR datasets, 4000 for Kather and 7007 for DermaMNIST. The code is available at
https://github.com/tpopordanoska/ece-kde.

Baselines Cross-entropy. The first baseline model is trained using cross-entropy (XE), with the
data preprocessing, training procedure and hyperparameters described in the corresponding paper for
the architecture.

Trainable calibration strategies. KDE-XE denotes the joint training of XE with our proposed
estimator ECEKDE , as defined in Equation (9). MMCE [Kumar et al., 2018] is a differentiable
measure of calibration with a property that it is minimized at perfect calibration, i.e., MMCE is 0 if
and only if CEp = 0. It is used as a regulariser alongside NLL, with the strength of regularization
parameterized by λ. Focal loss (FL) [Mukhoti et al., 2020] is an alternative to the cross-entropy
loss, defined as Lf = −(1− f(y|x))γ log(f(y|x)), where γ is a hyperparameter and f(y|x) is the
probability score that a neural network f outputs for a class y on an input x. Their best-performing
approach is the sample-dependent FL-53, where γ = 5 for f(y|x) ∈ [0, 0.2), and γ = 3 otherwise.

Post-hoc calibration strategies. Guo et al. [2017] investigated the performance of several post-hoc
calibration methods and found temperature scaling to be a strong baseline, which we use as a
representative of this group. It works by scaling the logits with a scalar T > 0, typically learned on a
validation set by minimizing NLL. Following Kumar et al. [2018] and Mukhoti et al. [2020], we also
use temperature scaling as a post-processing step for our method.
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Metrics We report L1 canonical calibration using our ECEKDE estimator, calculated according
to Equation (9). Additional experiments with L1 and L2 top-label calibration on CIFAR-10/100 can
be found in Appendix E.
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Figure 3: Effect of the bandwidth b on
the shape of the estimate.

Hyperparameters A crucial parameter for KDE is the
bandwidth b, a positive number that defines the smoothness
of the density plot. Poorly chosen bandwidth may lead
to undersmoothing (small bandwidth) or oversmoothing
(large bandwidth), as shown in Figure 3. A commonly
used non-parametric bandwidth selector is maximum like-
lihood cross validation [Duin, 1976]. For our experiments
we choose the bandwidth from a list of possible values
by maximizing the leave-one-out likelihood (LOO MLE).
The λ parameter for weighting the calibration error w.r.t
the loss is typically chosen via cross-validation or using
a holdout validation set. We found that for KDE-XE, val-
ues of λ ∈ [0.001, 0.2] provide a good trade-off in terms
of accuracy and calibration error. The p parameter is se-
lected depending on the desired Lp calibration error and
the corresponding theoretical guarantees. The rest of the
hyperparameters for training are set as proposed in the corresponding papers for the architectures we
benchmark. In particular, for the CIFAR-10/100 datasets we used a batch size of 64 for DenseNet
and 128 for the other architectures. For the medical datasets, we used a batch size of 64, due to their
smaller size.

5.1 Experiments

An important property of our ECEKDE estimator is differentiability, allowing it be used in a
calibration regularized training framework. In this section, we benchmark KDE-XE with several
baselines on medical diagnosis applications, where the calibration of the whole probability vector is
of particular interest. For completeness, we also include an experiment on CIFAR-10.

Table 2 summarizes the canonical L1 ECEKDE and Table 3 the accuracy, measured across multiple
architectures. The bandwidth is chosen by LOO MLE. For MMCE and KDE-XE, we train the models
with several values for the regularization weight, and report the best performing one. In Table 2 we
notice that KDE-XE consistently achieves very competitive ECE values, while also boosting the
accuracy, as shown in Table 3. Interestingly, we observe that temperature scaling does not improve
canonical calibration error, contrary to its reported improvements on top-label calibration. This
observation that temperature scaling is less effective for stronger notions of calibration is consistent
with a similar finding in Kull et al. [2019], where the authors show that although the temperature-
scaled model has well calibrated top-label confidence scores, the calibration error is much larger for
class-wise calibration.

Table 2: Canonical L1 ECEKDE (↓) for different loss functions and architectures, both trained from
scratch (Pre T) and after temperature scaling on a validation set (Post T). Best results across Pre T
methods are marked in bold.

Dataset Model XE MMCE FL-53 KDE-XE (Our)
Pre T Post T Pre T Post T Pre T Post T Pre T Post T

Kather

ResNet-110 0.335 0.304 0.343 0.300 0.325 0.248 0.311 0.289
ResNet-110 (SD) 0.329 0.334 0.235 0.159 0.209 0.122 0.198 0.147

Wide-ResNet-28-10 0.177 0.259 0.201 0.241 0.270 0.328 0.162 0.212
DenseNet-40 0.244 0.251 0.159 0.218 0.165 0.207 0.114 0.154

DermaMNIST

ResNet-110 0.579 0.602 0.575 0.603 0.684 0.618 0.467 0.516
ResNet-110 (SD) 0.534 0.571 0.470 0.526 0.567 0.594 0.461 0.538

Wide-ResNet-28-10 0.546 0.599 0.470 0.512 0.623 0.608 0.455 0.599
DenseNet-40 0.573 0.578 0.514 0.558 0.577 0.557 0.366 0.418

CIFAR-10

ResNet-110 0.133 0.170 0.171 0.196 0.138 0.171 0.126 0.163
ResNet-110 (SD) 0.132 0.172 0.164 0.203 0.156 0.201 0.178 0.223

Wide-ResNet-28-10 0.083 0.098 0.143 0.155 0.147 0.177 0.077 0.091
DenseNet-40 0.104 0.131 0.133 0.155 0.081 0.081 0.098 0.124
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Table 3: Accuracy (↑) computed for different architectures. Best results are marked in bold.
Dataset Model XE MMCE FL-53 KDE-XE (Our)

Kather

ResNet-110 0.840 0.860 0.844 0.860
ResNet-110 (SD) 0.870 0.900 0.885 0.914

Wide-ResNet-28-10 0.933 0.899 0.873 0.921
DenseNet-40 0.913 0.93 0.916 0.941

DermaMNIST

ResNet-110 0.720 0.721 0.674 0.744
ResNet-110 (SD) 0.743 0.753 0.689 0.764

Wide-ResNet-28-10 0.736 0.741 0.715 0.754
DenseNet-40 0.741 0.758 0.705 0.748

CIFAR-10

ResNet-110 0.925 0.929 0.922 0.929
ResNet-110 (SD) 0.926 0.925 0.92 0.907

Wide-ResNet-28-10 0.954 0.947 0.936 0.954
DenseNet-40 0.947 0.944 0.948 0.947

Figure 4 shows the performance of several architectures and datasets in terms of accuracy and L1

ECEKDE for various choices of the regularization parameter for MMCE and KDE-XE. The 95%
confidence intervals for ECEKDE are calculated using 100 and 10 bootstrap samples on the medical
datasets and CIFAR-10, respectively. In all settings, KDE-XE Pareto dominates the competitors, for
several choices of λ. For example, on DermaMNIST trained with DenseNet, KDE-XE with λ = 0.2
reduces ECEKDE from 66% to 45%.
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Figure 4: Canonical calibration on various datasets and architectures. The numbers next to the points
denote the value of the regularization parameter. KDE-XE outperforms the competitors, both in terms
of accuracy and calibration error, for several choices of λ.

Table 4: Training time [sec] per epoch for XE and
KDE-XE for different models on CIFAR-10.

Dataset Model XE KDE-XE

CIFAR-10

ResNet-110 51.8 53.0
ResNet-110 (SD) 45.0 46.0

Wide-ResNet-28-10 152.9 154.9
DenseNet-40 103.2 106.8

Training time measurements In Table 4 we
summarize the running time per epoch of the
four architectures, with regularization (KDE-
XE), and without regularization (XE). We ob-
serve only an insignificant impact on the train-
ing speed when using KDE-XE, dispelling any
concerns w.r.t. the computational overhead.

To summarize, the experiments show that our
estimator is consistently producing competitive
calibration errors with other state-of-the-art ap-
proaches, while maintaining accuracy and keep-
ing the computational complexity at O(n2). We note that within the proposed calibration-regularized
training framework, this complexity is w.r.t. to a mini-batch, and the added cost is less than a couple
percent. Furthermore, the O(n2) complexity shows up in other related works [Kumar et al., 2018,
Zhang et al., 2020], and is intrinsic to the problem of density estimators of calibration error. As
a future work, a larger scale benchmarking will be beneficial for exploring the limits of canonical
calibration using Dirichlet kernels.
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6 Conclusion

In this paper, we proposed a consistent and differentiable estimator of canonical Lp calibration error
using Dirichlet kernels. It has favorable computational and statistical properties, with a complexity of
O(n2), convergence of O(n−1/2), and a bias that converges as O(n−1), which can be further reduced
to O(n−2) using our debiasing strategy. The ECEKDE can be directly optimized alongside any
loss function in the existing batch stochastic gradient descent framework. Furthermore, we propose
using it as a measure of the highest form of calibration, which requires the entire probability vector
to be calibrated. To the best of our knowledge, this is the only metric that can tractably capture this
type of calibration, which is crucial in safety-critical applications where downstream decisions are
made based on the predicted probabilities. We showed empirically on a range of neural architectures
and datasets that the performance of our estimator in terms of accuracy and calibration error is
competitive against the current state-of-the-art, while having superior properties as a consistent
estimator of canonical calibration error.
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