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Abstract

Spike camera is an emerging bio-inspired vision sensor with ultra-high temporal
resolution. It records scenes by accumulating photons and outputting continuous
binary spike streams. Optical flow is a key task for spike cameras and their
applications. A previous attempt has been made for spike-based optical flow.
However, the previous work only focuses on motion between two moments, and it
uses graphics-based data for training, whose generalization is limited. In this paper,
we propose a tailored network, Spike2Flow that extracts information from binary
spikes with temporal-spatial representation based on the differential of spike firing
time and spatial information aggregation. The network utilizes continuous motion
clues through joint correlation decoding. Besides, a new dataset with real-world
scenes is proposed for better generalization. Experimental results show that our
approach achieves state-of-the-art performance on existing synthetic datasets and
real data captured by spike cameras. The source code and dataset are available at
https://github.com/ruizhao26/Spike2Flow.

1 Introduction

Neuromorphic camera (NeurCam) is a kind of emerging vision sensor [35; 43; 46; 18; 11; 19] inspired
by retina. Using asynchronous sampling models, NeurCams can record the natural scene continuously
by firing sparse spike streams with an ultra-high temporal resolution. Besides, NeurCams have high
dynamic range, low latency, and low energy consumption. Compared with traditional cameras with
single-exposure imaging, NeurCams are more suitable for high-speed imaging in application scenarios
such as unmanned aerial vehicles and chemical particle observation. One kind of NeurCams is the
event camera [35; 43; 46; 18] inspired by the peripheral retina. It asynchronously fires spikes when
the brightness change exceeds a certain threshold in the logarithmic domain. However, event cameras
can hardly recover textures due to their differential sampling model, especially for static regions.
Another kind of emerging NeurCam is the spike camera [11; 19] inspired by the fovea of retina.
Spike cameras also record the scene by firing spikes asynchronously in each pixel, but different from
event cameras that record the relative brightness changes, each pixel in spike cameras encodes the
scene by accumulating photons and firing a spike once the accumulation exceeds a certain threshold
independently. With such an integral sampling model, spike cameras can record fine textures of the
scene, which makes it more appropriate for pixel-level tasks than event cameras. Since spike cameras
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can record high-speed motion and recover the scenes well, they have shown great potential in tasks
such as video reconstruction [73; 66; 69; 75; 67; 74], denoising [61], super-resolution [65; 59] and
detection [19]. In these tasks, the relative motion between the spike camera and objects in the scene,
i.e., the optical flow, is fundamental and pivotal.

Optical flow estimation has been an important and challenging problem since it was proposed [16]. In
recent years, there are a deal of developments in optical flow [12; 23; 52; 20; 21; 62; 56; 68; 54; 27; 64].
A simple way to estimate optical flow for spike cameras is reconstructing images and use video-based
methods. However, there are two problems. Firstly, simple reconstruction methods may introduce
a lot of noise while complex methods have high computational costs [66; 69; 67; 65]. Secondly,
simple reconstruction ways such as averaging the spike streams along the temporal axis would lose
the precise temporal information in spike streams and introduce blur, which may mislead the flow
estimation. Event-based methods [71; 72; 32; 15; 14] also cannot have satisfactory performance
for optical flow estimation for spike cameras due to the difference of data modalities. Thus, more
efficient methods are needed for estimating optical flow from spike streams. Hu et al. [17] propose
SCFlow as an early exploration of this question. They design a pyramidal network and two synthetic
datasets based on graphics models to train and evaluate the network, respectively. However, the
above-mentioned method is not robust since it omits several issues:

(1) Efficient representation of binary spikes. Each spike output by the spike camera represents not
the status at the current moment but the result of the integral process of the spike. Besides, a single
spike cannot express the information of the corresponding space-time point. Using only convolution
to extract features from the spike streams may not be efficient.

(2) Continuousness of spike streams. Previous work only considers motion between two single
moments in spike streams, and it omits the continuousness information in the moving procedure.

(3) Reality of the datasets. Previous work use datasets synthesized by graphics models to train and
evaluate the network. However, there is a huge gap between virtual scenes and the real world.

In this paper, we propose the Spike2Flow to estimate flow from continuous spike streams. We
propose the differential of spike firing time (DSFT) to transform the binary spikes to better represent
the procedure of the integration for each spike. A spatial information aggregation (SIA) module
is proposed to aggregate a larger receptive field for each pixel with a self-attention mechanism.
The DSFT and SIA form the temporal-spatial representation (TSR) for spike streams. Besides, we
propose a joint correlation decoding (JCD) module to use continuous motion clues by simultaneously
estimating a series of flow fields. To train and evaluate the network in real scenes, based on scenes in
Slow Flow [25], we generate flow fields and spike streams to construct a dataset, i.e., real scenes with
spike and flow (RSSF). The main contributions of this paper can be summarized as follows:

(1) A spike-based optical flow network, Spike2Flow, is proposed. The Spike2Flow extracts features
from binary spikes with temporal-spatial representation and jointly estimates a series of flow fields to
utilize the continuousness of the moving procedure.

(2) A dataset for spike-based optical flow, real scenes with spike and flow (RSSF) is proposed. The
scenes in RSSF are from the real world, improving the generalization of networks trained by RSSF.

(3) Experiments demonstrate that the Spike2Flow achieves state-of-the-art performance on RSSF,
photo-realistic high-speed motion (PHM) dataset, and real data captured by spike cameras.

2 Related Work

Neuromorphic Cameras. Neuromorphic cameras (NeurCams) are a kind of vision sensor that gets
inspiration from the retina and works asynchronously in each pixel. Event cameras (including DVS
[35], DAVIS [43], ATIS [46], CeleX [18] and et al.) and spike cameras [11; 19] are two types of
mainstream NeurCams. Both the above-mentioned cameras record the optical scene asynchronously
in each pixel, which brings advantages for NeurCams compared with traditional cameras with a
single-exposure imaging pattern, such as ultra-high temporal resolution, high dynamic range, low
latency, and low energy consumption. Event cameras employ a differential sampling model that
only fires events when illuminance change in the logarithmic domain exceeds a certain threshold,
while spike cameras use an integral sampling model that accumulates photons and fires spikes when
the accumulation exceeds a certain threshold. Thus, the spikes output by event cameras are more

2



sparse, but �ne textures in the scene are lost especially in static regions. More details of the working
mechanism of the spike camera can be found in [17; 19; 67; 73; 69; 66].

Video-Based Optical Flow.Optical �ow estimation aims to �nd dense pixel correspondences between
two moments in videos, which has lots of applications, such as video enhancement [57; 6], frame
interpolation [26; 2; 33] and recognition [3; 9; 55]. FlowNet [12] is the �rst end-to-end �ow estimation
network trained by the synthetic FlyingChairs dataset. Subsequent works [47; 23; 52; 20; 21; 53; 68]
get inspiration from variational methods [4; 51; 49]. They introduce classical knowledge such as
the pyramid, coarse-to-�ne, and cost volume to the networks. VCN [62] and DICL [56] design new
approaches to build more robust correlation between frames. RAFT [54] builds a multi-scale all-pairs
cost volume and performs recurrent re�nement in a �xed resolution. RAFT has excellent performance
and becomes the baseline of the subsequent works [28; 60; 27; 64]. The methods mentioned above
are based on supervised learning. There are also some unsupervised optical �ow estimation networks
[41; 58; 37; 38; 36; 39; 29; 50]. Besides optical �ow between two frames, there are also methods for
�ow among multi-frames. [24; 38; 36] use temporal context by jointly estimating �ow from a frame
to its previous and future frames. [44; 48; 22] propagate the temporal information from the previous
pair of images to the next pair by passing warped �ow or latent states of the decoder.

Event-Based Optical Flow.There are also several works on event-based optical �ow. EV-FlowNet
[71] is the �rst end-to-end deep network, which is trained based on MVSEC [70] dataset. It is
in an encoder-decoder fashion and uses gray images from the active pixel sensor (APS) of event
cameras to construct the photometric loss. Zhu et al. [72] turn to use the average timestamp of
warped events to construct the loss function, leaving the help of gray images. Spike-FlowNet [32]
uses both spiking neural networks (SNNs) and analog neural networks (ANNs) to encode the events,
achieving lower energy consumption. STEFlow [10] uses recurrent networks to encode the event
stream and constructs correlation among features from events through time. Hagenaars et al. [15]
estimate event-based �ow using deep networks composed fully of SNNs. Gehrig et al. [14] propose
E-RAFT to implement all-pairs correlation and recurrent re�nement in event-based �ow based on a
more complex autonomous driving dataset DSEC [13].

3 Approaches

3.1 Working Mechanism of Spike Cameras

The spike camera is composed of an array of pixels working asynchronously. Each pixel of a spike
camera is composed of three main components: photon-receptor, integrator, and comparator. The
integrator accumulates the photoelectrons from the photon-receptor and transfers them to the voltage.
The comparator compares the accumulation with the threshold continuously. Once the voltage of
the integrator exceeds a certain threshold, the camera �res a spike and resets the accumulation. The
voltage of the accumulator can be formulated as:

A(x; t) =
Z t

0
� � I (x ; � )d� mod � (1)

whereA(x; t) is the voltage of the accumulator at pixelx = ( x; y). I (x ; � ) is the lights intensity in
pixel x at time� . � is the threshold of the comparator. The above-mentioned working mechanism
is calledIntegral-and-Fire(IF). With such an IF procedure, the spike cameras can �re spikes
asynchronously and continuously. The reading time of the spikes is quanti�ed with a periodT, and
theT can reach a micro-second level. The spike camera �res spikes at timenT; n 2 N. Thus, the
output of the spike camera is a spatial-temporal binary streamS in H � W � N size. TheH andW
are the height and width of the sensor, respectively, andN is the temporal steps of the spike stream.

3.2 Problem Statement and Data Generation

Problem Statement.Optical �ow estimation for spike cameras is to estimate the pixel-level motion
�eld of the projection from the optical scene to the sensor plane. Suppose that we denote a binary
spike stream asS = f S(x; t) j x 2 
 ; t 2 N; t � ng, if we settstart = t0 as the starting moment,
the optical �ow can be denoted asw = f w(x; t j t0) j t 2 N; t0 � t � ng. The ideally meaning of
w can be formulated as:

S (x + w(x; t j t0); t) ! S (x; t0) ; t 2 N ; t0 � t � n (2)
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Figure 1: The overall architecture of the Spike2Flow. The input spike stream is �rstly clipped to
several sub-streams. Each sub-stream is extracted to be a feature for correlation through temporal-
spatial representation, and the �rst feature constructs correlations with all other features. The recurrent
decoder estimates �ow �elds from all the correlations and the context feature.

where! means pixel-level registration. Given a spike streamS, the target of optical �ow estimation
is estimatingw. The data format of the spike stream is continuous binary matrices, which is different
from the classic data pattern of video. Correspondingly, the processing method should also be
different. Firstly, unlike a pixel in videos, a single spike represents the result of the integral procedure
rather than the status at the current moment, and a single spike cannot express spatial-temporal
information. Secondly, the spike streams are more continuous than classic videos. Thus, taking
advantage of the continuousness for analyzing the scene is a challenge and an opportunity.

Data Generation.SCFlow proposed two synthetic datasets through a graphics simulator for training
and evaluation, respectively. However, there are several limitations of the simulating and rendering,
such as unrealistic textures, overly simpli�ed lighting conditions, and unreasonable appearance.
The huge gap between the synthetic scenes and the real world causes the models often have poor
generalization on the real domain due to the gap [34; 45; 63; 7]. Thus, it is essential to train networks
with data from real scenes. To improve the generalization on the real domain, we use a high-speed
dataset Slow Flow [25] with a high spatial and temporal resolution to synthesize an optical �ow
dataset, i.e., real scenes with spike and �ow (RSSF) for spike cameras with real scenes. We use the
raw data of Slow Flow to generate RSSF. The raw data have41scenes and sum to tens of thousands of
frames, and there are three kinds of spatial resolution:2560� 2048; 2560� 1440, and2048� 1152.
We select11 scenes to generate the testing set and the other30 scenes to generate the training set.
More details are included in supplementary materials. The generation pipeline is as follows.

Firstly, we imitate the image signal processor (ISP) to process the raw data in Bayer pattern to color
images, where the operations include demosaicing, white balance, and intensity mapping. The image
frames are2� downsampled spatially and temporally for saving computing and storage sources.
Secondly, we use GMA [27] network trained on data mixed by Sintel [5], KITTI [ 42], HD1K [31]
and FlyingThings [40] to generate the reference optical �ow of the image frames. Thirdly, We use
the reference �ow to simulate the motion of the scene and construct a virtual spike camera to �re
the spike streams. We interpolate20 time steps of images between every two adjacent frames for
generating spikes, and we use10 times temporal oversampling to improve the precision of the scene.
The ground truth contains �ow for the duration of20; 40, and60 interpolated images, denoted as
dt = 20; dt = 40, anddt = 60, respectively. It is noted that although the reference �ow is not
absolutely accurate, it is still reliable due to the following reasons.

(1) High-quality data. The images for generating the spike have a high spatial and temporal
resolution, which can approximate the ideal high-speed scenes that we can hardly get in the real
world. Estimating the reference �ow from such high-quality data is reliable.

(2) Correspondence between spike and reference �ow.Although the reference �ow �elds are not
absolutely accurate for color frames, they correspond to the spike streams since the spike streams are
generated from the reference motion. Thus, the reference �ow �elds are reliable for the spike streams.
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Figure 2: Illustration of temporal-spatial representation (TSR) for spike streams. A spike sub-stream is
�rstly aggregated temporal information through the differential of spike �ring time (DSFT) transform.
A primary feature is then extracted from the DSFT to the primary feature with downsampling. Then
the primary feature is processed by the spatial information aggregation (SIA) module.

(3) Good generalization. Results in section 4.2 show satisfactory performance of our network
on PHM dataset [17] and real data. For PHM, the ground truth �ow is nearly absolutely reliable,
which indicates the generalization of synthetic data and the reliability of our training data. Good
performance on real data demonstrates the generalization of our training data on real scenes although
there is a domain gap between real and simulated spikes.

3.3 Overall Architecture of the network

The overall architecture is shown in Fig. 1. The input spike streamS is �rstly clipped to
spike sub-streamsf S0; S1; : : : ; SN g. Each sub-stream is extracted to be the feature for matching
f F M

0 ; F M
1 ; : : : ; F M

N g, which represents the central moment of the corresponding spike sub-stream,
and the �rst featureS0 is extracted to be context featureF C

0 like RAFT [54]. Noted that it is hard to
extract rich features directly from binary spike stream, we propose temporal-spatial representation
(TSR) for the above-mentioned feature extraction. To utilize the continuousness of the spike streams,
the �rst matching featureF M

0 constructs all-pairs correlationsf C1; : : : ; CN g with all other matching
features. The recurrent decoder jointly estimates �ow �elds from the central time ofS0 to the central
time of f S1; : : : ; SN g through all the correlations and the context featureF C

0 .

For better embedding the spike streams to the feature domain, we propose to aggregate the information
in the temporal and spatial domains. We design the differential of spike �ring time (DSFT) in the
temporal domain to transform the spike stream from the binary domain, which aggregates information
along the temporal axis for each pixel. Based on DSFT, the spike stream is then embedded in a
high-dimensional feature with a downsampling operation. A spatial information aggregation (SIA)
module is proposed to extract the information in the spike further. To utilize the continuousness of
spike streams, which re�ects the procedure of motion, we propose a joint correlation decoding (JCD)
module to jointly estimate a series of �ow �elds starting from the same moment.

3.4 Temporal-Spatial Representation for Spikes

Differential of Spike Firing Time. Each spike in spike streams represents the result of the integral
procedure of photons rather than status at the current moment. Different "1" correspond to various
light intensities since the "1" in the spike streams represents the number of accumulated photons rather
than the arrival rate of the photons. Using features extracted from the binary spikes for matching
may not be appropriate to re�ect the structures of scenes. We propose to represent the information
contained in the spike through the �ring time, which can better represent the arrival rate of the photons
at each pixel, i.e., the light intensity at each pixel. For better aggregating the temporal information, as
shown in Fig. 3, we propose to use the differential of spike �ring time to represent the binary spike.
If we denote the DSFT of spike streamS = S(x; t) asD = D(x; t), the DSFT transform can be
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Figure 3: Illustration of the dif-
ferential of spike �ring time
(DSFT) Transform. Each pixel
in the binary spike stream (the
�rst row in the �gure) is repre-
sented as the difference in �ring
time (the second row in the �g-
ure) of the corresponding pixel.

Figure 4: Illustration of the detailed structure of the recurrent decoder. Local correlations are looked
up from the correlation and encoded to be motion features with the corresponding �ow �elds. The
context feature and all the motion features are used to update the hidden state of the ConvGRUs. A
series of �ow �elds are decoded with different prediction heads.

formulated as:
D(x; t) = D[S(x; t)] = Tnext (x ; t) � Tpre (x ; t)
= f min( � ) j S(p; � ) = 1 ; � > t gp 2 D(x ) � f max(� ) j S(p; � ) = 1 ; � � tgp 2 D(x )

(3)

WhereD is the DSFT transform.Tnext (x ; t) andTpre (x ; t) denote the �ring time of the next and
previous spike at spatial-temporal moment(x; t). D(x) denote the domain of de�nition ofx. We
use DSFT to re�ect the �ring rate of the spikes. The �ring rate here is a statistical concept, and
the average of individual spike intervals is connected with the �ring rate. The motion in the scenes
changes the brightness, and the Poisson process of photon arrivals causes �uctuations in the �ring
rate. Thus, the �ring rate is temporally variational at each pixel. DSFT can better recover the spikes'
dynamic process than obtaining a more constant �ring rate with longer time windows.

Spatial Information Aggregation. A single spike in space-time coordinates can hardly describe the
scene, and we need a group of spikes to represent each pixel. The DSFT aggregates the information
in the temporal domain. However, the DSFT is still �uctuating since the arrival of the photons follows
the Poisson process, and the �ring rate of spikes exhibits remarkable randomness. The �uctuation of
spikes can make the value of features for matching unstable. To enhance the features of spike for
better matching, we propose a spatial information aggregation (SIA) module to integrate context
information with a larger receptive �eld. As shown on the right side of Fig. 2, we use the self-attention
mechanism to aggregate the spatial information, which can be formulated by:

F = Fp + softmax
�
� (Fp ) � (Fp )T �

� g(Fp ) (4)

WhereF denotes the feature �nally output by the encoder.Fp denotes the primary feature before
SIA. �; � , andg embed the primary feature to query, key, and value, respectively. Through the SIA
module, each pixel gets a long-range aggregation with pixels in its relative area.

3.5 Joint Decoding of Correlation

There is more continuously temporal information in spike streams compared with videos. To extract
the continuous moving procedure of the optical scene in spike, we propose to jointly decode a series
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