Supplementary

Federated Fair Model Training

The detailed workflow of our FairVFL method is summarized in Algorithm 1.

Algorithm 1: Federated Model Training in FairVFL

1: for all i in $1, 2, ..., n$ do
2: Query s_i^l from the platform P_i^l
3: end for
4: Apply M^w to learn s from $\{s_i^l | i = 1, 2, ..., n\}$ on P^w
5: Upload s to P_i^l to calculate $\frac{\partial L_i^l}{\partial s}$ and $\frac{\partial L_i}{\partial s}$
6: Use $\frac{\partial L_i^l}{\partial s}$ to update M_i^l and distribute $\frac{\partial L_i}{\partial s}$ to P_i^w
7: for all i in $1, 2, ..., m$ do
8: Map s to a_i via A_i on P_i^w
9: Select a contrastive negative sample s_i^- on P_i^w
10: Calculate $\frac{\partial L_i^a}{\partial s}$ based on Eq. 1 to update D_i^a on P_i^w
11: Calculate $\frac{\partial L_i^a}{\partial A_i}$ based on Eq. 1 to update A_i on P_i^w
12: Recalculate a_i via updated A_i
13: Upload a_i from P_i^w to P_i^a
14: Learn $\frac{\partial L_i^a}{\partial D_i^a}$ based on Eq. 5 to update D_i^a on P_i^a
15: Learn $\frac{\partial L_i^a}{\partial P_i^a}$ based on Eq. 5 on P_i^a and distribute it to P_i^w
16: Learn $\frac{\partial L_i^a}{\partial A_i}$ via $\frac{\partial L_i^a}{\partial P_i^a}$ on P_i^w to update A_i
17: Recalculate a_i via updated A_i and upload it to P_i^a
18: Learn $\frac{\partial L_i^a}{\partial P_i^a}$ based on Eq. 7 on P_i^a and distribute it to P_i^w
19: Calculate $\frac{\partial L_i^a}{\partial s}$ via $\frac{\partial L_i^a}{\partial P_i^a}$ on P_i^w
20: end for
21: Calculate $\frac{\partial L_i^a}{\partial s}$ for s based on Eq. 8 on P_i^w
22: Calculate $\frac{\partial L_i^a}{\partial M_i^a}$ via $\frac{\partial L_i^a}{\partial s}$ to update M^w on P_i^w
23: for all i in $1, 2, ..., n$ do
24: Calculate $\frac{\partial L_i}{\partial s}$ via $\frac{\partial L_i}{\partial P_i^a}$ on P_i^w and distribute it to P_i^b
25: Calculate $\frac{\partial L_i^a}{\partial M_i^a}$ via $\frac{\partial L_i}{\partial P_i^a}$ to update M_i^a on P_i^b
26: end for

Experimental Settings

Next, we will introduce the basic models used for model training in details. Since ADULT is a tabular feature dataset, we implement three basic models for modeling structural features [17] to predict income on ADULT: (1) MLP [17]: converting user features into embedding vectors and using an MLP network for income prediction. (2) TabNet [11]: using attentive feature transformer networks to model relatedness of different features and build local representations. (3) AutoInt [57]: applying multi-head self-attention network to feature embeddings to model their interactions and learn their representations. In these three methods, dimensions of feature embeddings are set to 32, and dimensions of local representations are set to 400. In addition, we choose three mainstream news recommendation models as basic models for the news recommendation task on NEWS: (1) NAML [41]: applying an attentive CNN network to learn behavior representations and an attention network to learn user representations; (2) LSTUR [11]: proposing to learn short-term user representations from recent user behaviors and long-term user representations via user ID embeddings; (3) NRMS [44]: employing multi-head self-attention networks to learn behavior and user representations. In these three methods, three types of behavior representations (e.g., clicked news) are set to 400-dimensional.
Influence of Adversarial Learning

Next, we will analyze the influence of the weights of adversarial learning on model fairness. We summarize results in Fig. 5 and have several observations. First, with the increase of λ_g, model fairness on gender can increase. This is because larger λ_g makes models pay more attention to reducing gender bias encoded in unified representations during model training. Second, when λ_g is large enough, model fairness on gender becomes stable. This is because when λ_g is large enough, gender information in unified representations can be effectively reduced. Third, with the increasing of λ_a, model fairness on age also first increases and then converges. Similarly, this is because users with similar ages usually have similar behaviors and may encode age bias in real-world data. Larger λ_a can more effectively prevent unified representations from encoding age bias from data until age bias is effectively removed.

Limitations and Future Work

Although FairVFL is effective in both model fairness and privacy protection, FairVFL may have more communication latency than other baseline methods during model training. This is because the adversarial learning and the contrastive adversarial learning in FairVFL make it need to communicate with a fairness-sensitive feature platform multiple times. In our future work, we plan to study an asynchronous communication mechanism to reduce the communication latency of FairVFL.