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1 Appendix1

1.1 Experimental Configuration2

We follow the standard practice of data augmentation in DML [3]: Image are center cropped to be3

256× 256 and resized as 288× 288 thereafter. All the models are trained for 40 epochs with batch4

size 32. We set the learning rate for embedding network as 4e − 3 and learning rate for proxies as5

4e2. We use the Adam optimizer in the model training with no weight decay or learning rate decay.6

All scripts are written in PyTorch, and run in 2x NVIDIA Titan V GPU.7

1.2 Performance Comparison of state-of-the-art DML approaches8

We show the performance comparison of different DML approaches in Figure 1, among which the9

top-3 DML papers are all using proxy-based losses.10
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Figure 1: Recall@1 on CUB200 with different DML approaches

1.3 Empirical Study on 3 DML approaches11

We start this research with an experiment by running 3 comparable leading DML approaches (i.e.,12

SoftTriple [2], Proxy-NCA++ [3], and Proxy-Anchor [1]) on the popular benchmarks as CUB200,13

CARS196, and InShop. We observe that there is high overlapping ratio on top-10 wrong testing14

classes between different trails of training and between different approaches(See Figure 2a, 2b, 2c).15

We show the testing performance in Table 1.16
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Method
Dataset CUB200 CARS196 InShop

ProxyNCA++ 69.04 ± 0.55 86.59 ± 0.19 86.19 ± 0.19
ProxyAnchor 68.61 ± 0.97 88.76 ± 0.36 87.23 ± 0.58
SoftTriple 67.94 ± 0.53 86.47 ± 0.22 85.73 ± 0.28

Table 1: Recall@1 Performance for 3 approaches on 3 datasets
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(a) Empirical study on CUB200

Seed 0

Seed 1

Seed 2

Seed 3

Seed 4Pr
ox

yN
CA

++

Seed 0

Seed 1

Seed 2

Seed 3

Seed 4

Pr
ox

yA
nc

ho
r

0 20 40 60 80

Testing Classes

Seed 0

Seed 1

Seed 2

Seed 3

Seed 4

So
ftT

rip
le

(b) Empirical study on CARS196
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(c) Empirical study on InShop

Figure 2: Empirical study: Each row represents a training trail with a specific seed. The first 5 rows
are 5 runs from Proxy-NCA++, the next 5 rows are ProxyAnchor, last 5 rows are from SoftTriple.
Each column represents a testing class, where the top 10 most frequently wrong testing classes are
highlighted. We observe the highlighted columns are well aligned between different runs, different
approaches, which indicates they are sharing similar generalization errors.

1.4 Mislabel Detection on 1% and 5% Mislabelled Dataset17

Figure 3 shows the mislabelled detection accuracy on 1% noisy dataset. And Figure 4 shows the18

mislabelled detection accuracy on 5% noisy dataset.19
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Figure 3: The performance of detecting 1% mislabelled samples on CUB200 (Left), CARS196
(Middle), InShop (Right)

1.5 More Examples on Agreeable/Disagreeable Confusion Pair20
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Figure 4: The performance of detecting 5% mislabelled samples on CUB200 (Left), CARS196
(Middle), InShop (Right)
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Figure 5: An example of agreeable confusion pair in CARS196 test dataset. Figure 5a and Figure 5b
is reported as a confusion pair, and Figure 5a and Figure 5c is labelled as under the same label.

(a) under class 111 (b) under class 111

Figure 6: An example of agreeable mis-similar pair in CARS196 test dataset. Figure 6a and Fig-
ure 6b is reported as a mis-similar pair.

(a) under class
99

(b) under class
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(c) under class
99

Figure 7: An example of disagreeable confusion pair in CARS196 test dataset. Figure 7a and
Figure 7b is reported as a confusion pair, and Figure 7a and Figure 7c is labelled as under the same
label.

(a) under class 99 (b) under class 99

Figure 8: An example of disagreeable mis-similar pair in CARS196 test dataset. Figure 8a and
Figure 8b is reported as a mis-similar pair.
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Figure 9: An example of agreeable confusion pair in InShop test dataset. Figure 9a and Figure 9b is
reported as a confusion pair, and Figure 9a and Figure 9c is labelled as under the same label.

(a) under class 4018 (b) under class 4018

Figure 10: An example of agreeable mis-similar pair in InShop test dataset. Figure 10a and Fig-
ure 10b is reported as a mis-similar pair.
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Figure 11: An example of disagreeable confusion pair in InShop test dataset. Figure 11a and Fig-
ure 11b is reported as a confusion pair, and Figure 11a and Figure 11c is labelled as under the same
label.

(a) under class 4006 (b) under class 4006

Figure 12: An example of disagreeable mis-similar pair in InShop test dataset. Figure 12a and
Figure 12b is reported as a mis-similar pair.
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