
Appendix

A: In LECO, label new data or relabel the old?

In LECO, the foremost question to answer is whether to label new data or relabel the old (Fig. 2-
right). As discussed in the main paper, both labeling protocols have been used in the community.
For example, in the context of autonomous driving research, Argoverse labeled new data with new
ontology in its updated version (from V1.0 [12] to V2.0 [78]), whereas Mapillary related the old data
from its V1.2 [55] to V2.0 [52]. Our extensive experiments convincingly demonstrate that a better
strategy is to label new data, simply because doing so provides more (labeled) data.

Data acquisition (for new data) might be costly. However, many real-world applications acquire data
continuously regardless of the cost. For example, autonomous vehicle fleets collect data continuously,
so do surveillance cameras that record video frames. Therefore, labeling such new data is reasonable
in the real world.

Figure 2: Left: Learning with Evolving Class Ontology (LECO) requires training models in time periods (TPs)
that refine old ontologies in a coarse-to-fine fashion. This leads to a basic question: for the next TP, should one
relabel the old data or label new data? Interestingly, both labeling protocols have been used in the community
for large-scale datasets. Right: Our extensive experiments provide the (perhaps obvious) answer – one should
always annotate new data with the new ontology rather than re-annotating the old. One reason is that the
former produces more labeled data. Following this labeling protocol and to address LECO, we leverage insights
from semi-supervised learning and learning-with-partial-labels to learn from such heterogenous annotations,
approaching the upper bound of learning from an oracle aggregate dataset with all new labels.

B: Rationale behind the selection of levels on iNaturalist

We repurpose the iNaturalist dataset to set up a LECO benchmarking protocol. The dataset has seven
levels of taxa, allowing to use such as superclasses in LECO’s time periods. To determine the levels
to use, we have two principles aiming to have a clean and challenging setup to study LECO. First,
we think it is good to have more fine-grained classes in TP1, hence we choose the most fine-grained
level “species” in TP1. Second, we think all coarse-classes should be split later to emphasize the
difficulty of learning with class-evolution, and TP0’s classification task should be challenging as well
with more classes. Therefore, we choose the “order” level which has 123 taxa. As reference, the
original iNat dataset has seven levels: kingdom (3 taxa), phylum (8), class (29), order (123), family
(339), genus (729), and species (810). The long-tailed class distributions in the two TPs are depicted
in Fig. 4.

C: Experiments on Mapillary V1.2 ! V2.0

As we briefly discussed in the main paper, Mapillary is a real-world example where a large dataset
evolved over time from V1.2 [55] to V2.0 [52]. We include additional experiments on this real-world
dataset versioning scenario. Mapillary is a rich and diverse street-level imagery dataset that was
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Figure 3: Visual illustration of LECO strategies. Left: LSSL generates pseudo new-ontology/fine labels for
old-ontology samples via semi-supervised learning (SSL). However, this ignores old-ontology/coarse labels
which might serve as coarse-level supervision. We therefore advocate for LSSL/Filter that filters out pseudo-
labels with wrong coarse labels, or LSSL/Cond that conditions leave’s probabilities based on the ground-truth
parent/coarse class. Middle: LJoint utilizes the old-ontology labels that come with the samples; to reconcile for
different labels at different TPs, it trains a model with multiple classification heads. Right: LLPL (learning-
with-partial-labels) further utilizes the taxonomic hierarchy by exploiting the fact that newly added classes in
LECO are refined from old classes. It does so by marginalizing leaves’ probabilties for their parent classes.

TP0 Distribution (123 classes) TP1 Distribution (810 classes)

iNat-LECO Per-Class Image Distributions (Y-axis is log-scaled)

Figure 4: iNat-LECO Per-Class Distributions. We plot distributions of training images for iNat-LECO in
log-scale. The x-axis are classes sorted by the number of images. The y-axis shows the number of images per
class.

collected for semantic segmentation research in the context of autonomous driving. We repurpose this
dataset for setting a LECO benchmark. Briefly, we use the ontology of Mapillary V1.2 in time period
1 (TP1), and V2.0 in TP2. TP1 has 66 classes including a catch-all background (aka void) class.
TP1 (i.e., Mapillary V2.0 4) contains 124 classes, out of which 116 are used for evaluation.

Mapillary-LECO benchmark. The original Mapillary contains 18k training images, which is much
larger than other mainstream street-level segmentation datasets such as Cityscape [14] (which has
2975 training and 500 validation images). In this work, we repurpose Mapillary to set up a LECO
benchmark by splitting training set into two subsets (each containing 2.5k or 9k images) for the two
time periods. We use the original validation set of Mapillary with 2k images as our test set. The
detailed statistics is shown in Table 7.

Baseline Experiments on Mapillary-LECO. We used the state-of-the-art architecture HRNet-V2-
W48 for semantic segmentation with OCR module [72, 76, 81]. We noticed that for semantic
segmentation on street-level imagery datasets [14], it is common to start from a Imagenet-pretrained
model. Hence we name the weight initialization schemes for Mapillary-LECO as:

• (TrainRandom) Train an entire network from randomly initialized weights.
• (TrainScratch) Initialize the model backbone with ImageNet-pretrained weights.5

As we can see from Table 8, TrainScratch (from ImageNet pretrained weights) as a popular initializa-
tion strategy for segmentation tasks [14, 55] indeed performs better than TrainRandom. Therefore,

4
https://blog.mapillary.com/update/2021/01/18/vistas-2-dataset.html

5Weights are available at https://github.com/HRNet/HRNet-Semantic-Segmentation
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Table 7: Mapillary-LECO statistics. We repurpose Mapillary [52, 55] V1.2 to V2.0 (a real-world dataset
versioning scenario) to set up a LECO benchmark. Since V2.0 contains the same set of images as V1.2, in order to
simulate a scenario with new samples, we select the first 5k or all 18k training images, then split them to 2.5k/9k
for TP0 and 2.5k/9k for TP1. Note that in TP0, the 66 classes include a catch-all background (or void) class,
which is subsequently refined to 9 fine-grained classes such as traffic-cone and traffic-island.

dataset
Time Period 0 (TP0) Time Period 1 (TP1)

#classes #train #test #classes #train #test

Mapillary-LECO 66 2.5k/9k 2k 116 2.5k/9k 2k

for our FinetunePrev strategy, we finetune the model checkpoint obtained via TrainScratch strat-
egy on TP0 data. To further bridge the gap to AllFine, we experiment other advanced techniques
introduced in this paper such as LSSL and LJoint as shown in Table 10.

Results of various LECO strategies. Since Mapillary does not reveal the taxonomic hierarchy from
V1.2 to V2.0, we use the ground-truth label maps to automatically retrace the ontology evolution.
Because Mapillary adopts RelabelOld strategy, each input image has both V1.2 and V2.0 label map.
We exploit this fact to determine a single parent class in V1.2 for each of the 116 classes in V2.0
following a simple procedure (taking bird class in V2.0 as an example):

• First, we use the ground-truth V2.0 label maps to find all pixels labeled as bird.
• Then, we locate those pixels in V1.2 label maps, and choose the V1.2 class that occupies the

most pixels as bird’s parent.
We find that this simple procedure produces a reliable taxonomic hierarchy that can be used to
improve the performance via LLPL, LSSL/Filter or LSSL/Cond, as shown in Table 11. Note that this
procedure does not model class merging in Mapillary; however, our solutions still remain effective.

Segmentation Loss. We make use of a standard pixel-level cross-entropy loss function for training
on Mapillary. One difference from our previous image classification setup is that both the ontology
and semantic label maps changed from V1.2 to V2.0. In general, we find the label maps on V2.0 to be
of higher quality. As such, we (1) do not add coarse supervision on TP1 data (BK ), since this pollutes
the quality of annotations on the new data, i.e., LJoint = Lold(B̂M ) and LLPL = LoldLPL(B̂M ),
and (2) we mask out gradients on pixel regions (around 0.3% of all pixels) where the given V1.2
labels do not align with the parent class of their V2.0 labels for Lold(B̂M ) and LoldLPL(B̂M ).

Training and Inference Details. For both TrainRandom and TrainScratch, we use an initial
learning rate of 0.03; for FinetunePrev, we use an initial learning rate of 0.003. The L2 weight decay
is selected as 0.0005. Other hyperparameters followed the default strategy in HRNet used to achieve
the SOTA results on Cityscape. We use SGD with 0.9 momentum and a batch size of 16 for BK (or 8
for BK and 8 for B̂M if we use LSSL or LJoint). We use linear learning rate decay schedule that sets
the learning rate to ⌘(1� k

K
)0.9 where ⌘ is the initial learning rate and k/K are the current and total

iteration. For data augmentation, an input image and its label map are randomly flipped horizontally
and then its longer edge will be scaled with a base size of 2200 pixels multiplied by a scalar factor
sampled between 0.5 and 2.1. Finally, a 720x720 region will be randomly cropped for each of the 16
images in mini-batch for training. For inference, we use a sliding window of 720x720 without scaling
of the image to determine the final pixel-level prediction. We also perform inference on the flipped
image and take the average prediction as final result. Note that it is possible to use more advanced
inference techniques such as multi-scaled testing, but we omit them to speed up inference since they
are orthogonal to our research goal. We allocate the same training budget for all experiments. In
particular, we use a total number of 1600 epochs for 2.5k/9k samples (a single TP), or 800 epochs for
5k/18k samples (two TPs data such as AllFine and LabelNew with SSL/Joint/LPL techniques). All
experiments are conducted on internal clusters with 8 GeForce RTX 3090 cards.

D: Dataset Statistics

To better understand the long-tailed nature of the datasets, we include the per-class image and pixel
distributions for iNat-LECO in Figure 4 and Mapillary-LECO in Figure 5. We note that the long-tailed
class distributions make semi-supervised methods less effective, as shown in Table 3, 4, 10, 11, e.g.,
the pseudo-labeling method of SSL underperforms the simple supervised learning baseline (L only).
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Table 8: Results of baseline methods for Mapillary-LECO, analogous to Table 2 in the main paper. We
report the mean Intersection-over-Union (mIoU in %). TrainRandom trains a model from scratch, as is the
protocol in the main paper. Because segmentation tasks typically make use of ImageNet pre-training, we also
show results for TrainScratch that trains with an ImageNet-pretrained encoder, improving upon TrainRandom).
Finally, FinetunePrev makes use of TP0’s model, which is trained with TrainScratch. In Table 10, we explore
Joint-Training and SSL, leading to further improvement.

Benchmark #images / TP TP1 Strategy
TP1 mIoU

LabelNew RelabelOld AllFine

Mapillary-LECO 2500
TrainRandom 27.24 27.21 27.73

TrainScratch 28.22 29.28 30.71

FinetunePrev 30.39 29.05 31.73

Mapillary-LECO 9000
TrainScratch 32.83 33.44 33.82

FinetunePrev 34.08 35.01 36.20

TP0 Distribution (66 categories) TP1 Distribution (116 categories)

Mapillary-LECO Per-Class Pixel Distributions (Y-axis is log-scaled)

Figure 5: Mapillary-LECO Per-Class Distributions. We plot distributions of training pixels for iNat-LECO

in log-scale. The x-axis are classes sorted by the number of pixels. The y-axis shows the number of pixels per
class (in log scale).

E: Training Details on CIFAR-LECO and iNat-LECO

We include all training details for reproducibility in this section. We adopt SOTA training strategies
from recent papers [68–70]. For all experiments, we train the CNN with mini-batch stochastic
gradient descent with 0.9 momentum. Same as FixMatch [68], we use the an exponential moving
average (EMA) of model parameters for final inference with a decay parameter of 0.999. We use a
cosine annealing learning rate decay schedule which sets the learning rate to ⌘ cos 7⇡k

16K where ⌘ is
the initial learning rate and k/K are the current and total iteration. By default, we use a strong data
augmentation scheme because it provides better generalization performance. In particular, we adopt
RandAugment [16] as implemented in this repository.6 We did a grid search for best learning rate and
weight decay using the validation set of each benchmark. The benchmark-specific hyperparameters
are detailed below:

CIFAR100-LECO. We use the same model architecture (Wide-ResNet-28-2 [82]) in FixMatch
paper for CIFAR100 experiments [68]. We use a batch size of 128 (if using L only), or we split
the batch to 64 for BK and 64 for B̂M . For each experiment, we search for initial learning rate
in [0.6, 0.06, 0.006, 0.0006] and report the best mAcc result. We use an L2 weight decay of 5e-4.
We run for a total number of 160K iterations and evaluate on the validation set per 1K iterations
(equivalent to around 2000 epochs for 10000 images).

iNat-LECO. We use the same model architecture (ResNet50 [28]) as in [70]. We use a batch size of
60 (if using L only), or we split the batch to 30 for BK and 30 for B̂M . Because it is a long-tailed
recognition problem, we search for L2 weight decay as suggested by [2] in [0.001, 0.0001, 0.00001]
and found out 0.001 produces the best mAcc. Then for each experiment, we search for initial learning
rate in [0.01, 0.001, 0.0001] and report the best mAcc result. We run for a total number of 250K
iterations and evaluate on the validation set per 1K iterations (equivalent to around 300 epochs for
50000 images).

6
https://github.com/kekmodel/FixMatch-pytorch/
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Table 9: Results of baseline methods for LECO (complete results). For all our experiments except on
Mapillary, we run each method five times and report the mean accuracy averaged over per-class accuracies with
standard deviations. Because running on Mapillary is very compute-demanding, we run it once and report mean
intersection-over-union (mIoU in %) over per-class IoU. For each benchmark, we bold the best mAcc/mIoU
including ties that fall within its std. All conclusions we derived in main paper still hold, e.g., FinetunePrev is the
best learning strategy that outperforms TrainScratch (cf. 73.64% vs. 65.69% with LabelNew on iNat-LECO),
implying that the coarse-to-fine evolved ontology serves as a good learning curriculum. FreezePrev significantly
underperforms TrainScratch (cf. 50.82% vs. 65.69% with LabelNew on iNat-LECO), confirming the difficulty
of learning new classes that refine the old. LabelNew and RelabelOld achieve similar performance with the
former using only new data but not the old altogether. If using both old and new data, we boost performance as
shown in Table 10. The conclusions hold for varied number of training images and generalize to the Mapillary
experiments, yet all methods fall short to the AllFine (which trains on all data assumed to be labeled with new
ontology).

Benchmark #images / TP TP0 mAcc/mIoU TP1 Strategy
TP1 mAcc/mIoU

LabelNew RelabelOld AllFine

CIFAR-LECO 1000 50.92± 0.89

FinetunePrev 33.53 ± 0.57 32.85± 0.47 42.27± 0.83

FreezePrev 24.13± 0.67 24.70± 0.41 27.82± 0.43

TrainScratch 30.88± 1.05 31.02± 0.68 41.74± 0.56

CIFAR-LECO 2000 59.48± 0.66

FinetunePrev 43.44 ± 0.73 42.88 ± 0.72 52.72± 0.38

FreezePrev 33.74± 1.46 33.69± 1.44 36.57± 1.68

TrainScratch 41.61± 0.53 41.77± 0.79 52.78± 0.35

CIFAR-LECO
10000

77.78± 0.27

FinetunePrev 65.83 ± 0.53 65.30 ± 0.32 71.30± 0.41

FreezePrev 52.64± 0.50 52.60± 0.52 53.79± 0.43

TrainScratch 65.40 ± 0.53 64.98± 0.34 71.43± 0.24

iNat-LECO
50000

64.21± 1.61

FinetunePrev 73.64 ± 0.46 71.26± 0.54 84.51± 0.66

FreezePrev 50.82± 0.68 54.60± 0.49 54.08± 0.31

TrainScratch 65.69± 0.46 65.78± 0.56 73.10± 0.80

Mapillary-LECO 2500 37.01
FinetunePrev 30.39 29.05 31.73

TrainScratch 27.24 27.21 27.73

Mapillary-LECO 9000 44.14
FinetunePrev 34.08 35.01 36.20

TrainScratch 32.83 33.44 33.82

iNat-4TP-LECO. The range of grid search of hyperparameters follows that of iNat-LECO, including
250K iterations (equivalent to around 600 epochs for 25000 images) for each TP.

All the classification experiments were performed on a single modern GPU card. Based on the batch
size scale, we use different GPU types, e.g., GeForce RTX 2080 Ti for image classification on CIFAR
and iNaturalist, and GeForce RTX 3090 Ti on Mapillary.

F: Comprehensive Experiment Results

We now show the complete results on varying sample sizes per TP for all benchmarks. Table 9, 10,
11 in appendix correspond to Table 2, 3, 4 in main paper. All conclusions generalize to varied number
of samples and all 3 datasets.

We also have complete results using all combinations of the various SSL/Joint/LPL techniques
introduced in main paper. Results can be found on Table 12 (CIFAR-LECO and iNat-LECO) and
Table 13 (Mapillary-LECO).
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Table 10: Results of SSL and Joint Training methods (complete results). Following the notation of Table 9,
we study LabelNew annotation strategies that make use of algorithms for learning from old examples without

exploiting the relationship between old-vs-new labels. Recall that AllFine uses L only to train on all the data
labeled with new ontology (doubling annotation cost). Using all the three losses together consistently improves
mAcc / mIoU for all the benchmarks, confirming the benefit of exploiting the old examples. For instance, on
iNat-LECO, this boosts the performance to 83.6%, approaching the AllFine (84.5%)! Similar trends hold for
Mapillary-LECO.

Benchmark #images / TP SSL Alg
TP1 mAcc/mIoU

L only +LSSL +LJoint

+LJoint

+LSSL AllFine

CIFAR-LECO 1000

ST-Hard

33.53± 0.57

34.59± 0.57

37.25± 0.66

35.27± 0.64

42.27± 0.83
ST-Soft 37.67± 0.46 38.48 ± 0.67

PL 33.53± 0.36 37.28± 0.67

FixMatch 34.20± 0.24 37.47± 0.53

CIFAR-LECO 2000

ST-Hard

43.44± 0.73

44.87± 0.35

47.68± 0.70

45.67± 0.32

52.72± 0.38
ST-Soft 48.23 ± 0.55 48.72 ± 0.53

PL 43.46± 0.61 47.24± 0.40

FixMatch 44.98± 0.59 48.58 ± 0.71

CIFAR-LECO 10000

ST-Hard

65.83± 0.27

67.11± 0.34

68.74± 0.21

67.97± 0.37

71.30± 0.41
ST-Soft 69.86 ± 0.30 69.77 ± 0.71

PL 65.86± 0.14 68.43± 0.40

FixMatch 67.13± 0.36 69.03± 0.43

iNat-LECO 50000

ST-Hard

73.64± 0.46

75.23± 0.14

82.98± 0.33

78.23± 0.38

84.51± 0.66
ST-Soft 79.64± 0.41 83.61 ± 0.39

PL 73.56± 0.09 82.87± 0.51

FixMatch 74.57± 0.54 83.00± 0.33

Mapillary-LECO 2500 ST-Hard 30.39 30.06 31.05 31.09 31.73

Mapillary-LECO 9000 ST-Hard 34.08 32.68 35.40 35.72 36.20

Table 11: Results of exploiting taxonomic hierarchy (complete results). We copy the best results in Table 10
(all obtained by +LJoint +LSSL) for reference. We can see that LLPL is less effective but still competitive on
Mapillary-LECO, presumably because it does not model the class-merging scenarios. Nonetheless, combinations
of the strategies, i.e., adding SSL loss along with pseudo-label refinement via either Filtering or Conditioning
still bridge the gap to AllFine.

Benchmark #images / TP SSL Alg
TP1 mAcc

+LJoint

+LSSL +LLPL

+LLPL

+LSSL/Filter

+LLPL

+LSSL/Cond AllFine

CIFAR-LECO 1000

ST-Hard

38.48± 0.67 38.47 ± 0.52

38.87 ± 0.54 38.68 ± 0.41

42.27± 0.83
ST-Soft 38.87 ± 0.52 38.19± 0.71

PL 38.56 ± 0.44 38.67 ± 0.81
FixMatch 37.55± 0.69 37.35± 0.72

CIFAR-LECO 2000

ST-Hard

48.72± 0.53 49.04± 0.47

49.36 ± 0.56 48.65± 0.53

52.72± 0.38
ST-Soft 49.09± 0.46 48.54± 0.52

PL 49.25 ± 0.34 48.91± 0.87

FixMatch 49.44 ± 0.22 48.81± 0.40

CIFAR-LECO 10000

ST-Hard

69.77± 0.71 69.31± 0.30

69.90± 0.29 70.42 ± 0.23

71.30± 0.41
ST-Soft 70.10± 0.12 70.02± 0.63

PL 69.20± 0.20 69.60± 0.26

FixMatch 69.61± 0.17 69.85± 0.46

iNat-LECO 50000

ST-Hard

83.61± 0.39 83.62± 0.21

84.23 ± 0.61 84.34 ± 0.25

84.51± 0.66
ST-Soft 84.12 ± 0.31 83.76± 0.40

PL 83.72± 0.22 84.16 ± 0.19
FixMatch 83.91± 0.39 83.95± 0.40

Mapillary-LECO 2500 ST-Hard 31.09 31.04 31.41 31.23 31.73

Mapillary-LECO 9000 ST-Hard 35.72 35.04 36.12 35.47 36.20
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Table 12: Complete results of LECO strategies on classification benchmarks. We report results on combi-
nations of all LECO stratgies on CIFAR100-LECO and iNat-LECO with FinetunePrev strategy on TP1. Major
conclusions hold across all benchmarks: (1) Utilizing old-ontology samples and labels, i.e., LSSL and LJoint,
helps bridge the gap to AllFine, and (2) exploiting taxonomic hierarchy via LSSL/Filter , LSSL/Cond, or LLPL

further improves the performance.

Setup TP0 mAcc

TP1 mAcc

AllFine
LabelNew

No SSL PL FixMatch ST-Hard ST-Soft
L LLPL LJoint L LLPL LJoint L LLPL LJoint L LLPL LJoint L LLPL LJoint

CIFAR100-1k 50.92± 0.89 42.27± 0.83 33.53± 0.57 38.47± 0.52 37.25± 0.66

+LSSL 33.53± 0.36 38.70± 0.65 37.28± 0.67 34.20± 0.24 37.56± 0.54 37.47± 0.53 34.59± 0.57 36.78± 0.40 35.27± 0.64 37.67± 0.46 38.80± 0.49 38.48± 0.67

+LSSL/Filter 33.33± 0.69 38.56± 0.44 37.44± 0.84 36.02± 0.33 37.55± 0.69 37.23± 0.20 37.93± 0.50 38.87± 0.54 38.57± 0.74 37.59± 0.69 38.87± 0.52 38.43± 0.67

+LSSL/Cond 37.40± 1.19 38.67± 0.81 38.00± 0.59 36.92± 0.64 37.35± 0.72 37.08± 0.57 37.95± 0.34 38.68± 0.41 38.20± 0.30 38.25± 0.62 38.19± 0.71 38.45± 0.49

CIFAR100-2k 59.48± 0.66 52.72± 0.38 43.44± 0.73 49.04± 0.47 47.68± 0.70

LSSL 43.46± 0.61 48.82± 0.30 47.24± 0.40 44.98± 0.59 49.38± 0.29 48.58± 0.71 44.87± 0.35 46.98± 0.33 45.67± 0.32 48.23± 0.55 49.12± 0.50 48.72± 0.53

LSSL/Filter 43.50± 0.47 49.25± 0.34 47.38± 0.60 46.14± 0.33 49.44± 0.22 48.23± 1.21 47.00± 0.36 49.36± 0.56 49.01± 0.73 47.62± 0.74 49.09± 0.46 48.56± 0.50

LSSL/Cond 48.28± 0.27 48.91± 0.87 48.45± 0.34 48.23± 0.93 48.81± 0.40 48.57± 0.58 48.81± 0.57 48.65± 0.53 48.60± 0.68 48.70± 0.58 48.54± 0.52 48.86± 0.61

CIFAR100-10k 77.78± 0.27 71.30± 0.41 65.83± 0.27 69.31± 0.30 68.74± 0.21

LSSL 65.86± 0.14 69.48± 0.24 68.43± 0.40 67.13± 0.36 69.71± 0.49 69.03± 0.43 67.11± 0.34 68.58± 0.51 67.97± 0.37 69.86± 0.30 68.96± 0.27 69.77± 0.71

LSSL/Filter 65.80± 0.34 69.20± 0.20 68.82± 0.23 67.60± 0.25 69.61± 0.17 69.15± 0.41 69.04± 0.29 69.90± 0.29 69.95± 0.28 68.76± 0.20 70.10± 0.12 69.85± 0.38

LSSL/Cond 68.32± 0.26 69.60± 0.26 69.09± 0.13 68.86± 0.52 69.85± 0.46 69.41± 0.39 70.22± 0.38 70.42± 0.23 70.05± 0.18 70.33± 0.15 70.02± 0.63 69.93± 0.24

iNat-50k 64.21± 1.61 84.51± 0.66 73.64± 0.46 83.62± 0.21 82.98± 0.33

LSSL 73.56± 0.09 83.71± 0.44 82.87± 0.51 74.57± 0.54 84.05± 0.26 83.00± 0.33 75.23± 0.14 79.07± 0.48 78.23± 0.38 79.64± 0.41 84.10± 0.54 83.61± 0.39

LSSL/Filter 74.01± 0.41 83.72± 0.22 82.81± 0.27 74.55± 0.33 83.91± 0.39 83.16± 0.33 79.91± 0.58 84.23± 0.61 83.92± 0.25 78.71± 0.22 84.12± 0.31 83.80± 0.60

LSSL/Cond 81.98± 0.12 84.16± 0.19 82.99± 0.64 82.62± 0.21 83.95± 0.40 83.66± 0.36 84.20± 0.29 84.34± 0.25 84.37± 0.39 83.96± 0.47 83.76± 0.40 83.95± 0.20

Table 13: Complete results of LECO strategies on Mapillary-LECO. We report results on combinations of
all LECO stratgies on Mapillary-LECO with FinetunePrev strategy on TP1. It is worth noting that new labels
in V2.0 do not necessarily have surjective mappings to old labels of V1.2. This means, it is non-trivial to apply
coarse supervision as partial labels. Moreover, we only perform ST-Hard for SSL because other methods are
excessively compute-demanding (e.g., ST-SOft requires saving per-class heatmaps for each image to allow
making use of pseudo-labels’ scores, FixMatch requires learning a separate large-scale model, etc.). Concretely,
we (1) do not add coarse supervision for BK since it pollutes quality of annotation on new data, and (2) mask out
gradient where the given V1.2 labels do not align with the parent class for Lold(B̂M ) and LoldLPL(B̂M ). Major
conclusions hold here. We can see that all combinations of various LECO stratgies achieve suprisingly good
performances, whereas the best combination bridges 95% of the gap to AllFine (gap reduces from 1.34 to 0.08
for 2.5k samples with LSSL and LLPL, and from 2.12 to 0.08 for 9k samples with LSSL/Filter and LLPL).

Setup TP0 mIoU

TP1 mIoU

AllFine
LabelNew

No SSL ST-Hard
L LLPL LJoint L LLPL LJoint

Mapillary-2.5k 37.01 31.73 30.39 31.04 31.05

+LSSL 30.06 31.65 31.09

+LSSL/Filter 30.64 31.41 31.57

+LSSL/Cond 31.01 31.23 31.50

Mapillary-9k 44.14 36.20 34.08 35.04 35.40

+LSSL 32.68 35.97 35.72

+LSSL/Filter 34.96 36.12 36.06

+LSSL/Cond 35.29 35.47 35.70
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