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A Color Distribution Library2

In this section, we explain how to build our color distribution library. First, all semantic classes are3

extracted based on the images and annotations of the ADE20K training set [1] (ADE20K contains 1504

semantic classes). The semantic classes are clustered into a set of 20 different dominant distribution5

sets according to their color styles using hierarchical clustering, which is the “distribution of color6

distribution” (DoD) [2]. Then, since the color distributions of semantic classes in each cluster are7

similar, we select one object in each cluster to represent that style. Finally, we extract the color8

distributions to form our color distribution library. The pipeline is shown in Figure 1.9
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Figure 1: The pipeline of color distribution library. We select 20 objects with different color styles
for each semantic class and extract their color distributions to build a color distribution library.

B Algorithm10

In this section, we provide the algorithm of NCF (see Algorithm 1).11

12

Algorithm 1 Natural Color Fool13

Input:14

x: clean image, y: label, ỹ: the semantic class, S: semantic segmentation model,15

Fϕ(·): the substitute model, C: color distribution library, K: the restart number,16

N : the iteration of NS, u: the momentum, α: the step size,17

Σ: covariance matrix, µ: mean18

Output: x′: adversarial image19

1: Obtain all semantic classes Ỹ of image x by S.20

2: Calculate each semantic class’s pixel ratio w in the x.21

3: x̄← rgb2lab(x)22

4: for i← 1 to K do ▷ Initialization Reset.23

5: for j ← 1 to η do24

6: Randomly sample the color distribution cỹ of each semantic class ỹ from the library Cỹ25

7: Hj ←
∑̃
y∈Ỹ

wỹ ∗ cỹ26

8: x̄Hj ← Convert Hj to an image without spatial information.27

9: Σx̄Hj
, µx̄Hj

←Calculate covariance matrix and channel means for x̄Hj .28

10: T ← MKSolution(Σx̄,Σx̄Hj
) (see Eq.(6))29

11: x̄′
Hj
← T (x̄− µx̄) + µx̄Hj

30

12: end for31

13: H← {Hj}ηj=132

14: H∗ ← argmax
H∈H

Ladv(Fϕ(x
′
H), y)33

15: Σx̄H∗ , µx̄H∗ ←Calculate covariance matrix and channel means for x̄H∗ .34

16: T ∗ ← MKSoulution(Σx̄,Σx̄H∗ ) (see Eq.(6))35
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17: µ∗ ← µx̄H∗36

18: Initialize T ′
0 ← T ∗37

19: for n← 1 to N do ▷ Neighborhood Search.38

20: x̄′
i ← T ′

n−1(x̄− µx̄) + µ∗39

21: g ← ∇T ′Ladv(Fϕ(lab2rgb(x̄
′
i)), y)40

22: gn ← u · gn−1 +
g

||g||141

23: T ′
n ← T ′

n−1 + α · sign(gn)42

24: end for43

25: x′
i ← lab2rgb(x̄′

i)44

26: end for45

27: i′ ← argmax
i∈1,2,...,K

Ladv(Fϕ(x
′
i), y)46

28: x′ ← x′
i′47

29: return x′48

C Initialization Reset49

As mentioned in Section 3.3, initialization reset (IR) avoids the optimization of convert matrix to50

fall into local optimum. Therefore, we study the appropriate value for the number of resets in this51

section. Our adversarial examples are crafted via Inc-v3 by NCF with different resets, i.e., from 1 to52

20. We report the attack success rate on the victim model in Figure 2. As demonstrated in the figure,53

in the beginning, there is an approximate positive relationship between the attack success rate and54

the number of resets. Once K = 10 or larger, the attack success rate maintains stable. We choose55

K = 10 to reduce the computational overhead, where the attack successes rate is 84.0%, 57.7%,56

57.6%, 56.8%, 40.1%, 47.6% for Inc-v3 [3], Res-18 [4], VGG-19 [5], Mobile-v2 [6], Dense-121 [7]57

and Res-50 [4], respectively.58

Figure 2: Attack success rates (%) w.r.t. the number of IR K. The substitute model is Inc-v3.

D Transferability on ViTs59

Recent work [8] points out that the vision transformer models are more concerned with low-frequency60

information, thus we further evaluate attack success rate of black-box when Transformer models are61

used as substitute models. Specifically, we generate adversarial examples using ViT-S/16 (ViT-S) [9]62

and XCiT-N12/16 (XCiT-N12) [10] as substitute models and evaluate the adversarial examples on63

multiple Transformer models (including ViT-S,XCiT-N12,DeiT-S [9],ViT-B [11],Swin-T [12],PiT-64

Ti [13]) and multiple CNNs (including Res-18 [4], VGG-19 [5], Mobile-v2 [6]). Table 1 summarizes65

the results on different black-box models. We can observe that our NCF usually achieves the highest66

transferability on black-box. In particular, when transferring from ViTs to CNNs, NCF achieves an67

average success rate of 59.8%, but other attacks only achieve 48.3% (SAE), 29.9% (ReColorAdv),68

36.8% (cAdv), 35.1% (ColorFool), 27.3% (ACE).69
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We observe that the transferability of adversarial examples between ViTs is weaker than different70

CNNs (see Section 4.2.1). This is consistent with the observation in [14]. It may be since that71

ViTs have multiple self-attention blocks that can generate class tokens independently. However,72

our loss only utilizes the last logit (which is equivalent to utilizing only the last class token). The73

discriminative information in the previous tokens is not directly utilized, which results the poor74

transferability of the adversarial examples between different ViTs.75

Table 1: Transferability on ViTs. We report attack success rates (%) of each method and the leftmost
model column denotes the substitute model (“*” means white-box attack results).

Model Attacks Transformers CNNs

ViT-S XCiT-N12 DeiT-S ViT-B Swin-T PiT-Ti Res-18 VGG-19 Mobile-v2

Clean 13.3 13.7 5.8 10.7 5.0 11.6 16.1 11.4 12.8

ViT-S

SAE 98.2* 38.7 24.2 37.5 19.6 34.0 49.9 47.6 46.5
ReColorAdv 96.2* 27.4 20.4 30.6 13.8 24.5 27.6 23.7 26.3

cAdv 100.0* 36.5 32.8 42.4 19.3 35.4 35.5 27.1 33.4
ColorFool 99.2* 23.6 11.0 24.3 7.6 21.5 35.0 26.7 29.3

ACE 99.7* 21.1 10.5 20.0 7.1 19.6 29.8 23.8 28.4

NCF (Ours) 93.9* 42.4 25.9 62.7 20.4 39.9 57.5 55.4 54.4

XCiT-N12

SAE 49.3 86.5* 25.9 36.9 18.9 39.9 51.2 47.5 47.0
ReColorAdv 21.2 95.9* 20.2 16.4 14.7 37.4 36.3 29.5 35.9

cAdv 39.4 100.0* 38.5 33.0 26.5 53.9 46.9 36.1 41.7
ColorFool 47.6 85.9 12.6 34.4 9.7 26.5 43.9 36.5 39.4

ACE 19.5 98.7 9.8 15.0 6.3 21.0 29.5 24.9 27.3

NCF (Ours) 54.1 89.1* 36.1 38.5 27.3 55.8 65.1 63.7 62.6

E Neighborhood Search Impact on Human Perception76

In this section, we study the impact of neighborhood search (NS) on human perception. Figure 377

shows the adversarial examples with and without NS, and we observe that our NS strategy has almost78

no effect on human perception.79

NCF-IR

NCF-IR-NS

Figure 3: Visualizations of NCF-IR and NCF-IR-NS. We use Inc-v3 as an alternative model to
generate adversarial examples. We observe from the results that there is no perceptual difference after
using NS.

F Visualization of Attention80

In this section, we show the Gradient-weighted Class Activation Mapping (Grad-CAM) [15] of81

different adversarial examples. Figure 4 illustrates that all of SAE, ReColorAdv, cAdv, ColorFool,82

and ACE have difficulty shifting the attention of the model, while our NCF can dramatically it, i.e.,83

no longer on the target object.84

4



Clean SAE ReColorAdv cAdv ACE NCF (Ours)ColorFoolClean Image

Figure 4: Visualization of attention. We use Inc-v3 as the alternative model to generate adversarial
examples, and then visualize the attention on VGG-19.

G Visualization of Adversarial Examples85

In this section, we show some adversarial examples. In Figure 5, we observe that SAE is prone to86

global color distortion due to the unbounded range of variation. ReColorAdv limits the perturbation87

to a small range, thus its adversarial examples are less perceptually different from the clean images.88

However, some areas of color gradients (e.g., the “clouds” in the second row of Figure 5) may produce89

some perceptual anomalies. cAdv relies on the colorization model, and some color anomalies are90

likely to occur locally in the image. ColorFool does not set the perturbation range in non-sensitive91

areas, resulting in non-sensitive areas prone to color distortion. ACE is similar to ReColorAdv in that92

sometimes details are lost. (e.g., the “plants” in the third row of Figure 5). NCF transforms the color93

distribution so that the images’ details are preserved.94

H The Influence of Segmentation Models95

In this section, we compare the performance of our NCF under different semantic segmentation96

models pre-trained on ADE20K (including Swin-T [12], OCRNet [16] and Deeplabv3+ [17]). As97

indicated in Table 2, segmentation models have impact on the attack success rates of resulting98

adversarial examples. Among these models, Swin-T is usually the best choice for our NCF. Therefore,99

in our paper, we choose it to segment inputs. Note that even if the segmentation model affects100

our method, the lowest black-box attack success rate of NCF is still much higher than the existing101

methods.102

Table 2: The influence of different segmentation models on attack success rates. (“*” denotes the
white-box attack)

Segm Res-18* VGG-19 Mobile-v2 Inc-v3 Dense-121 Res-50 ViT-S

Swin-T 92.9* 72.1 72.7 48.3 55.3 66.7 53.0
OCRNet 89.9* 69.1 67.1 44.2 50.6 61.1 56.5

Deeplabv3+ 91.0* 68.0 68.6 45.3 49.2 62.0 54.0
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Clean SAE ReColorAdv cAdv ColorFool ACE NCF (Ours)

Figure 5: Visualization of adversarial examples. All adversarial examples are generated on Inc-v3.

I The Effect of Ensemble Attack103

As for ensemble model attack (fusing the logits of multiple models like [18]), here we report the104

result of NCF. As indicated in Table 3, the attack success rate of NCF can be further improved when105

crafting via an ensemble of models.106
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Table 3: Comparison of ensemble attack and single model attack. We report attack success rates (%)
of NCF and the leftmost model column denotes the substitute model, where Ensemble means an
ensmeble of Res-18, VGG-19 and Mobile-v2.

Model Dense-121 Res-50 ViT-S XCiT-N12 DeiT-S

Clean 7.9 7.5 13.3 13.7 5.8

Res-18 55.3 66.7 53.0 55.3 32.8
VGG-19 53.6 64.3 56.5 53.5 30.7

Mobile-V2 54.4 66.2 55.4 56.4 32.6

Ensemble 63.5 71.6 59.7 61.7 37.0

J Attack by Selecting Random Colors107

In this section, we discuss the difference between NCF-IR-NS and random color attack. Formally,108

NCF-IR-NS does not mean selecting random colors to attack. Specifically, it first generates a set of109

adversarial examples with different color distributions and then selects the best example from them110

based on the loss of the white-box model to attack. Therefore, NCF-IR-NS is close to a white-box111

attack.112

To support our claim, we evaluate the performance of random color attack (NCF-IR-NS-), i.e.,113

randomly select colors for each semantic class and use the resulting adversarial examples to attack.114

As demonstrated in Table 4, the performance of NCF-IR-NS- is much lower than NCF-IR-NS. For115

example, NCF-IR-NS- only achieves a 27.3% (degraded from 51.6%) success rate on Inc-v3. Thus,116

directly using random colors to generate adversarial examples is ineffective.117

Table 4: The attack success rate of using white-box information and not using it. NCF-IR-NS using
Inc-v3 as the substitute model. (“*” denotes the white-box attack)

Methods Inc-v3* Res-18 VGG-19 Mobile-v2 Dense-121 Res-50 ViT-S XCiT-N12 DeiT-S

Clean 19.2* 16.1 11.4 12.8 7.9 7.5 13.3 13.7 5.8

NCF-IR-NS 51.6* 43.8 42.2 42.4 28.0 33.0 38.3 32.0 14.8
NCF-IR-NS-* 27.3 34.8 30.9 31.1 20.5 24.2 32.7 25.0 11.6
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