
Appendix
In this appendix, we provide details skipped in the main text. The content is organized as follows:

• Section A. Detailed algorithms of GPS, including binary search and simulation process. (c.f .
§5.4 of the main text)

• Section B. Validation of the switching point existence. (c.f . §4.3 of the main text)
• Section C. Validation on the properties of the simulation methods. (c.f . §5.2 of the main

text)
• Section D. Additional experimental results and ablation studies. (c.f . §6.2, §6.5 and §6.6 of

the main text)
• Section E. Exploration of new base policies based on curriculum learning, and their perfor-

mance with GPS.
• Section F. Experimental details and hyperparameters. (c.f . §6.1 of the main text)
• Section G. Algorithms of ER-Res and ER-Ring-Full.

A Detailed Algorithms

A.1 Simulation Process

The pseudocode of our simulation process (Fig. 2 in the main text) is listed in Algorithm 1. We use
the notation P1:i to represent the task distributions from P1 to Pi. Likewise, we use the notation s1:i
to represent the switching point from s1 to si. The memory construction function BuildM takes as
arguments the previous memory, the current task distribution, and an optional current switching point.
If the the switching point is provided, this function internally construct the memory with the given
switching point as described in §4; otherwise, it utilizes the described pseudo-memory construction
methods as described in §5.

Algorithm 1 GlobalSim

Input: Tested point ai; Pseudo-task distributions P̃(i+1):T ; Local updating method g; Current model
parameters θi and current memoryMi−1.
Initialize θ̃i:i ← θi
Initialize memory M̃i ← BuildM(Mi−1, ai)
j ← i+ 1
while j ≤ T do

Local update: θ̃i:j ← g(θ̃i:(j−1), P̃j ,M̃j−1)

Build memory: M̃j ← BuildM(M̃j−1)
j ← j + 1

end while
Compute the loss: l← E(xj ,yj)∼Pj

ℓ(yj , f(xj ; θ̃j:T))

Compute the accuracy accj of task tj with model parameter θ̃j:T
return Loss: l, Accuracy: accj

A.2 Binary Search

In the global binary search as listed in Algorithm 2. To increase the robustness of the algo-
rithm, we take a minimum search stride min_ϵ = 20, 10, 40, 40 and a maximum search stride
max_ϵ = 100, 20, 200, 200 for four benchmarks P-MNIST, S-CIFAR-10, S-CIFAR-100, TingIma-
geNet, respectively. Also, as we evaluate the continual learning algorithms on the mean accuracy
over T tasks, we apply the binary search to find switching point with the highest accuracy but not the
lowest loss. Though lower loss usually implies higher accuracy, directly searching based on accuracy
gives us slightly better performance.

A.3 GPS Algorithm

Based on the simulation process and binary search, we describe our Global Pseudo-task Simulation
method in Algorithm 3.

15

Algorithm 2 GlobalBS

Input: Number of tasks T ; Task distributions P1:i; Local updating method g; Current model
parameters θi and current memoryMi−1; Search stride ϵ.
Synthesize pseudo-tasks from Pi with task distributions.
start← 0
end← |M|/i
Set bounds for the stride: ϵ← max(min_ϵ,min(max_ϵ, ϵ))
Accuracy dictionary: acc_dict← ∅
while end− start ≥ ϵ do

next← (start+ end)/2
if next not in acc_dict then

loss, acc← GlobalSim(next, P̃(i+1):T , g, θi,Mi−1)
acc_dict← acc_dict ∪ {next : acc}

else
acc← acc_dict[next]

end if
if next− ϵ not in acc_dict then

left_loss, left_acc← GlobalSim(next− ϵ, P̃(i+1):T , g, θi,Mi−1)
acc_dict← acc_dict ∪ {next− ϵ : left_acc}

else
left_acc← acc_dict[next− ϵ]

end if
if next+ ϵ not in acc_dict then

right_loss, right_acc← GlobalSim(next+ ϵ, P̃(i+1):T , g, θi,Mi−1)
acc_dict← acc_dict ∪ {next+ ϵ : right_acc}

else
right_acc← acc_dict[next+ ϵ]

end if
if left_acc < acc then

end← next
continue

else if right_acc < acc then
start← next
continue

else
break

end if
end while
si ← argminacc(acc_dict)
return Switching point: si

Algorithm 3 Global Pseudo-task Simulation (GPS)

Input: Number of tasks T ; Task distributions Pi, i ∈ T ; Local updating method g(·).
Initialize parameters θ0
Initialize memoryM0 = ∅
i← 1
while i ≤ T do

Local update: θi ← g(θi−1, Pi,Mi−1)
Find switching point: si ← GlobalBS(T, P1:i, g, θi,Mi−1, |M|/5i)
Build memory:Mi ← BuildM(Mi−1, si)
i← i+ 1

end while
return Model parameters: θT

16

B Validation of the Switching Point Existence

As a validation of our switching point existence, we further show the switching point of other
benchmarks in our experiments. For each benchmark, we plot the global loss LG as a function of ai
and select 5 different tasks ti. Each plot shows clearly the switching point in Fig. 4.

TinyImageNet S-CIFAR-100 P-MNIST

Figure 4: Switching points of the first 5 tasks in three evaluation benchmarks: TinyImageNet, S-
CIFAR-100, P-MNIST. We show the change of the global loss, LG w.r.t. the ratio of ER-Ring-Full in
the memory.

C Validation of the Simulation Method

In this section, we provide the empirical supporting evidences for our hypotheses of the simulation
method.

C.1 Task Difficulties

First, we show the task difficulties in the evaluated benchmarks have small variations, as in Table 3.
For P-MNIST, S-CIFAR-100 and TinyImageNet, we evaluate the first 5 tasks end-to-end for simplicity.
For S-CIFAR-10, we evaluate all the tasks end-to-end. Further, we evaluate the difficulty along the

Table 3: Accuracy and variance of accuracy of tasks from four vision benchmarks trained end-to-end.

Dataset Task 1 Task 2 Task 3 Task 4 Task 5 Variance

P-MNIST 97.48 97.28 97.33 97.78 97.53 0.03
S-CIFAR-10 98.20 94.85 96.50 98.90 98.15 2.18
S-CIFAR-100 85.70 87.70 88.10 88.10 86.20 1.02
TinyImageNet 78.20 76.80 77.30 76.50 77.20 0.33

pseudo-task sequence synthesized from the first task of S-CIFAR-100 by permutation, rotation and
blurring, we generate 5 tasks for each simulation method. The results in Table 4 shows permutation
and rotation generate tasks with similar difficulties as the original S-CIFAR-100 tasks, while blurring
generate tasks with increasing difficulties as the task sequence grows.

C.2 Zero-shot Transfer Ability of Tasks

Next, we explore the zero-shot transfer ability of the pseudo-tasks vs. the real tasks. We evaluate
the model trained on the first two tasks of S-CIFAR-100 on task sequences different by different
simulation methods.

17

Table 4: Accuracy and variance of accuracy of pseudo-tasks synthesized by different methods from
the first task of S-CIFAR-100. The Task i column refers to the end-to-end training of the pseudo-task
i.

Method Task 1 Task 2 Task 3 Task 4 Task 5 Variance

Permutation 85.50 85.70 85.30 86.10 85.10 0.11
Rotation 85.40 85.40 85.70 84.90 84.50 0.18
Blurring 83.90 81.70 78.90 74.40 69.50 26.80

Table 5 shows that the permutation pseudo-tasks and the real tasks both allows zero transfer ability,
as the random guess accuracy of a 10-class classification is 10%. Rotation, instead, creates a task
sequence that allows nearly perfect zero-shot transfer ability. Blurring creates a task sequence which
allows some zero-shot transfer ability from the beginning, but it gradually reduces to a random guess
as task difficulty grows.

Table 5: Zero-shot transfer ability of different simulation methods after training task t1 and task t2 on
S-CIFAR-100. Numbers are the accuracy of the task.

Dataset Method Task 3 Task 4 Task 5 Task 6 Task 7

Real 11.80 10.40 10.30 9.40 9.70
S-CIFAR-100 Permutation 10.50 10.40 10.30 10.10 11.10

Rotation 75.40 78.10 77.70 79.90 80.50
Blurring 70.90 65.70 52.90 30.40 15.50

D Additional Experimental Results

D.1 Accuracy of GPS with Small Memory Buffer

We also conduct experiments of GPS to evaluate its performance when the memory buffer is relatively
small, as shown in Table 6. With a small size memory buffer, GPS does not show significant
improvement. One reason is the switching point sj is very close to 1, i.e., taking the pure ER-Ring-
Full policy is good enough. Another cause is our base policy assumption does not work very well
under the small memory buffer size as model becomes more sensitive to points selection under small
M.

Table 6: Accuracy of GPS using permutation and ER baselines on four datasets with smaller buffer
sizes.

Method P-MNIST S-CIFAR-10 S-CIFAR-100 TinyImageNet
|M| 100 20 200 200

ER-Res 65.59±1.38 80.68±2.28 64.99±1.74 38.60±0.74

ER-Ring-Full 66.10±1.36 81.30±1.98 65.95±0.96 39.85±0.78

ER-Hybrid 66.30±1.21 81.43±2.54 66.30±1.32 39.75±0.54

GPS 66.31±1.11 81.35±1.56 66.51±0.88 39.83±0.45

D.2 Results of GPS with DER++, HAL and Baselines

We put complete results of GPS+DER, GPS+DER++, GPS+HAL and baselines in Table 7. Note the
A-GEM [10], iCaRL [37] and GSS [3] use the same memory size as the ER series for fair comparison.
The results stand as a complete empirical support to illustrate that the performance of other ER
variants have been improved after using our GPS method.

18

Table 7: Accuracy of GPS using permutation incorporating DER, DER++ [6] and HAL [9], compar-
ing to other methods. ‘-’ indicates experiments we were unable to run, due to compatibility issues
(e.g. Domain IL for iCaRL) or intractable training time or memory utilization (e.g. OGD, GSS on
TinyImageNet).

P-MNIST S-CIFAR-10 S-CIFAR-100 TinyImageNet
oEWC 69.21±2.92 62.97±3.55 55.37±2.71 20.81±0.95

iCaRL - 88.97±2.77 78.21±1.01 38.77±3.68

GSS 86.34±4.28 87.80±2.71 77.34±3.21 -
A-GEM 77.36±1.28 83.87±1.55 69.61±1.47 25.30±0.87

OGD 81.52±2.21 - - -

P-MNIST S-CIFAR-10 S-CIFAR-100 TinyImageNet
|M| 1000 200 2000 2000

HAL 87.69±1.34 82.51±3.20 - -
GPS+HAL 88.23±1.03 82.77±0.93 - -
DER 90.47±0.69 91.04±0.18 81.78±0.50 60.40±1.08

GPS+DER 90.27±0.78 91.33±0.13 83.39±0.44 60.89±1.06

DER++ 91.14±0.22 92.06±0.20 82.20±0.89 60.67±1.08

GPS+DER++ 91.64±0.16 92.37±0.10 83.53±0.64 61.01±0.98

E New Base Policies based on Curriculum Learning

To further test the power of GPS, we substitute the base policies with two novel memory construction
methods designed by us based on curriculum learning [16], ER-CurRes and ER-CurRing-Full. The
inspiration of these two methods comes from recent findings that curriculum can help when noisy
data are present [50, 31, 41]. We believe data points of future task can be viewed as noisy interference
for samples stored inM. In these two policies, curricular easy points of each task are picked as
candidates forM.

E.1 Algorithm

Curricular Easy Samples We rank data examples from easy to hard based on the implicit cur-
ricula [50]. Specifically, we first record the learned epochs as an attribute of an example, which is
the earliest epoch in training where a model correctly predicts this example for that and subsequent
epochs till now. As the learned epoch is a positive integer attribute, it is defined as a subset of the
totally ordered set Z+. We also record the current loss of each example as another attribute. The loss
attribute is defined as a subset of the totally ordered set R. The ranking of examples is based on the
lexicographical order on the Cartesian product of the two attributes, i.e., first sorting the examples by
the learned epoch attribute, and then ordering examples within the same ranked epoch by their losses.
As a result, each training example of a task would be associated with an unique ranking. Also, the
ranking would be updated after each epoch.

ER-CurRes The ER-CurRes algorithm is shown in Algorithm. 4. Different from ER-Res which
stores examples sampled from the whole distribution Pi of a task ti [11], we sample subset of data
points from an “easy pool”, i.e. P easy

i . The size is calculated by the dataset size |Di| multiplying
a hyperparameter γ, whose value is reported for each evaluation dataset in Section F. Compared
to taking the top few easiest points of each class, sampling from the pool utilizes the benefits of
randomness [4, 50]. Suppose we train a total of k epochs of task ti, in order to obtain a smooth
transition and the samples based on a more stable curriculum ranking, we take the examples obeying
ER-Res policy (i.e., samples from Pi) for the first ⌈k/2⌉ epochs, and take the examples obeying
ER-CurRes policy (i.e., samples from P easy

i) for the last ⌊k/2⌋ epochs. When we finish training, we
replace the examples of task ti in the memory which are not from P easy

i .

ER-CurRing-Full Likewise, as shown in Algorithm. 5, ER-CurRing-Full follows the ER-Ring-Full
strategy in the first ⌈k/2⌉ epochs to fill a FIFO memory [11]. After that, we substitute the memory
slots with points from the easy pool of each observed class. In the construction of the easy pool,

19

Algorithm 4 ER-CurRes (for a single task)

Input: Reservoir memory bufferM; Number of epochs k; Task distribution P ; Dataset size |D|;
Batch size B; Portion of easy data γ; Model parameters θ; Seen examples N .
Initialize a random easy pool P easy from P
for ep ∈ {1, ..., k} do

for iter ∈ 1, ..., |D|/B do
Sample a batch BP from P and a batch BM fromM
Update θ with BP ∪BM
if ep ≤ ⌈k/2⌉ then

UpdateM with a probability |M|/N for each examples in BP

N = N + 1
else

UpdateM with a probability |M|/(γ ∗N) for each examples in BP ∩ P easy

N = N + 1/γ
end if

end for
Update P easy: order examples based on the implicit curriculum and select the first γ|D|

end for
Select the memory for the current task asMnow and the memory for all previous tasks asMpast
for idx ∈Mnow do

if idx /∈ P easy then
Replace the slot inMnow with samples from (P easy −Mnow)

end if
end for
Return Updated θ andM =Mnow ∪Mpast

instead of taking the easiest γ|D| examples as in ER-CurRes, we use the easiest γ|D|/C examples of
each class based on the ranking, where C is the number of classes.

E.2 Experimental Results of GPS w/ Cur

The accuracy comparison between GPS w/ Cur and GPS w/ ER-CurRes, ER-CurRing-Full are shown
in Table 8. From the table, we can see GPS w/ Cur outperforms both ER-CurRes and ER-CurRing-
Full in both datasets. Besides, GPS with the blending of curriculum policies do not significantly
outperform the blending of ER-Ring-Full and ER-Res. It implies that applying ER-Ring-Full and ER-
Res as base policies are probably enough for the current benchmarks under the task- and domain-IL
setups.

Table 8: Accuracy of GPS using curriculum-based policies vs. the corresponding baselines.

P-MNIST S-CIFAR10 S-CIFAR100 TinyImageNet
|M| 1000 200 2000 2000

ER-CurRes 86.78±0.49 91.47±0.20 81.38±0.51 58.89±0.03

ER-CurRing-Full 86.16±0.49 91.70±0.50 81.16±0.65 58.03±0.42

GPS w/ Cur 87.35±0.18 92.08±0.17 82.34±0.79 59.88±0.03

P-MNIST S-CIFAR10 S-CIFAR100 TinyImageNet
|M| 100 20 200 200

ER-CurRes 65.34±0.69 81.59±3.23 65.43±1.37 38.75±0.98

ER-CurRing-Full 66.42±1.03 81.54±2.46 66.73±0.12 39.54±0.57

GPS w/ Cur 66.52±0.54 81.68±1.98 67.08±0.36 39.80±0.49

20

Algorithm 5 ER-CurRing-Full (for a single task)

Input: Ring-Full memory bufferM; Number of epochs k; Task distribution P ; Dataset size |D|;
Batch size B; Portion of easy data γ; Model parameters θ.
Initialize a random easy pool P easy from P
Reallocate the memoryMpast for all previous tasks, and allocate the memoryMnow for the current
task
for e ∈ {1, ..., k} do

for iter ∈ 1, ..., |D|/B do
Sample a batch BP from P and a batch BM fromM
Update θ with BP ∪BM
if e ≤ ⌈k/2⌉ then

UpdateMnow with BP

else
UpdateMnow with BP ∩ P easy

end if
end forUpdate P easy: order examples based on the implicit curriculum and select the first γ

portion of each class
end for
for idx ∈Mnow do

if idx /∈ P easy then
Replace the slot inMnow with samples from (P easy −Mnow)

end if
end for
Return Updated θ andM =Mnow ∪Mpast

F Experimental Details

F.1 Simulation Details

In experiments, we set the number of examples in each synthesized pseudo-task the same as the size
of the memory buffer, i.e., if |M| = 1000, we then generate 1000 examples for each pseudo-task. For
computational efficiency, we set the number of training epochs small in the simulated training process.
We train 1 epoch for pseudo-tasks synthesized in the P-MNIST dataset, 5 epochs for pseudo-tasks in
S-CIFAR-10, S-CIFAR-100 and TinyImageNet. As for the batch size, the optimizer and the learning
step during the simulation process, they are all the same as in the real training process.

F.2 Other Hyperparameters

We disclose the experimental hyperparameters values not reported in the main manuscript in Table 9.
In the table, γ in the ‘Cur-’ series methods is the easy pool ratio of the curriculum-based policies as we
discussed in Section E, while other symbols refer to the respective methods. In all the experimental
evaluation by accuracy, reported numbers are averaged over 5 runs.

F.3 Time Measurement

We measure our training and simulation time for each dataset in a single NVIDIA Tesla K80 GPU
for fair comparison. The time we report is the total processing time averaged on 5 runs, assessed in
wall-clock time (seconds) at the end of the last task and then converted into minutes.

G ER-Res & ER-Ring-Full Algorithms

We put the algorithms of ER-Res [11] and ER-Ring-Full [11] for a single task in Algorithm 6 and
Algorithm 7 for reference.

21

Table 9: Other hyperparameters used in our experiments.

Dataset Method Parameters

P-MNIST

CurER-Res γ: 0.2
CurER-Ring-Full γ: 0.1
GPS w/ Cur γ: 0.2
DER α: 0.5
DER++ α: 1.0 β: 0.5
GPS+DER α: 0.5
GPS+DER++ α: 1.0 β: 0.5
HAL λ: 0.1 β: 0.5 γ: 0.1
GPS+HAL λ: 0.1 β: 0.5 γ: 0.1
oEWC λ: 0.7 γ: 1.0
GSS gmbs: 10 nb: 1
OGD stored gradients : 100/task (perm)

S-CIFAR-10

CurER-Res γ: 0.2
CurER-Ring-Full γ: 0.1
GPS w/ Cur γ: 0.2
DER α: 0.3
DER++ α: 0.1 β: 0.5
GPS+DER α: 0.3
GPS+DER++ α: 0.1 β: 0.5
HAL λ: 0.1 β: 0.5 γ: 0.1
GPS+HAL λ: 0.1 β: 0.5 γ: 0.1
oEWC λ: 0.7 γ: 1.0
iCaRL wd: 0
GSS gmbs: 32 nb: 1

S-CIFAR-100

CurER-Res γ: 0.2
CurER-Ring-Full γ: 0.1
GPS w/ Cur γ: 0.2
DER α: 0.5
DER++ α: 0.5 β: 0.5
GPS+DER α: 0.5
GPS+DER++ α: 0.5 β: 0.5
HAL λ: 0.1 β: 0.5 γ: 0.1
GPS+HAL λ: 0.1 β: 0.5 γ: 0.1
oEWC λ: 0.7 γ: 1.0
iCaRL wd: 10−5

GSS gmbs: 32 nb: 1

TinyImageNet

CurER-Res γ: 0.2
GPS w/ Cur γ: 0.2
CurER-Ring-Full γ: 0.1
DER α: 0.1
DER++ α: 0.1 β: 0.5
GPS+DER α: 0.1
GPS+DER++ α: 0.1 β: 0.5
HAL λ: 0.1 β: 0.5 γ: 0.1
GPS+HAL λ: 0.1 β: 0.5 γ: 0.1
oEWC λ: 0.7 γ: 1.0
iCaRL wd: 10−5

22

Algorithm 6 ER-Res. |M| is the number of examples the memory can store, t is the task id, n is the
number of examples observed so far in the data stream, and B is the input mini-batch.

1: procedure UPDATEMEMORY(|M|, t, n,B)
2: j ← 0
3: for (x, y) in B do
4: M ←M
5: if M < |M| then
6: M.append(x, y, t)
7: else
8: i = randint(0, n+ j)
9: if i < |M| then

10: M[i]← (x, y, t)
11: end if
12: end if
13: j ← j + 1
14: end for
15: returnM
16: end procedure

Algorithm 7 ER-Ring-Full.

1: procedure UPDATEMEMORY(|M|, t, n,B)
2: for (x, y) in B do
3: Divide memory into FIFO stacksM[y], where |M[y]| = |M|/t
4: M[y].append(x)
5: end for
6: returnM
7: end procedure

23

	Detailed Algorithms
	Simulation Process
	Binary Search
	GPS Algorithm

	Validation of the Switching Point Existence
	Validation of the Simulation Method
	Task Difficulties
	Zero-shot Transfer Ability of Tasks

	Additional Experimental Results
	Accuracy of GPS with Small Memory Buffer
	Results of GPS with DER++, HAL and Baselines

	New Base Policies based on Curriculum Learning
	Algorithm
	Experimental Results of GPS w/ Cur

	Experimental Details
	Simulation Details
	Other Hyperparameters
	Time Measurement

	ER-Res & ER-Ring-Full Algorithms

