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Abstract

Flow networks are ubiquitous in natural and engineered systems, and in order to
understand and manage these networks, one must quantify the flow of commodities
across their edges. This paper considers the estimation problem of predicting
unlabeled edge flows from nodal supply and demand. We propose an implicit
neural network layer that incorporates two fundamental physical laws: conservation
of mass, and the existence of a constitutive relationship between edge flows and
nodal states (e.g., Ohm’s law). Computing the edge flows from these two laws is
a nonlinear inverse problem, which our layer solves efficiently with a specialized
contraction mapping. Using implicit differentiation to compute the solution’s
gradients, our model is able to learn the constitutive relationship within a semi-
supervised framework. We demonstrate that our approach can accurately predict
edge flows in AC power networks and water distribution systems.

1 Introduction

Network flows are a fundamental aspect of modern society, from traffic and communication networks
to power and water distribution systems. Many critical infrastructures are well-modeled as graphs,
with edges that transport vital commodities [1]. Beyond infrastructure, network flows are also central
to models in epidemiology, ecology, medicine, and chemical networks. Their dynamics have been
well-studied in compartmental systems theory [2]. Given the prevalence of flow networks in natural
and engineered systems, predicting flows in these networks is an important learning task that may
facilitate monitoring, control, optimization, and protection of these networks.

While domain-specific tools to predict network flows have been around for a while, the machine
learning community has only recently taken an interest in general-purpose models for network
flows. [3] predicts edge flows from partial measurements by making a smoothing assumption, i.e., by
minimizing nodal flow divergence. [4] improves on this approach by adding a trainable regularizer that
can incorporate side information. Both of these approaches are centered on a notion of approximate
conservation, i.e., that the net inflow to each node should be near zero. Since conservation of mass is
a universal constraint on network flows, imposing this conservation law is an important step toward
embedding physics into the model.

But the conservation law alone is not enough to uniquely determine flow, which is why both [3] and
[4] rely on heuristic regularizers to select the “best” conservation-respecting flow. In fact, physical
networks are often governed by a pair of physical laws: the conservation law, and a constitutive
relationship, which specifies the magnitude and direction of each edge flow based on “effort” variables
at each incident node (e.g., pressure or voltage). For example, in DC circuits, currents are conserved
according to Kirchoff’s current law, and Ohm’s law is the constitutive relationship that relates current
flows to nodal potentials. The conservation law and the constitutive relationship together define the
unique edge flows (and nodal efforts).
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1.1 Contributions

This paper proposes a model for network flows that embeds both the conservation law and existence
of a constitutive relationship. Our model, which we call an Implicit Flow Network (IFN), predicts
each edge flow using a trainable nonlinear function of latent nodal variables. These latent variables
are constrained to a manifold wherein the conservation law is satisfied. In addition to introducing
IFN, we offer the following contributions: (i) a contraction algorithm that is able to both evaluate
the IFN layer and backpropagate gradients through it, (ii) an explicit upper bound on the number
of iterations required by this algorithm, (iii) a rigorous theoretical comparison between IFN and
the state-of-the-art flow estimation methods in [3, 4], and (iv) numerical experiments from several
AC power networks and water distribution systems that indicate IFN can significantly outperform
these baselines on the flow estimation task. Additionally, because IFN requires a nonlinearity with a
constrained slope, we provide (v) a novel “derivative-constrained perceptron”, which is essentially a
trainable activation function with upper and lower bounds on its slope.

1.2 Related Work

Network Flow Estimation Flows on graphs are a classical topic in computer science [5], and flow
forecasting has long been studied in specific domains like traffic [6], but interest in the flow estimation
task from a machine learning perspective appears to be relatively recent. Deep learning algorithms
have been used to predict traffic flows [7, 8] and power flows [9], but [3] and [4] appear to be the first
papers to propose methods for domain-agnostic flow prediction, based on the notion of divergence
minimization.

Implicit Neural Networks IFN belongs to a growing class of models called implicit neural net-
works, which do not explicitly state the output of the model; rather, they describe a desired relationship
between the model’s inputs and outputs. In the prevailing implicit framework, the output is defined as
a fixed point of a trainable perceptron. This approach was introduced in [10] as a “deep equilibrium
network”. Subsequent work has developed new frameworks for ensuring the existence of the fixed
point and computing it [11, 12, 13, 14, 15]. Other types of implicit neural networks include neural
ODEs [16] and layers that solve convex optimization problems [17] and Nash equilibria [18].

Graph Neural Networks Graph neural networks (GNN) are a diverse family of models for network-
related learning tasks that incorporate graph structure directly into the model. GNNs can typically be
classified into three types, in increasing order of generality [19, §5.3]: convolutional models [20, 21],
attentional models [22], and message-passing models [23, 24]. Recently, [25] proposed an implicit
graph convolutional network. Analogously, IFN can be interpreted as an implicit message-passing
GNN, with flows serving as messages and latent nodal variables acting as an embedding.

1.3 Preliminaries and Notation

Given a directed graph G = (V, E), the signed incidence matrix B ∈ {−1, 0, 1}|V|×|E| is the matrix
with entries

Bi,e =


1, i is the head of e
−1, i is the tail of e
0, else

, ∀i ∈ V and e ∈ E

For an undirected graph, the signed incidence matrix is obtained by assigning an aribtrary orientation
to each edge. For each i ∈ V , let Nin(i),Nout(i) ⊂ V be the in-neighbors and out-neighbors of i.

Given a vector x ∈ Rn, we use the notation [x] to denote the diagonal matrix diag(x) ∈ Rn×n.
Where such notation would be unclear (e.g., may be confused with brackets to indicate order of
operations), we fall back on the diag(·) notation. We write x⊥ to refer to the vector space that is
orthogonal to x, i.e., the space {x′ ∈ Rn : x>x′ = 0}. Given a positive definite diagonal matrix
D ∈ Rn×n, we write ||x||2,D to represent the weighted 2-norm ||D 1

2x||2. Given any matrix M , Mi

is the ith column vector of M , and M (j) is the transpose of the jth row vector.
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Flow Nodal Variable h(y) =

DC Current Voltage y
DC Power Voltage y2

AC Power (lossless) Voltage Angle sin(y)
Water Flow Rate Hydraulic Head sign(y)|y|0.54
Mechanical Force Networks Position y

Table 1: Examples of physical flow networks and their constitutive relationships.

2 Implicit Flow Networks

IFN is inspired by the physics of network systems. In many physical networks, nodes “communicate”
through the exchange of a commodity, like power, water, or force, which can be represented as edge
flows. Flows obey a conservation law: for all i ∈ V ,

0 =

net inflow︷ ︸︸ ︷
ui +

∑
j∈Nin(i)

f(i,j)−

net outflow︷ ︸︸ ︷∑
j′∈Nout(i)

f(i,j′), (1)

where u ∈ R|V| are nodal inflows from outside the network, and f ∈ R|E| are the edge flows.
Furthermore, the flows are related to nodal variables through a constitutive relationship (CR); there is
some strictly increasing function h such that, for all (i, j) ∈ E ,

f(i,j) = a(i,j)h(xi − xj), (2)

where a ∈ R|E| are edge weights and x ∈ R|V| are nodal “efforts” or “potentials.” For example, in
DC power networks, the CR is Ohm’s law f(i,j) = r−1(i,j)(xi − xj), where r are resistances and x are
voltages. In lossless AC networks, the CR is the active power flow equation f(i,j) = a(i,j) sin(xi−xj),
where the edge weights are a function of line parameters and x are voltage angles [26, §6.4]. In water
distribution systems, the CR is the Hazen-Williams formula [27, Sec. 8.15]. Table 1 lists several flow
networks, the physical interpretation of the effort variables x, and the flow function h.

We propose IFN as a layer that predicts edge flows based on these two physical laws—conservation
and the existence of a CR:

Definition 2.1 (Implicit Flow Network). An implicit flow network (IFN) is a module with the
following components:

1. fixed parameters 0 < dmin ≤ dmax,

2. trainable parameters θ ∈ Rr for some r, and

3. a family of differentiable functions hθ : R → R such that dmin ≤ h′θ(y) ≤ dmax for all
y ∈ R and θ ∈ Rr, which we call flow functions.

The module requires each of the following inputs:

1. a weighted, connected, undirected graph G = (V, E , a) with edge weights a ∈ R|E|>0, and

2. a supply / demand vector u ∈ R|V| such that
∑
i∈V ui = 0.

The module outputs the unique vector f ∈ R|E| for which there exists x ∈ R|V| such that

Bf = u (3)

f = [a]hθ(B
>x) (4)

where B ∈ {−1, 0, 1}|V|×|E| is the signed incidence matrix of G, and hθ is applied element-wise.
We use the notation FNh,θ(G, u) to represent the solution f given inputs G and u, flow functions h,
and parameters θ.
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B (incidence matrix)

a (edge weights)

f (flows)u (supply / demand)
Cutset Component

Cycle Component

Inverse Flow Fnc.

Inputs (From data or 

upstream models)

Implicit Flow Network Layer

Figure 1: Diagram of the IFN. Inputs are the supply / demand vector u, incidence matrix B, and
edges weights a, which are either known or output from upstream models. The IFN layer separately
computes the cutset component and cycle component of the flows, with a trainable model for the
inverse of the flow function in the CR. These components are summed and output as the flow
prediction, for downstream use.

We will prove that IFNs are well-posed in Theorem 2.2. Note that (3) and (4) are just vectorized
statements of the conservation law (1) and the CR (2), so these two physical laws directly define the
output. The IFN’s only trainable component is its flow function, parameterized by θ. In practice, we
will only make calls to the inverse of the flow function when evaluating and backpropagating through
IFN layers, so it is convenient to learn the inverse flow function directly.

We emphasize that IFNs are layers that can be situated in more complex architectures, with other
models upstream estimating the supply / demand vector, edge weights, or even the topology. For
example, in power systems, demand forecasting is a very well-studied problem [28, 29], and one can
solve the economic dispatch problem to forecast power generation at each node [30], collectively
leading to an estimate of the supply / demand vector.

2.1 Evaluating the Implicit Flow Network

Our approach to evaluating the implicit flow network is adapted from [31] and is illustrated in Figure
1. Any undirected graph G induces a direct decomposition of the edge flow space R|E|: given the
incidence matrix B ∈ {−1, 0, 1}|V|×|E|, the cycle space ker(B) and cutset space Img(B>) are
orthogonal, and R|E| = ker(B)⊕ Img(B>). We refer the reader to [32, §9.4] for a primer on cycle
and cutset spaces. Accordingly, we decompose the vector f = FNh,θ(G, u) as f = fcyc + fcut,
where fcyc ∈ ker(B) and fcut ∈ Img(B>). The cutset component is readily determined from (3),
since Bf = Bfcut = u implies that fcut = B†u. Then we must analyze (4) to solve for fcyc. Define
a cycle projection matrix P ∈ Rm×m as the oblique projection onto ker(B) parallel to Img([a]B>):

P = Im − [a]B>
(
B[a]B>

)†
B (5)

Based on this projection, we define a map T : ker(B)→ ker(B) for all fcyc ∈ ker(B) by

T (fcyc) = P
(
fcyc − dmin[a]h−1θ ([a]−1fcyc + [a]−1B†u)

)
(6)

We can show that fcyc is the unique fixed point of T , and that T is a contraction mapping, leading to
a simple algorithm to compute this fixed point.
Theorem 2.2 (Properties of T ). Consider an implicit flow network with parameters dmin, dmax, and
θ, with flow functions hθ. Suppose that the inputs G = (V, E , a) and u ∈ 1⊥|V| are given, and let
B ∈ {−1, 0, 1}|V|×|E| be the signed incidence matrix of G. The following are true:

1. T is a contraction mapping with respect to || · ||2,[a]−1 , with Lipschitz constant

Lip(T ) ≤ 1− dmin

dmax
,
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2. the sequence of iterates f (k+1)
cyc = T (f

(k)
cyc) starting from any initial condition f (0)cyc ∈ ker(B)

converges to a unique fixed point fcyc,

3. the output of the implicit flow network is unique and given by

FNh,θ(G, u) = fcyc +B†u (7)

Consequently, IFN is well-posed.

Theorem 2.2 provides a simple algorithm for computing the IFN output f : pick any f (0)cyc ∈ ker(B),
repeatedly apply the map T until approximate convergence, then add B†u. Some care is required
when implementing this map. Since P is a dense matrix with |E|2 entries, it is undesirable to explicitly
construct the cycle space projection matrix for large networks. Instead, in order to project a vector
v ∈ R|E|, we can use the fact that

w , (B[a]B>)†Bv = argmin
w∈Rn

{
||B[a]B>w −Bv||2

}
so the projection is evaluated as Pv = v − [a]B>w. Using this method of projection to implement
T , the fixed point iteration to compute FNh,θ(G, u) is stated in Algorithm 1.

Algorithm 1 Evaluating the implicit flow network.
1: B ← signed incidence matrix of G
2: fcut ← argminfcut∈Rm {||Bfcut − u||2}
3: fcyc ← 0m
4: ∆fcyc ←∞1m
5: while ||∆fcyc||2,[a]−1 > ε do
6: v ← dmin[a]h−1θ

(
[a]−1fcyc + [a]−1fcut

)
7: w ← argminw∈Rn

{
||B[a]B>w −Bv||2

}
8: ∆fcyc ← v − [a]B>w
9: fcyc ← fcyc −∆fcyc

10: end while
11: f ← fcyc + fcut
12: return f

Theorem 2.3 (Implicit Flow Networks, Forward Pass). Consider an implicit flow network with
parameters dmin, dmax, and θ, with flow functions hθ. Suppose that the inputs G = (V, E , a) and
u ∈ 1⊥|V| are given, and let B ∈ {−1, 0, 1}|V|×|E| be the signed incidence matrix of G. The following
are true of Algorithm 1, with a tolerance of ε > 0:

1. for each iteration k = 1, 2, . . . of the loop, let f (k)cyc represent the new value of fcyc defined
on line 9; and let f (0)cyc = 0m. Then

f (k+1)
cyc = T (f (k)cyc), ∀k ≥ 0;

2. the algorithm converges with at most k∗ iterations of the while loop, where

k∗ = 1 +
log
(
d−1minρ

−1ε
)

log
(

1− dmin

dmax

) (8)

and ρ = ||[a]
1
2h−1θ ([a]−1B†u)||2; and

3. the algorithm returns f ∈ R|E|, where

||f − FNh,θ(G, u)||2,[a]−1 ≤
(
dmax − dmin

dmin

)
ε (9)

If evaluating h−1θ is sufficiently simple, then the most expensive step in the iteration is solving the
ordinary least squares problem on line 7. Using a general-purpose solver, the complexity of this
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operation is roughly O(|V|3). But B[a]B> is a sparse Laplacian matrix, so we can use a specialized
Laplacian solver that reduces the complexity to O(|E| logk |E|) for some constant k [33].

The bound on the number of iterations k∗ can be computed before any forward pass, since evaluating
h−1θ does not require solving the IFN equations. But we can further simplify the bound by approxi-
mating h−1θ (0) = 0, which is often justified because physical flow functions generally have a root at
the origin. Using the fact that (h−1θ )′(y) ≤ d−1miny, we can then eliminate the dependence on h−1θ :

k∗ ≤ 1 + log

(
1− dmin

dmax

)(
log ε− log

(
||[a]−

1
2B†u||2

))
2.2 Computing the Gradients

In order to train the flow function and any upstream models, it is necessary to backpropagate gradients
through the IFN layer. We can perform this backward pass using implicit differentiation, and it turns
out that the gradients of FNh,θ(G, u) with respect to the parameters θ, a, and u can also be computed
using Algorithm 1, i.e., by writing the gradient as the output of an auxiliary implicit flow network.
Theorem 2.4 (Gradients). Consider an implicit flow network with parameters dmin, dmax, and θ,
with flow functions hθ. Suppose that the inputs G = (V, E , a) and u ∈ 1⊥|V| are given, and let
B ∈ {−1, 0, 1}|V|×|E| be the signed incidence matrix of G. Let f = FNh,θ(G, u), and let w be a
scalar entry of θ, a, or u. We can compute the derivatives df

dw as follows.

Define a vector of flow functions g : R|E| → R|E| by

g(η) = D−1
(
η − [a]−1

∂v

∂w

)
, ∀η ∈ R|E| (10)

where D ∈ R|E|×|E| is the diagonal matrix with entries

Dee =
dh−1θ (ye)

dye

∣∣∣∣
ye=a

−1
e fe

, ∀e ∈ E (11)

and v = [a]h−1θ ([a]−1fcyc + [a]−1B†u). Then

df

dw
= FNg,·(G,0n) +B†

du

dw
(12)

(We use the notation · in place of θ, since g has no trainable parameters.) Furthermore, the derivative
constraint parameters dmin, dmax from the original implicit flow network are valid for the new implicit
flow network.

In other words, to compute the gradient with respect to a parameter, we perform a single evaluation
of the implicit flow network. In order to compute the derivatives with respect to some parameter or
input w, we first evaluate the partial derivatives ∂v

∂w and the total derivatives du
dw . Then we construct

the flow functions g according to (10), and solve an implicit flow network to find df
dw according to

(12). It is easy to evaluate du
dw , but for convenience, we provide the values of ∂v

∂w below:

∂v

∂θi
= [a]

dh−1θ ([a]−1f)

dθi
,

∂v

∂ae
= diag

(
h−1θ ([a]−1f)− [a]−1Df

)
e
,

∂v

∂ui
=
(
DB†

)
i

3 Comparison with Optimization Models

Both of the state-of-the-art methods for flow estimation, from [3] and [4], use an optimization problem
to predict flows. After a suitable transformation to incorporate external flow injections u, we can
state this optimization problem as

f̂ = argmin
f∈R|E|

{
||f ||22,[q] + λ2||Bf − u||22 s.t. fe = f̃e, ∀ labeled edges e ∈ E

}
(13)

where λ > 0, and q > 0m is some vector of edge weights. In [3], q = 1m, while [4] allows q to be
the output of a neural network. IFN is not explicitly an optimization problem, but it can be cast as
one that is similar to (13):
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Theorem 3.1 (Optimization Form of IFN). Consider an IFN with flow function hθ. Suppose that the
inputs G = (V, E , a) and u ∈ 1⊥|V| are given, and let B ∈ {−1, 0, 1}|V|×|E| be the signed incidence
matrix of G. Then the IFN output can be stated as the solution of a convex optimization problem:

FNh,θ(G, u) = argmin
f∈Rm

{∑
e∈E

∫ fe

0

h−1θ (a−1e z) dz s.t. Bf = u

}
(14)

Theorem 3.1 can be interpreted as a nonlinear generalization of the Thomson principle from electrical
circuits theory [34]. Interestingly, the theorem sets up a direct comparison between IFN and the
models in [3] and [4]. If the flow function hθ is the identity map, then (14) can be simplified as

FNh,θ(G, u) = argmin
f∈Rm

{∑
e∈E
||f ||22,[a]−1 s.t. Bf = u

}
(15)

Ignoring the constraints from labeled flows, we can interpret (13) as using a penalty method to
approximate the output of an IFN with a linear flow function. Thus, we have three distinct differences
between IFN and the optimization-based approaches. First, IFN allows for a nonlinear flow function,
while [3] and [4] implicitly assume a linear CR. Second, IFN imposes flow conservation as a hard
constraint rather than an approximate constraint (which is a limitation if u is uncertain). Finally, IFN
does not incorporate flow measurements directly; rather, the model exploits these measurements
during training to learn the proper flow function (and train any upstream models for the IFN inputs),
making it less sensitive to noise in the labeled flows.

4 Models for Flow Functions

In order to implement an IFN, it is necessary to parameterize its inverse flow function h−1θ . Since the
flow function is essentially a trainable activation function, i.e., a scalar nonlinearity, simple models
are likely to be sufficient. The main difficulty with selecting a flow function is that its slope must be
bounded by dmin ≤ h′θ(y) ≤ dmax for all y ∈ R. This section proposes a simple scalar nonlinearity
that is guaranteed to respect arbitrary upper and lower bounds on its slope.
Definition 4.1 (Derivative-Constrained Perceptron). Let k ∈ Z>0 be a hidden layer size, let a, b, c ∈
Rk be freely trainable parameters (encoded within the parameter vector θ), and let σ be a non-
expansive activation. Let p, q ≥ 1 such that p−1 + q−1 = 1, and let d̄min ≤ d̄max ∈ R. Then the
derivative-constrained perceptron N(x, θ) is the 3-layer neural network defined by

c̄(θ) =

(
1−

(||c||p||a||q − 1)+
||c||p||a||q

)
c (L1)

N0(x, θ) = c̄>(θ)σ(ax+ b) (L2)

N(x, θ) =

(
d̄max − d̄min

2

)
N0(x, θ) +

(
d̄max + d̄min

2

)
x (L3)

Intuitively, (L1) re-scales c so that the perceptron in (L2) is guaranteed to be non-expansive in x. Then
(L3) re-centers and re-scales the derivatives of the perceptron from the range [−1, 1] to [d̄min, d̄max].
Theorem 4.2 (Derivative-Constrained Perceptron). Let N(x, θ) be a derivative-constrained percep-
tron with d̄min ≤ d̄max ∈ R. Then for all parameter values θ,

d̄min ≤
d

dx
N(x, θ) ≤ d̄max, ∀x ∈ R (16)

Note that the values d̄min, d̄max in Definition 4.1 and Theorem 4.2 are distinct from the IFN parameters
dmin, dmax. Since we parameterize the inverse flow function h−1θ in IFN, one shoudl set d̄min = d−1max

and d̄max = d−1min to implement h−1θ with a derivative-constrained perceptron.

5 Numerical Experiments

We studied the transductive task of predicting unlabeled flows, given that some labeled flows in the
same network are known. If the edges E are partitioned into a labeled set El and an unlabeled set Eu,

7



the task is to predict the missing flows {fe : e ∈ Eu} given the labeled flows {fe : e ∈ El}. For each
network, we randomly selected a fraction of the edges to be labeled edges, and we trained IFN and
baselines on the labeled edges. Then we evaluated the RMSE of the flows predicted for the unlabeled
edges Eu to compute the testing error. See Appendix B in the supplementary material for full details.
Code is available at https://github.com/KevinDalySmith/implicit-flow-networks.

5.1 Datasets

AC Power We selected 6 standard power network test cases. The first 4 test cases (IEEE-57, IEEE-
118, IEEE-145, and IEEE-300) are synthetic transmission system test cases, while the remaining
cases ACTIVSg200 and ACTIVSg500 are similar to the Illinois and South Carolina power grids,
respectively [35]. Each test case contains the topology and electrical parameters of the power network,
as well as baseline demands and power injections at each node. While branch resistances are typically
small, we set them to zero to ensure lossless transmission lines. We used the MATPOWER toolbox
[36] to solve the power flow equations, then recorded the active power flows on each branch (f ),
computed the net active power injections at each node (u), and selected relevant electrical parameters
as edge attributes (series reactance, tap ratio, and voltage magnitude at the two incident nodes).

Water Distribution We selected 3 sample water distribution networks from the ASCE Task Com-
mittee on Research Databases for Water Distribution Systems database [37], representing municipal
water distribution systems in Fairfield, CA, Bellingham, WA, and Harrisburg, PA. Each network
contains the topology of the distribution system, as well as the characteristics of pipes and other
network elements and nodal demands. We used the WNTR package [38] to compute the flow rates
through each pipe (f ), net inflow rate at each node (u), and edge weights associated with each pipe.

5.2 Models and Experiment Details

IFN Architecture In order to use the IFN layer to predict power flows, we created a two-layer
model. The first layer estimates positive edge weights a ∈ R|E| according to ae = exp (L(ze)) for all
e ∈ E , where L is a linear module, and ze is the log-transformed vector of edge attributes. The second
layer is an IFN. To predict water flows, we used an IFN layer alone, supplying the edge weights
from the dataset as input (rather than learning them from other edge attributes). For both water and
power, the IFN layer uses a derivative-constrained perceptron as the inverse flow function (k = 128,
p = q = 1

2 ) with a ReLU activation function. For power, we set dmin = 0.4 and dmax = 2; and for
water, dmin = 0.2 and dmax = 20.

Baselines We compared the IFN model against four baselines. The minimum divergence method
(Div) from [3] minimizes the nodal divergence ||Bf ||22 and a regularization term λ||f ||22. The bilevel
optimization methods from [4] replace the uniform regularizer with a weighted regularizer ||f ||22,[q],
where q is a vector of weights. In Bil-MLP and Bil-GCN, q is the output of either a 2-layer MLP
or GCN model with edge attributes as inputs (we use 64 nodes in each hidden layer with ReLU
activations). In Bil-True, we specify q as the reciprocal of the coefficient in the linearized CR for
AC power networks, so that Bil-True approximates (15) with a as the ground-truth edge weight. For
water experiments, Bil-True uses the same edge weights as the IFN model.

All of the baselines assume that nodal divergence Bf should be approximately zero, but nodes in
power networks inject and withdraw power according to the supply / demand vector u, resulting in
nonzero divergence. Thus, when we evaluate the baselines, we transform the power network into a
divergence-free network by introducing a “source node”, adding an edge from the source node to all
nodes in V , and treating the entries of u as the flows along each corresponding virtual edge.

5.3 Results

Figure 2 reports the results for the AC power networks, and Figure 3 reports the results for water
distribution systems. In both types of networks, the IFN model significantly outperforms the baselines
on all of the networks when a small fraction of edges are labeled (less than 80% in power and less than
60% in water). While the other baselines tend to improve as more labeled edges are made available
for training, IFN achieves near-optimal performance with as few as 10% of the edges labeled.
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Figure 2: Results for missing flow prediction in AC power networks. Reported values are the RMSE
(in units of MW) on the testing set, averaged across 10 trials. Note the vertical axis is in a log scale.
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Figure 3: Results for missing flow prediction in water distribution systems. Reported values are the
RMSE (in units of m3/s) on the testing set, averaged across 10 trials.

6 Conclusion

In this paper, we have introduced an implicit model for network flows that incorporates physics
through a conservation law and through the existence of a constitutive relationship between flows
and nodal variables. We have demonstrated that a simple architecture using this model can learn to
accurately predict active power flows in AC networks and water distribution systems. Future work
may investigate more elaborate architectures using IFN as a layer, wherein the supply / demand
vector, edge weights, or even the graph itself could be predicted from upstream models, and the flows
themselves used for downstream tasks. Another interesting extension may be to extend our method to
networks with higher-order interactions, i.e., hypergraphs [39] and simplicial complexes [40, 41].

IFN has some limitations that should also be addressed in future work. IFN assumes that the graph is
undirected, which does not adequately model networks with unidirectional flows (e.g., traffic) or lossy
flows (e.g., resistive power grids). IFN also assumes a CR that depends on the difference between
nodal variables. This form appears frequently in physical systems, but in other network flow models
(like Daganzo traffic models [42]), the CR has a more general dependence on the nodal variables.
These limitations may be addressed with extensions of IFN’s contraction algorithm.
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