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Abstract

Since out-of-distribution generalization is a generally ill-posed problem, various
proxy targets (e.g., calibration, adversarial robustness, algorithmic corruptions,
invariance across shifts) were studied across different research programs resulting
in different recommendations. While sharing the same aspirational goal, these
approaches have never been tested under the same experimental conditions on real
data. In this paper, we take a unified view of previous work, highlighting message
discrepancies that we address empirically, and providing recommendations on how
to measure the robustness of a model and how to improve it. To this end, we
collect 172 publicly available dataset pairs for training and out-of-distribution eval-
uation of accuracy, calibration error, adversarial attacks, environment invariance,
and synthetic corruptions. We fine-tune over 31k networks, from nine different
architectures in the many- and few-shot setting. Our findings confirm that in- and
out-of-distribution accuracies tend to increase jointly, but show that their relation is
largely dataset-dependent, and in general more nuanced and more complex than
posited by previous, smaller scale studies1.

1 Introduction

With deep learning enabling a variety of downstream applications [1–4], failures of robustness leading
to systematic [5–7] and catastrophic deployment errors [8–10] have become increasingly relevant.
From early work on studying distribution shifts [e.g., 11, 12] and the classical “cow on the beach”
example (e.g., in [13]), several works have highlighted sometimes spectacular failures of machine
learning when the test distribution differs from training [10, 14–21]. This has motivated the study
of different types of distribution shifts, ultimately branching the field into several sub-communities
that, while sharing the same underlying objective, rely on different evaluation protocols and provide
different recommendations to practitioners.

(1) The studies [15, 17–20, 22, 23] focused on algorithmically corrupting upstream pre-training
datasets [24] to test generalization. Perhaps unsurprisingly, the choice of augmentations can sig-
nificantly alter this notion of robustness [25–29]. (2) As synthetic corruptions need not transfer
to real world distribution shifts [27], new realistic datasets were collected to test upstream robust-
ness [15, 27, 30–33]. Here, scale has been identified as a reliable ingredient [30, 34–37], despite
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other works [38] arguing that extensive upstream pre-training can harm downstream robustness. (3)
Exhaustive comparisons attempted to disentangle intrinsic architectural robustness from specific
training schedules [39–44], addressing underspecification [45] with inductive biases. Orthogonally,
several (less scalable) works advocated for leveraging the compositional (perhaps causal [46]) struc-
ture in the underlying data-generative process to introduce suitable inductive biases [47–53]. (4)
Simultaneously, Bayesian approaches for uncertainty predictions have been proposed to improve
model calibration [54–61] and robustness on new distributions [62–64]. Recent work, however,
found that larger models were natively better calibrated [65]. (5) The adversarial training community
developed an entire literature on different worst case local perturbations of training data [14, 66],
with 5000+ papers written to date [67] and a never ending cycle of new defenses and attacks [68–72].
(6) Other niche approaches investigated carefully designed test sets [73–75] and training protocols
that promote invariance across several distributions [73, 76–79]. Despite this progress, empirical
risk minimization (ERM) remains a strong contender [75]. Overall, the significant community effort
towards more robust machine learning models have resulted in diverse proxy evaluation targets
yielding different practical recommendations.

At the same time, the workflow of successful applications developed in the opposite direction
[3, 4, 80–82]. Instead of collecting large application-specific datasets, one trains generalist backbones
on the greatest possible amount of data and then transfers the model using available domain-specific
examples. Besides the test data likely being “on manifold”, one is almost certainly guaranteed that
there will be some sort of distribution shift at test time as the size of the fine-tuning dataset decreases.

Focusing on classification of visual data, we evaluate the different key metrics from these communities
in a unified manner and under the same experimental conditions to investigate the gaps in common
practices. We restrict ourselves to the realistic situation where we have an ImageNet pre-trained
model available and a new target distribution as downstream task. After the model has been fine-
tuned, the test data may be OOD. From 36 existing datasets, we extract 172 in-distribution (ID) and
out-of-distribution (OOD) dataset pairs, fine-tuning and evaluating over 31k models to gain a broader
insight in the sometimes contradicting statements on OOD robustness in previous research. We
organize our study around two key questions: (1) What are good proxy measures of OOD robustness
when having access to a single dataset? (2) How do architecture choices and fine-tuning strategies
affect robustness? We plan to publish the code with the camera-ready version of the paper.

Our key contributions are (1) We conduct a large systematic study of OOD robustness, evaluating the
effect of architecture type, augmentation, fine-tuning strategies and few-shot learning. We investigate
the interplay of robustness to corruptions, adversarial robustness, robustness to natural distribution
shifts, calibration and other robustness metrics in a unified setting and under the same experimental
conditions. (2) We find that out-of-distribution generalization has many facets. Insights of previous
papers—sometimes presented as general conclusions— hold only on a subset of the tasks/datasets
included in our study and hence actually only reflect a special case. (3) In general, in-distribution
classification error (accuracy) is the best predictor of OOD accuracy, but other secondary metrics can
provide additional insights. (4) With these results, we revisit previous studies and recommendations,
reinterpreting their conclusions, resolving some contradictions, and suggesting critical areas for
further research.

2 Experimental setup

We follow the modern workflow of applications of computer vision to (long-tail) downstream tasks
from existing pre-trained backbones. The model is transferred using a set of (potentially few)
examples from a new distribution. At test time, we assume that the classes remain the same (closed-
world setting), but that the distribution may otherwise change. We specifically focus on the effect
of distribution shifts after a model has been transferred to a new distribution (i.e., the downstream
implications) and discuss the empirical differences and similarities compared to results concerning
upstream OOD robustness that were discussed in previous studies [15, 27, 30–34].

Experimental protocol and datasets: We evaluate nine state-of-the-art deep learning models with
publicly available pre-trained weights for ImageNet1k / ILSVRC2012 [24]. We consider 36 datasets
grouped into ten different tasks sharing the same labels. Datasets of the same task represent a
set of natural distribution shifts. For each task, we take a single training dataset to fine-tune the
model and report evaluation metrics on both its ID test set and all the other OOD test sets. We
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extract 172 (ID, OOD) dataset pairs from the different domains of the ten tasks: DomainNet [83],
PACS [84], SVIRO [85], Terra Incognita [13] as well as the Caltech101 [86], VLCS [87], Sun09 [88],
VOC2007 [89] and the Wilds datasets [90] (from which we extract two tasks). In our experimental
protocol we do not make any assumptions on the particular shift type and the considered tasks reflect
multiple shift types (e.g., presumably a strong covariate shift in DomainNet and a partial label shift
in Camelyon17 of the Wilds benchmark). See Appendix E for a detailed overview. Models are
fine-tuned on a single GPU using Adam [91] with a batch-size of 64 and a constant learning rate.

Evaluation on ID, OOD and corrupted data: Some tasks, such as DomainNet, PACS and SVIRO
come with different datasets/domains. For those, we report for each dataset the ID (test) performance
and the OOD (test) performances on the other datasets in the task. For the datasets from the WILDS
benchmark, we use the provided ID test and OOD test splits. If a task consists of multiple OOD data
we compute the metrics additionally on held-out OOD data. To do so, for each (ID, OOD) dataset
pair, we average the performance on the remaining OOD datasets. This approach is sometimes called
multi-domain evaluation [e.g., 64]. Alongside the provided OOD datasets, we evaluate the models on
the corrupted ID test set. We apply 17 types of corruptions from [17] each with 5 severity levels. The
corrupted version of the datasets can be viewed as a synthetic distribution shift and we investigate
how informative they are of natural distribution shifts.

Models: To ensure that our results are relevant for researchers and practitioners alike, we consider
both widely deployed and recent top-performing methods: Resnet50d [92], DenseNet [93], Effi-
cientNetV2 [94], gMLP [95], MLP-Mixer [96], ResMLP [97], Vision Transformers1 [4], Deit [98],
Swin Transformer [99]. We list the exact model names in Table S4. Our choice of models covers
convolutional networks, transformer variants and mixers. Weights for the pre-trained models were
taken from the PyTorch Image Models repository [100].

Model hyperparameters and augmentation strategies: For each model we consider the learning rate
and the number of fine-tuning epochs. We first ran a large sweep over these two hyperparameters on a
subset of the experiments and used it to pre-select a set of four parameter combinations that included
the best performing models for each architecture. Additionally, we study three different augmentation
strategies: standard ImageNet augmentation (i.e., no additional augmentation), RandAugment [101]
and AugMix [28]. More details can be found in Appendix H.

Fine-tuning strategy and few-shot training: We investigate fine-tuning the full architecture and
fine-tuning only the head. Additionally, we consider three training paradigms: training on the full
downstream dataset, and two few-shot settings: “few-shot-100” (a subset with 100 examples per class,
if available) and “few-shot-10” (with 10 examples per class). In the few-shot settings, the images are
randomly selected, and classes that have fewer images as the cap of 10 or 100, respectively, are not
over-sampled.

Metrics: We pick some of the most popular metrics that are used to measure progress towards robust
machine learning. We report six different metrics: classification error, negative log-likelihood (NLL),
demographic disparity [102, 103] on inferred groups [77] as a measure of invariance2, the expected
calibration error (ECE) [104], and adversarial classification error for two different `2-attack sizes.
The metrics are, where applicable, evaluated on ID, OOD, and corrupted test sets, (except adversarial
error, which we did not evaluate on the corrupted test sets). See Appendix G for more details.

3 Additional related work

As much of the related work was already mentioned in the introduction we highlight two main areas
of closely related works: one regarding benchmarks for generalization to new distributions and one
on the interplay between different evaluation metrics.

Benchmarking robustness to OOD. Closely to our setting, [105] benchmarked models in a few-shot
learning setting but did not analyze the robustness of the fine-tuned models. In follow up work, [34]
related the results of [105] to upstream robustness but did not consider downstream distribution shifts.
[75] analyzed a variety of domain generalization algorithm and found that none of them could beat
a strong ERM baseline. While several of our datasets overlap with theirs, we consider the transfer

1Trained on ImageNet21k and fine tuned on ImageNet1k.
2As there is no “measure of invariance” for a single dataset, we rely on [77] that finds a partition of the data

maximising the IRM [76] penalty.
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learning setting as opposed to domain generalization. Their insights may be in part explained by the
fact that the regularization is either orthogonal to OOD accuracy or simply harms accuracy overall as
in [106]. [21, 107] proposed a model for analyzing different fine-grained distribution shifts. Their
work is limited to few datasets and model types and only cover accuracy evaluations. [108] studied
the effect of the pre-training strategy on domain generalization and [109] studied extensions to large
pre-trained models for improved reliability, whereas our work analyzes fine-tuning protocols and the
robustness on downstream tasks. [27] found that larger models and better augmentation techniques
improve robustness but did not consider different model types, augmentation techniques or evaluation
metrics. Our work studies robustness in a larger scope than previous work, which focused on certain
dimensions of our empirical investigations. None of the previous work studied the interplay of
different robustness metrics.

Studying the interplay of robustness metrics. There has been only limited work on analyzing
informativeness of robustness metrics on OOD generalization. [110] analyzed distribution shifts
of ImageNet and found that corruption metrics do not imply robustness to natural shift. Recently,
[35], based on previous studies by [15, 110–112], observed a clear linear relationship between ID
accuracy and OOD accuracy and hypothesized that this could be a general pattern in contradiction
to [45]. [113] extended this line of work to agreement between networks and [114] found that large
pre-trained models are above the linear trend in early stages of fine-tuning. However, our extended
set of experiments show that a clear linear trend is only visible on some (ID, OOD) dataset pairings.
[115] empirically investigated different generalization measures and found that measures relating to
the Fisher information perform best.

4 A broad look at out-of-distribution generalization

In the following we explore the facets of out-of-distribution generalization, highlighting discrepancies
to prior work and discuss their implications.

4.1 The main latent factors that explain the empirical results

Figure 1: Factor loadings (contributions) of different
metrics based on a factor analysis with 4 orthogonal fac-
tors (color-coded), highlighting similarities between the
metrics. The factor Blue: captures classification error,
adversarial error, log-likelihood, and their corrupted vari-
ants. Green: only in OOD metrics. Yellow: expected
calibration error. Red: demographic disparity.

To get a first overview of the relations between
the different metrics and their generalization
properties, we perform a factor analysis to dis-
cover the main orthogonal latent factors that
explain the variance in the metrics evaluated
on each ID dataset, its corrupted variant, and
the metrics averaged over all compatible OOD
datasets for each fine-tuned model. For details,
see Appendix B.

Based on the scree plot in Appendix B, we retain
four factors. Their contributions (loadings) to
each metric are shown in Fig. 1. Interestingly,
each factor has a clear interpretation. Factor
1 (blue) is very well aligned with ID classifi-
cation error, log-likelihood and adversarial at-
tacks. Factor 2 (green) captures OOD-specific
variance, since it is particularly pronounced in almost every out-of-distribution metric, and only there.
Factor 3 (orange) relates mainly to the expected calibration error and factor 4 (red) to demographic
disparity. The dominant presence of factor 1 (blue) in all classification error and log-likelihood
metrics ID and OOD suggests that ID classification error can be a reasonably good predictor of
OOD classification error, which we further discuss in Section 4.3. However, the presence of an
OOD-specific factor also suggests that ID versus OOD accuracy (classification error) cannot always
lie “on a line” [35]—we investigate this further in Section 4.2. Another noteworthy point is that
the corrupted metrics and adversarial classification errors have almost no OOD component and are
generally very close to the corresponding ID metric. Similarly, the loadings of the corrupted metrics
are much closer to those of the ID metrics than to OOD metrics. This suggests that the performance
on artificially corrupted data may not predict the OOD performance significantly better than the bare
ID metrics. We further discuss this in Section 4.3.2. Finally, the fact that demographic disparity and

4



0.00 0.25 0.50 0.75 1.00

ID accuracy

0.0

0.2

0.4

0.6

0.8

O
O

D
ac

cu
ra

cy

INCREASING LINE
(DomainNet clipart-vs-sketch)

0.00 0.25 0.50 0.75 1.00

ID accuracy

VERTICAL LINE
(PACS sketch-vs-photo)

0.00 0.25 0.50 0.75 1.00

ID accuracy

HORIZONTAL LINE
(DomainNet infograph-vs-quickdraw)

0.00 0.25 0.50 0.75 1.00

ID accuracy

NO CLEAR TREND
(TerraIncognita Loc46-vs-Loc38)

Figure 2: Typical scatter plot patterns observed in our data (see Appendix D for all plots). Increasing line: ID
and OOD accuracy show a clear functional dependency. In contrast to previous claims this is not the typical
setting (only observed on a subset of datasets). Vertical line: the same ID peformance leads to different OOD
behavior (underspecification setting). Horizontal line close to zero accuracy: no transfer of information from
the ID to the OOD dataset. No clear trend: random associations between ID and OOD accuracy (i.e., zero
correlation).

expected calibration error are each mainly captured by their own, specific factor suggests that, maybe
surprisingly, those metrics are largely independent of the networks’ classification error. Further
details are discussed in Section 4.3.2.

Takeaway: One latent factor suffices to capture accuracy and log-likelihood on ID, corrupted,
and adversarial datasets. OOD behavior, calibration, and environment invariance are each
captured by a separate factor. A separate factor for OOD metrics suggests that artificial and
adversarial corruptions do not fully mimic real distribution shifts.

4.2 The many facets of out-of-distribution generalization

Prior publications [34, 35, 110] observed that OOD accuracy strongly linearly correlates with ID
accuracy, or, in other words, that ID vs OOD accuracy nearly lie “on a line”. In contrast, we find
that this is not a general trend when tested on more tasks. Fig. 2 shows the four typical settings we
observe. For some (ID, OOD) dataset pairs we observe a clear functional dependency as claimed by
[35, 110] (increasing line). For other dataset pairs we observe a clear underspecification problem [45]:
very similar ID performances (in most cases close to 1) lead to different OOD performances (vertical
line). In this setting, ID accuracy is not a sufficient model selection criterion for obtaining robust
models3. In some settings, the models do not transfer information from the ID to the OOD data at all
and, despite having different ID performance, all models have very poor OOD performance. Finally,
we observe a fourth setting, where OOD accuracy is hardly correlated to ID accuracy. Interestingly,
we never see a decreasing trend, i.e., improved ID performance never systematically results into lower
OOD performance. Hence, despite the many shapes of ID and OOD dependency, it is still a good
strategy to maximize the ID accuracy in order to maximize the OOD accuracy.

Results can significantly change for different shift types. We highlighted how much ID to
OOD generalization can change on different tasks/datasets. This is further confirmed by the task-
specific correlation matrices in Appendices A.3 and A.4, which, more generally, show that there
can be significant differences in various metrics between different tasks or shift types. For example,
comparing the terra-incognita and wilds-fmow specific correlation matrices, we see that for terra-
incognita calibration and demographic disparity have a strong positive correlation with OOD accuracy,
whereas for wilds-fmow the correlation is strongly negative. Similarly, multi-domain calibration
as proposed by [64] only improves OOD robustness on some tasks, but has a negative effect on
others (details in Section 4.3). Appendix A.4 shows that focusing on different shift types can also
lead to contradicting findings. For instance, for models that were trained on artificial data (such as
sketches, clipart, simulated environments) and evaluated on real OOD data, corruption metrics are
more predictive of OOD robustness than for models that were trained on real data and tested on
artificial OOD data. Additionally, we discuss in Appendix E.1 the dependence of the results on the
task difficulty.

3One may be tempted to think of this as a saturation phenomenon, where the ID data is too easy to learn
to distinguish the good networks from the bad ones. In that case, however, the generalization properties
should significantly depend on the architecture (and pre-training performance), so that models with best OOD
performance should be the same on every dataset. What we observe instead is that the order seems to be largely
random in different dataset pairs.
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Figure 3: LEFT: What is a good proxy for classification error under natural distribution shifts? We measure
how well several popular robustness metrics on in-distribution (ID) data predict classification error on out-
of-distribution (OOD) datasets. Red bars: The predictiveness score is computed based on Spearman’s rank
correlation coefficient between the robustness metric and OOD classification error. We find that, among all
considered metrics, ID classification error is the strongest predictor of OOD robustness. What is the additional
information content of the robustness metrics adjusted for ID classification error? Green bars: We compute the
adjusted predictiveness scores as outlined in Section 4.3. When adjusted for ID classification error, all secondary
metrics only provide limited information. RIGHT: How predictive are the metrics on additional held-out OOD
data? Evaluating accuracy on held-out OOD data (multi-domain evaluation) is the strongest predictor of OOD
accuracy and provides significant additional information to ID accuracy (see adjusted scores).

Takeaway: ID and OOD accuracy only show a linear trend on specific tasks. We observe three
additional settings: underspecification (vertical line), no generalization (horizontal line), and
random generalization (large point cloud). We did not observe any trade-off between accuracy
and robustness, where more accurate models would overfit to “spurious features” that do not
generalize. Robustness methods have to be tested in many different settings. Currently, there
seems to be no single method that is superior in all OOD settings.

4.3 What are good proxies to measuring robustness to distribution shifts?

Can we predict the robustness of a model by using a proxy measure? In other words, how predictive is
a certain metric A (e.g., ID expected calibration error) of another metric B (e.g., OOD classification
error)? To this end we compute the averaged correlation matrix which reports the rank correlation of
all metrics, averaged over all tasks. The matrix and details on the method are deferred to Appendix A.
We already saw –and the matrix confirms– that accuracy is a strong predictor of OOD accuracy. This
raises the question if other metrics add any additional information on OOD accuracy which is not
already provided by ID accuracy. To test this, we compute adjusted predictiveness scores as follows.
For each dataset pair, we fit a linear regression to predict OOD accuracy from ID accuracy. We
then report the averaged rank correlation coefficient between the obtained residuals and each metric.
This measure is similar to the effective robustness proposed in [35]. Results are shown in Fig. 3 and
discussed in the upcoming subsections.

4.3.1 Overall classification error is the best general predictor of OOD robustness

Fig. S1, derived from the full averaged correlation matrix in Appendix A, shows that among all
considered metrics, ID classification error is the strongest predictor of OOD classification error. This
finding is in contrast to works that hypothesized that evaluating the classification error on corrupted
data (e.g., ImageNet-C [17]) or on adversarial perturbed data [116] provides additional information on
how models perform under natural distribution shifts. Although these metrics show a high correlation
with OOD classification error, we do not find that they add significant information when adjusting for
ID classification error. However, when having access to additional OOD datasets, the classification
error on the held-out OOD datasets is even more powerful predictor of the robustness of the OOD
dataset of interest, see Fig. 3 (right). We find that this is the most reliable model selection procedure
of all considered metrics.

Our findings imply that if practitioners want to make the model more robust on OOD data, the main
focus should be to improve the ID classification error. This is in accordance with previous work that
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found that models with high ID classification error tend to be more robust [34, 35]. We speculate
that the risk of “overfitting” large pre-trained models to the downstream test set is minimal, and it
seems to be not a good strategy to, e.g., reduce the capacity of the model in the hope of better OOD
generalization [38]. Finally, we recommend that architectural innovations and training techniques
can leverage scale but that robustness comparisons should always be adjusted for classification error.

Takeaway: Accuracy is the strongest ID predictor of OOD robustness and models that generalize
well in distribution tend to also be more robust. Evaluating accuracy on additional held-out OOD
data is an even stronger predictor.

4.3.2 What can we learn from other metrics beyond accuracy?

The first interesting result is that calibration on ID data is not predictive of OOD robustness or OOD
log-likelihood (see Fig. S1 in the appendix). Restricted to the ID regime, however, we observe a
correlation between ID calibration and ID classification error, which is in accordance with [65].
This difference is explained by the fact that ID calibration is not predictive of OOD calibration
without an OOD held-out set (see Section 4.4). In contrast to the observations in [64], we see that a
model that is well-calibrated on multiple domains (held-out OOD data) may not always have lower
OOD classification error (e.g., negative correlation for domain-net but positive on office-home, see
Appendix A.3). Interestingly, invariance measured with environment inference [77] and demographic
disparity [103] is not predictive of OOD robustness but seems to be a good proxy for calibration of
OOD data (see Fig. S1) which is consistent with our observations on multi-domain calibration4 and
may be useful for OOD detection.

ID log-likelihood and adversarial accuracy are both weak predictors of OOD robustness compared to
ID accuracy, and when adjusted for ID accuracy they only add marginal to no information. Since the
correlation between ID adversarial classification error and OOD classification error is fully explained
by ID accuracy (see Fig. 3, left) suggests that adversarial distribution shifts do not characterize well
natural distribution shifts.

Synthetic corruptions We apply the synthetic corruptions proposed by [17] to all datasets. First, we
find that classification error and log-likelihood evaluated on the corrupted data are strongly correlated
to OOD classification error (see Fig. 3, left). However, we find that the information provided by the
corrupted metrics is significantly reduced when adjusted for ID accuracy. With the partial exception of
corrupted calibration being more informative of OOD calibration than ID calibration (see Section 4.4).
In summary, evaluation on corrupted data does not seem to bring the same benefits as using real
held-out OOD data (see Fig. 3, right). Interestingly, we find that adversarial classification error is
highly correlated to the classification error under synthetic corruptions (see Fig. S1). Therefore, if the
practitioner cares about shifts defined by artificial corruptions, studying the adversarial robustness on
ID data will be informative.

Robustness to upstream dataset shifts In our study all models are pre-trained on ImageNet (upstream
dataset) and then fine-tuned on downstream data. In this section, we explore if upstream robustness
propagates downstream. First, we notice in Fig. 3 (left) that the original performance on ImageNet
is linked to OOD classification error in accordance to previous studies [34]. When we adjust for
ID classification error, the clean ImageNet performance is among the strongest predictors for OOD
classification error. Second, we find that robustness on ImageNet shifts does not give much additional
information to the downstream robustness compared to clean performance. The performance on
ImageNet shifts is almost perfectly correlated with the ID performance (in this setting accuracy is
perfectly “on the line”, c.f. Section 4.2), but this relationship does not translate to our diverse set of
downstream shifts.

Takeaway: Other metrics can add marginal additional information for OOD robustness. Cali-
bration appears to be predictive of ID accuracy but does not transfer to new distributions and
adversarial robustness appears not to reflect robustness to natural distribution shifts. Corruptions
are only marginally useful for measuring robustness to natural distribution shifts and should
not be used as a substitute to real held-out OOD data. ImageNet upstream performance pro-
vides information on downstream robustness. However, robustness to commonly used shifts of
ImageNet does not imply downstream robustness more than the clean upstream accuracy.

4Given the decomposability of the log-score, the objectives of both approaches are related.
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Figure 5: Performance gap (difference) between mod-
els trained with and without augmentations together
with a p-value in parenthesis to assess its significance.
Black fields indicate a p-value above the 0.05 signifi-
cance threshold (i.e., non-significant); the other values
are significant. Overall, augmentations help increasing
the model’s accuracy and its robustness to all kinds of
distribution shifts (artificial and adversarial corruptions,
OOD generalization), more so when data is scarce (few-
shot settings).

Model ID Error OOD Error OOD-ID Gap

Deit 0.101 ± 0.005 0.364 ± 0.008 0.263 ± 0.006
Swin 0.111 ± 0.005 0.371 ± 0.008 0.260 ± 0.006
ViT-B 0.124 ± 0.005 0.384 ± 0.008 0.259 ± 0.006
ResNet50 0.124 ± 0.005 0.406 ± 0.008 0.283 ± 0.006
EfficientNet2 0.129 ± 0.005 0.407 ± 0.008 0.277 ± 0.006
GMLP 0.140 ± 0.006 0.413 ± 0.008 0.273 ± 0.006
ResMLP 0.134 ± 0.005 0.413 ± 0.008 0.279 ± 0.006
Mixer 0.142 ± 0.006 0.425 ± 0.008 0.282 ± 0.006
DenseNet169 0.145 ± 0.005 0.443 ± 0.008 0.298 ± 0.006

Table 2: Average classification error of model archi-
tectures with the standard error of this average in grey.
To simulate a typical transfer learning workflow, we
selected the best performing augmentations based on
ID validation data for each fine tuning domain.

4.4 On the transfer of metrics from ID to OOD data

Figure 4: For each source metric on the x-axis we display
the averaged correlation with the same metric evaluated
on OOD data (target). The different colors indicate on
which data domain the source metric was evaluated;
either on ID, ID corrupted, or held-OOD data. Note that
in our study we do not evaluate adversarial classification
error on corrupted data.

The main focus of Section 4.3 was to analyze
how informative the different metrics are of
OOD classification error. In a more general
setting, we now explore how well a metric eval-
uated on ID data predicts their score on OOD
data. Fig. 4 shows the averaged correlation co-
efficient of each metric—evaluated either on ID,
corrupted or held-out data—with the same met-
ric evaluated on OOD data. First, we find that all
ID metrics transfer moderately well to OOD data
(blue bars). For adversarial attacks the transfer is
highest. This suggests that the models respond
similarly to adversarial attacks on ID data and
on OOD data. On the other hand, ID calibration
transfers worst among all metrics, i.e., a model
that is well calibrated on ID data, is not neces-
sarily well calibrated on OOD data. This points to an important problem, since in many production
systems models are only calibrated on ID data. Second, we observe that the evaluation on corrupted
data does not add significant information to the evaluation on ID data (blue vs. red bars) for most
metrics. Interestingly, we observe one exception; for calibration the evaluation on corruptions is
significantly more informative. Third, when having access to additional held-out data, the evaluation
on this data is the strongest predictor for the OOD behavior for all metrics (green bars).

Takeaway: Among all metrics adversarial robustness transfers best from ID to OOD data, which
suggests that models respond similarly to adversarial attacks on ID and OOD data. Calibration
transfers worst, which means that models that are well calibrated on ID data are not necessarily
well calibrated on OOD data.

5 The effect of the training strategy on out-of-distribution robustness

We now investigate the influence of the training strategy and model architecture on OOD robustness
for practitioners. Although we will observe clear trends, they should be taken with care, since
each model was pre-trained with its own training procedure (with different optimizers, learning rate
schedules, augmentations, sometimes even datasets, etc.), which is likely to confound downstream
results even after using a unified fine-tuning procedure. This is a general problem since different
architectures usually require a specific pre-training procedure. Most practitioners usually undergo the
same pipeline, starting from a network with publicly available pre-trained weights.
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5.1 The effect of augmentations, fine-tuning strategy and few-shot learning

To evaluate the effect of augmentations during fine-tuning, we average the performance of networks
trained with RandAugment [101] and AugMix [28] and compare it to fine-tuning without augmenta-
tions. Fig. 5 shows the performance gap between models trained with and without augmentations
together with the p-value of a one-sided Wilcoxon signed-rank test that assesses whether the model
trained without augmentations is better than the other one. Overall, augmentations appear to increase
accuracy across all corruption types (natural, corrupted and adversarial data), particularly on OOD
data. This suggests that augmentations not only improve accuracy in distribution, but also increase the
model’s robustness under certain shifts. The effect is more pronounced when data is scarce (few-shot
setting), although exceptions exist (accuracy in “few-shot-100”). We discuss additional results in
Appendix C.2.

Previous studies have shown that the fine-tuning strategy significantly affects the robustness [107,
117, 118]. In our study we investigate two popular fine-tuning methods: (1) fine-tuning the full
architecture and (2) fine-tuning the head only, while keeping the rest of the architecture frozen. We
discuss the results in Appendix C.1 and find that fine-tuning the full architecture is better for most
of the considered tasks when having access to the full datasets. However, in the low data regime
(few-shot-10 setting), fine-tuning the head only is beneficial on 40% of the tasks.

Takeaway: Augmentations can improve accuracy and robustness to all kinds of distribution
shifts (artificial and adversarial corruptions, OOD generalization), especially when data is scarce.
While fine-tuning the full architecture is beneficial when having access to the full dataset,
fine-tuning the head only can lead to higher robustness in the low data regime.

5.2 The effect of the model architecture

With many pre-trained backbones available in libraries like [100] that often achieve very similar
results on ImageNet, it is not obvious whether the architecture choice matters. Table 2 shows
the average ID and OOD classification errors of each model. Interestingly, we observe that while
the Vision Transformer ViT-B was trained on more data it performs worse than Swin- and Deit-
Transformers both on ID and OOD data (both approx. 3% higher error than Deit). This indicates
that the extensions made to vision transformers improve generalization performance in the transfer
learning and fine-tuning scenario, while additionally requiring less data. Further, we notice that
the model with lowest average OOD classification error, does not show the lowest performance
gap, i.e., the performance on ID data and OOD data are not necessarily more closely aligned when
performance on ID and OOD accuracy increases.

Takeaway: In the light of previous work that argued that domain generalization methods
only have a marginal effect on OOD robustness [75], we encourage more research on robust
architectures, as our results indicate that the architecture can indeed make a difference.

6 Conclusions

In this paper, we thoroughly investigated out-of-distribution generalization and the interplay of
several secondary metrics in the transfer learning setting. We focused on understanding sometimes
contradicting empirical evidence from previous studies and on reconciling the results with anecdotal
evidence from common practice in computer vision. We fine-tuned and evaluated over 31k models
across several popular architectures on 172 (ID, OOD)-dataset pairs and found the following. (1) The
risk of overfitting on the transfer distribution appears small: models that perform better in distribution
tend to perform better OOD. All other proxy metrics convey only limited information on OOD
performance after adjusting for ID accuracy. (2) Out-of-distribution generalization is a multi-faceted
concept that cannot be reduced to a problem of “underspecification” [45] or to simple linear relations
between ID and OOD accuracies [35]. However, we did not observe any trade-off between accuracy
and robustness, as is commonly assumed in the domain generalization literature [73, 76–79]. While
such trade-offs may exist, we posit that they may not be very common in non-adversarially chosen
test sets. (3) While calibration appears to transfer poorly to new distributions, adversarial examples
and synthetic corruptions transfer well to OOD data but seem ill-suited to mimic natural distribution
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shifts. (4) Held-out OOD validation sets can be good proxies for OOD generalization. As such, they
should be a key focus of any practitioner who worries about distribution shifts at test time.

In light of these results, we suggest three critical areas for further research. (1) Creating synthetic
interventional distributions is an appealing alternative to hand-crafted augmentations and corruptions
to both evaluate and improve robustness. High-fidelity generative models could be used to identify
specific axes of variation that a model is not robust to. While this has been studied in the context of
fairness with labelled sensitive attributes [e.g., 106], discovering such factors of variation remains an
unsolved task that relates to disentanglement [119] and causal representation learning [46]. (2) While
fine-grained studies of OOD performance can shed light into specific generalization properties of
neural networks, they should be interpreted with care. In particular, conclusions from adversarially
constructed test sets should not be generalized to broader settings. Instead, they may be useful
to compile model cards [120] that contain specific strengths and weaknesses of a model, e.g., in
terms of robustness to certain transformations, since we saw that these properties can transfer to new
distributions. (3) More work is needed to understand whether inductive bias in the architecture is a
meaningful tool to tackle generic distribution shifts. While we did observe some architecture-specific
differences in performance, the many confounding factors during pre-training make it difficult to
draw any definitive conclusion on this matter. Experimental protocols that specifically investigate the
intrinsic robustness of architectures and its relation to ID accuracy are still required.
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