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Abstract
Multi-agent learning in stochastic N-player games is a notoriously difficult problem1

because, in addition to their changing strategic decisions, the players of the game2

must also contend with the fact that the game itself evolves over time, possibly in a3

very complicated manner. Because of this, the equilibrium convergence properties4

of popular learning algorithms – like policy gradient and its variants – are poorly5

understood, except in specific classes of games (such as potential or two-player,6

zero-sum games). In view of all this, we examine the long-run behavior of policy7

gradient methods with respect to Nash equilibrium policies that are second-order8

stationary (SOS) in a sense similar to the type of KKT sufficiency conditions9

used in optimization. Our analysis shows that SOS policies are locally attracting10

with high probability, and we show that policy gradient trajectories with gradient11

estimates provided by the Reinforce algorithm achieve an O(1/
√

n) convergence12

rate to such equilibria if the method’s step-size is chosen appropriately. On the13

other hand, when the equilibrium in question is deterministic, we show that this14

rate can be improved dramatically and, in fact, policy gradient methods converge15

within a finite number of iterations in that case.16

1 Introduction17

Ever since they were introduced by Shapley [51] in the 1950’s, stochastic games have comprised one18

of the staples of non-cooperative game theory, with a range of pioneering applications to multi-agent19

reinforcement learning [8, 28, 65], unmanned vehicles [11, 35, 48, 50, 62], general game-playing20

[6, 7, 38, 52, 58], etc. Informally, a stochastic game evolves in discrete time as follows: At each point21

in time, the players are at a given state which determines the rules of the game for that stage. The22

actions of the players in this state determine not only their instantaneous payoffs (as defined by the23

stage game), but also the transition probabilities towards the next state of the process. In this way,24

each player has to balance two distinct – and often competing – objectives: optimizing the payoffs of25

today versus picking a possibly suboptimal action which could yield significant benefits tomorrow26

(i.e., by influencing the transitions of the process towards a more favorable state for the player).27

Since all players in the game are involved in a similar dilemma, the decision-making problem for each28

player is a very complicated affair. In particular, in addition to their changing strategic decisions, the29

players of the game must also contend with the fact that the game itself evolves over time. Because30

of this, even the existence of a Nash equilibrium policy – viz. a stationary Markovian policy that is31

stable to unilateral deviations [20] – is far more difficult to prove compared to standard, stateless32

normal form games; for a comprehensive survey, see [42, 53, 67] and references therein.33

The question we seek to address in this paper is whether an ensemble of boundedly rational players34

can reach an equilibrium policy in a stochastic game. Specifically, if players do not have sufficient35

information – or the computational resources required – to solve a Bellman equation in very high36
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dimensions [55, 59], it is not at all clear if they would somehow end up playing a Nash policy in the37

long run. After all, the complexity of most games increases exponentially with the number of players,38

so the identification of a game’s equilibria quickly becomes prohibitively difficult [17, 29, 34, 36].39

Our contributions in the context of related work. This issue has sparked a vigorous literature with40

important implications for the series of applications mentioned above [3, 54, 64]. On the downside,41

these efforts also have to grapple with a series of strong lower bounds for computing weaker solution42

concepts like coarse correlated equilibria in turn-based stochastic games [16, 29]. On that account, a43

recent line of work has instead focused on understanding specific sub-classes of stochastic games, like44

min-max [12, 15, 49, 60] and common interest potential games [18, 33, 68], or computing relaxed45

solution concepts where either the stationarity or the Markov property has been dropped [16].46

Our paper focuses on episodic playing in random stopping games – in lieu of learning in ergodic47

stochastic games with an infinite horizon [34, 44] – and considers the general class of policy48

gradient methods, first introduced by [30, 31, 56, 61] and subsequently popularized in single-agent49

reinforcement learning by [2, 10, 27, 63]. Concretely, this means that the sequence of play evolves50

episode-by-episode: within each episode, the players commit a policy and play the game, and from51

one episode to the next, they use an iterative gradient step to update their policy and continue playing.52

Our main contributions in this general context may then be summarized as follows:53

1. We introduce a flexible algorithmic template for the analysis of policy gradient methods which54

accounts for different information and update frameworks – from perfect policy gradients to55

value-based estimates obtained per episode, e.g., via the Reinforce algorithm [4, 56, 61].56

2. Within this framework, we show that Nash policies that satisfy a certain strategic stability57

condition are locally attracting with arbitrarily high probability. Moreover, to estimate the58

method’s rate of convergence, we focus on Nash policies that satisfy a second-order sufficiency59

condition similar to the type of KKT conditions used in optimization, and we show that such60

policies enjoy an O(1/
√

n) convergence rate in terms of squared distance.61

3. Finally, we also consider the method’s convergence to deterministic Nash policies and we show62

that, generically, the above rate can be improved dramatically. By a simple tweak to the method’s63

projection step, we are able to show that the induced sequence of play converges to equilibrium64

in a finite number of iterations, despite all the noise and uncertainty in the process.65

It is worth mentioning that our results focus squarely on the convergence of the actual, inter-episode66

trajectory of play – as opposed to “best-iterate” or ergodic convergence results. In addition, obtaining67

guarantees using stochastic estimators (cf. Reinforce) greatly alleviate the burden of exact gradient68

computations that are otherwise beyond reach in low-compute / low-memory practical environments.69

This aspect of our results is especially relevant for multi-agent reinforcement learning scenarios where70

agents learn “on the fly”, and is a property with important ramifications for many of the practical71

applications of stochastic games.72

2 Preliminaries73

2.1. Game formulation. Throughout this work we consider N-player generic stochastic games,74

where players repeatedly select actions in a shared Markov decision process (MDP) with the goal of75

maximizing their individual value functions. Formally, we study the tabular version with random76

stopping of general stochastic games, which is specified by a tuple G = (S,N , {Ai,Ri}i∈N , P, ζ, ρ)77

with the following primitives:78

• A finite set of agents i ∈ N = {1, 2, . . . ,N} and a finite set of states S = {1, . . . , S }.79

• For each i ∈ N , a finite space of actions (or pure strategies) Ai indexed by αi = 1, . . . , Ai = |Ai|.80

We will write A =
∏

i∈N Ai and A−i =
∏

j,i A j for the action space of all agents and that of all81

agents other than i respectively. In a similar vein, we will also write α = (αi, α−i) when we want82

to highlight the action αi of player i against the action profile α−i of i’s opponents.83
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• For each i ∈ N , we will write Ri : S ×A→ [−1, 1] for the reward function of agent i ∈ N , i.e.,84

Ri(s, αi, α−i) will denote the value of the reward of agent i when the game is at state s ∈ S, the85

focal agent i ∈ N plays αi ∈ Ai, and all other agents take actions α−i ∈ A−i.86

• The game transits from one state to another according to a Markov transition process, so that87

P(s′ | s, α) denotes the probability of transitioning from s to s′ when α ∈ A is the action profile88

chosen by the agents.89

• Given an action profile α at state s, the process terminates with probability ζs,a > 0, i.e., ζs,a =90

1 −
∑

s′∈S P(s′ | s, α); for convenience, we will write ζ B mins,a{ζs,a}.91

• ρ ∈ ∆(S) is the distribution for the initial state of the game.92

Episodic Setting. We consider an episodic setting, where in each episode a realization of the game93

is completed. At every time step t ≥ 0 of each episode, all agents observe the common state st ∈ S,94

select actions αt and receive rewards {Ri(st, αt)}i∈N . Then, with probability ζst ,αt the game terminates,95

and with probability 1 − ζst ,αt , it moves to the state st+1, which is drawn according to P(·|st, αt).96

Denoting the realized reward of player i at time t as ri,t B Ri(st, αt), we will write τ = (st, αt, rt)t≤T (τ)97

to denote the trajectory of the episode, where rt B (ri,t)i∈N , and T (τ) the time the episode terminates.98

Policies and value functions. We consider stationary Markovian policies, i.e., policies that do99

not depend on the time-step and the history, given the current state of the game. More specifically,100

for each agent i ∈ N , a policy πi : S → ∆(Ai) specifies a probability distribution over the actions101

of agent i in state s ∈ S, i.e., αi ∼ πi(·|s) denotes the (random) action drawn by agent i at state102

s ∈ S according to πi, viewed here as an element of Πi B ∆(Ai)S . In addition, we will also write103

π = (πi)i∈N ∈ Π B
∏

iΠi and π−i = (π j) j,i ∈ Π−i B
∏

j,iΠ j for the policy profile of all agents and104

all agents other than i, respectively.105

The expected reward of agent i ∈ N if agents follow policy π, starting from initial state s ∈ S , defines106

the value function of agent i, denoted as Vi,s(π), and is equal to107

Vi,s(π) B �τ∼MDP

[∑T (τ)

t=0
Ri(st, at)

∣∣∣∣s0 = s
]

(1)

where τ ∼ MDP denotes the randomness induced by the policy profile π, and the state-transition108

probabilities of the MDP. Overloading the notation, we set Vi,ρ(π) B �s∼ρ
[
Vi,s(π)

]
. Although value109

functions are, in general, non-convex, they share similar smoothness properties with the payoff110

functions of normal form games, namely bounded and Lipschitz gradients. For precise statements,111

we defer to the paper’s supplement.112

Visitation distribution and the mismatch coefficient. For a policy profile π ∈ Π and an arbitrary113

initial state distribution s0 ∼ ρ, we define the discounted state visitation measure/distribution as114

d̃πρ(s) = �τ∼MDP

[∑T (τ)

t=0
1{st = s}

∣∣∣∣s0 ∼ ρ
]
, dπρ(s) B d̃πρ(s)/Zπ

ρ

In the appendix, we prove formally that the above definition is well-posed for the random stopping115

episodic framework described above, i.e., d̃πρ(s) < ∞, so Zπ
ρ B

∑
s∈S d̃πρ(s) is well-defined. In our116

proofs, we will leverage a standard property of visitation distributions, namely the equivalence of the117

expected value of state-action function and the expected cumulative value over a random trajectory.118

More precisely, we have:119

Lemma 1. [Conversion Lemma] For an arbitrary state-action function f : S ×A → �, a policy120

profile π and an initial state distribution s0 ∼ ρ, we have121

�τ∼MDP

[∑T (τ)

t=0
f (st, αt)

]
= Zπ

ρ �s∼dπρ �α∼π(·|s)
[
f (s, α)

]
(2)

Finally, to quantify the difficulty of hard-to-reach states via a policy gradient method, we will follow122

the standard approach of [13, 19, 39, 40, 68] and use an appropriately-defined distribution “mismatch123

coefficient”, generalizing the single-agent counterpart of Agarwal et al. [1]. More precisely, for124

a stochastic game G, we define the minimax mismatch coefficient as CG B maxπ,π′∈Π
{
∥d̃πρ/d̃

π′

ρ ∥∞
}
.125

Similar to prior work in this direction [1, 5, 15], we will assume CG is finite, which, equivalently,126

means that dπρ(s) > 0 for any policy π and state s.127
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2.2. Solution Concepts. The most widely used solution concept in game theory is that of a Nash128

equilibrium i.e., a strategy profile π∗ ∈ Π that discourages unilateral deviations. However, in stochastic129

games, the definition of a Nash policy is much more involved because of the existence of multiple130

states and steps, cf. [20, 51, 53, 57]. Formally, we have the following definition:131

Definition 1 (Nash Policy). A policy π∗ = (π∗i )i∈N ∈ Π is said to be a Nash policy for a given132

distribution of initial states ρ ∈ ∆(S) if, for every player i ∈ N , we have133

Vi,ρ(π∗i ; π∗−i) ≥ Vi,ρ(πi; π∗−i) ∀i ∈ N ,∀πi ∈ ∆(Ai)S (NE)

In contrast to general non-convex continuous games, stochastic games satsify a version of the well-134

known Polyak-Łojasiewicz condition [46] but with linear gradient growth, also known as a gradient135

dominance property (GDP) [1, 5]. For the multi-agent case, [15, 68] showed that a similar property136

holds even in an episodic setting:137

Lemma 2. [Gradient dominance property] For any policy profile π = (πi)i∈N ∈ Π, we have that138

Vi,ρ(π′i ; π−i) − Vi,ρ(πi; π−i) ≤ CG max
π̄i∈Πi

⟨∇iVi,ρ(π), π̄i − πi⟩ (GDP)

for any unilateral deviation π′i ∈ Πi of each player i ∈ N .139

Remark. In the above and throughout our paper, we will write ∇i to denote the gradient of the quantity140

in question with respect to πi, i.e., when π−i is kept fixed and only πi is varied. For concision, we will141

write vi(π) = ∇iVi,ρ(π) for the individual gradient of player i’s value function, and v(π) = (vi(π))i∈N142

for the ensemble thereof. ¶143

Thanks to (GDP), it is straightforward to check that first-order stationary (FOS) points of V are Nash144

policies. Formally, as in [15, 33, 68], we have the following characterization:145

Lemma 3. [First-order stationary policies are Nash] A profile π∗ = (π∗i )i∈N ∈ Π is a Nash policy146

profile if and only if it satisfies the first-order stationary condition147

⟨v(π∗), π − π∗⟩ ≤ 0 for all π ∈ Π. (FOS)

Leonardos et al. [33] and Zhang et al. [68] proved a relaxation of the above lemma to the effect that148

policies that satisfy (FOS) up to ε (i.e., in lieu of 0 in the RHS) are O(ε)-Nash. Going in the other149

direction, we will consider the following series of refinements of Nash policies which are particularly150

important from a learning standpoint [32, 37, 53]:151

Definition 2. Let π∗ = (π∗i )i∈N ∈ Π be a Nash policy. Then:152

• π∗ is stable if ⟨v(π), π − π∗⟩ < 0 for all π , π∗ close to π∗.153

• π∗ is second-order stationary if it satisfies the sufficiency condition154

(π − π∗)⊤ Jacv(π∗)(π − π∗) < 0 for al π ∈ Π\{π∗}, (SOS)

where Jacv(π∗) = (∇ jvi(π∗))i, j∈N = (∇ j∇iVi(π∗))i, j∈N denotes the Jacobian of v at π∗.155

• π∗ is deterministic if it induces a deterministic selection rule π∗i : S → Ai for all i ∈ N .156

• π∗ is strict if it is deterministic and (FOS) holds as a strict inequality whenever π , π∗.157

Intuitively, the condition for equilibrium stability is the game-theoretic analogue of a first-order158

KKT sufficiency condition, while the condition for second-order stationarity is the second-order159

version thereof. In this regard, the distinction between first-order stationary, stable and second-order160

stationary points is formally analogous to the distinction between critical points, minimizer, and161

second-order minimum points in optimization. As for deterministic policies, we should mention162

that, generically – i.e., except on a set which is meager in the sense of Baire [22, 32] – deterministic163

policies are also strict, so we will use the two terms interchangeably.164

Importantly, as we show in the appendix, these refinements admit the following characterizations:165
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Proposition 1. Let π∗ = (π∗i )i∈N ∈ Π be a Nash policy. Then:166

a) If π∗ is second-order stationary, there exists some µ > 0 such that167

⟨v(π), π − π∗⟩ ≤ −µ ∥π − π∗∥2 for all π sufficiently close to π∗. (3a)

b) If π∗ is strict, there exists some µ > 0 such that168

⟨v(π), π − π∗⟩ ≤ −µ ∥π − π∗∥ for all π sufficiently close to π∗. (3b)

In view of all the above, we get the following string of implications for equilibria in generic games:169

strict/deterministic =⇒ SOS =⇒ stable =⇒ FOS = Nash (4)

For posterity, we only note here that it is plausible to except that more refined solution concepts170

should enjoy stronger convergence properties; we will confirm this intuition in the sequel.171

3 Policy gradient methods172

We now proceed to describe our general model for learning in stochastic games. In tune with the173

episodic framework described in the previous section, we will likewise consider a learning framework174

where agents follow a specific policy profile πn within each episode, and update it from one episode175

to the next with the objective of increasing their individual rewards.176

Formally, our approach will adhere to the following inter-episode sequence of events:177

1. At the beginning of each episode n = 1, 2, . . . , every agent i ∈ N chooses a policy πi,n ∈ Πi.178

2. Within the n-th episode, each player executes their chosen policy πi,n, inducing in this way an179

intra-episode trajectory of play τn = (s(n)
t , α(n)

t , r(n)
t )t≤T (τn).180

3. Once the episode terminates, agents update their policies, and the process repeats.181

In terms of feedback, we will treat several models, depending on what type of information is available182

to the agents during play. To that end, we will focus on the generic policy gradient (PG) template183

πn+1 = projΠ(πn + γnv̂n) (PG)

where:184

1. πn = (πi,n)i∈N ∈ Π denotes the player’s policy profile at each episode n = 1, 2, . . .185

2. v̂n = (v̂i,n)i∈N ∈
∏

i

(
�Ai

)S
is an estimate for the agents’ inidividual policy gradients.186

3. γn > 0 is the method’s step-size, for which we will assume throughout that
∑

n γn = ∞; typically,187

(PG) is run with a step-size of the form γn = γ/(n + m)p for some γ > 0, m ≥ 0 and p ≥ 0.188

4. projΠ :
∏

i

(
�Ai

)S
→ Π denotes the Euclidean projection to the agents’ policy space Π.189

Regarding the gradient signal v̂n, we will decompose it as190

v̂n = v(πn) + Un + bn (5)

where191

Un = v̂n − �[v̂n |Fn] and bn = �[v̂n |Fn] − v(πn). (6)

In the above, we treat πn as a stochastic process on some complete probability space (Ω,F ,�), and192

we write Fn B F(π1, . . . , πn) ⊆ F for the history (adapted filtration) of πn up to – and including –193

stage n.194

By definition, �[Un |Fn] = 0 and bn is Fn-measurable, so Un can be intepreted as a random, zero-195

mean error relative to v(πn), whereas bn captures all systematic (non-zero-mean) errors. To make this196

precise, we will further assume that bn and Un are bounded as197

�[∥bn∥ |Fn] ≤ Bn and �[∥Un∥
2 |Fn] ≤ σ2

n (7)
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Algorithm 1: Reinforce

1: Input: π̂ ∈ Π, τ = (st, αt, rt)t≤T (τ) ∈ T
2: for i = 1, . . . ,N do
3: Ri(τ)←

∑T (τ)
t=0 ri,t

4: Λi(τ)←
∑T (τ)

t=0 ∇i
(
log π̂i(ai,t |st)

)
5: v̂i ← Ri(τ) · Λi(τ)
6: end for
7: return {v̂i}i∈N

Algorithm 2: ε-Greedy Policy Gradient

1: Input: π1, {γn}n∈�, {εn}n∈�

2: for n = 1, 2, . . . do
3: π̂n ← (1 − εn)πn +

εn
|A|

4: Sample τn ∼ MDP(π̂n|s0)
5: v̂n ← Reinforce(π̂n, τn)
6: πn+1 ← projΠ(πn + γnv̂n)
7: end for

where the sequences Bn and σn , n = 1, 2, . . . , are to be construed as deterministic upper bounds on198

the bias, fluctuations, and magnitude of the gradient signal v̂n. Depending on these bounds, a gradient199

signal with Bn = 0 will be called unbiased, and an unbiased signal with σn = 0 will be called perfect.200

More generally, we will assume that the above statistics are bounded as201

Bn = O(1/nℓb ) and σn = O(nℓσ ) (8)

for some ℓb, ℓσ > 0 which depend on the specific model under consideration. For concreteness, we202

describe below three basic models that adhere to the above template for v̂n in order of decreasing203

information requirements:204

Model 1 (Full gradient information). The first model we will consider assumes that agents observe205

their full policy gradients, i.e.,206

v̂n = v(πn) (9)

implying in particular that Un = bn = 0. This model is fully deterministic across episodes (though207

intra-episode play remains stochastic). In particular, it tacitly assumes that agents know the game208

(and can observe their opponents’ policies) sufficiently well so as to calculate the full gradients of209

their individual value functions Vi,ρ, cf. [2, 33, 68] and references therein. ¶210

Model 2 (Learning with stochastic gradients). A relaxation of the above model which is particularly211

relevant when the game involves training over datasets concerns the case where the player have access212

to stochastic policy gradients, i.e., unbiased gradient estimates of the form213

v̂n = v(πn) + Un (10)

with �[Un |Fn] = 0 (so we can formally take ℓb = ∞ and ℓσ = 0 in Eq. (8) above). This case is214

considered in [66] and [43]. ¶215

Model 3 (Value-based learning). The last model we will consider concerns the case where agents216

only have access to their realized values and need to reconstruct their individual gradients based on217

this information. A widely used method to achieve this is via the Reinforce subroutine, which we218

describe in pseudocode form in Algorithm 1. In words, when employing Reinforce, each agent i ∈ i219

commits to a sampling policy π̂i ∈ Πi and executes it in an episode of the stochastic game in play.220

Then, at the end of the episode, players gather the total reward Ri(τ) ←
∑T (τ)

t=0 ri,t associated to the221

intra-episode trajectory of play τ, and they estimate their policy gradients via the so-called “log-trick”222

[61] as223

v̂i = Ri(τ) ·
∑T (τ)

t=0
∇i

(
log π̂i(ai,t |st)

)
. (11)

Lemma 4 below provides the vital statistics of the Reinforce estimator:224

Lemma 4. Suppose that each agents i ∈ N follows a stationary policy πi ∈ Πi. Then, letting225

κi = mins∈S,αi∈Ai πi(αi|s) for each i ∈ N , we have226

a) �τ∼MDP[Reinforce(π)] = v(π). (12a)

b) �τ∼MDP

[
∥Reinforcei(π) − vi(π)∥2

]
≤

24|Ai|

κiζ4 . (12b)
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Thus, if Reinforce is executed at π̂← πn at each episode n = 1, 2, . . . , we will have227

�[v̂i,n] = vi(πn) and �[∥Ui,n∥
2 |Fn] ≤

24|Ai|

ζ4 mins∈S,αi∈Ai πi,n(αi|s)
. (13)

This means that we will always have Bn = 0 for the bias of the estimator, but its variance could be228

unbounded if πn gets close to the boundary of Π. For this reason, Reinforce is typically paired with229

an explicit exploration step that modifies the sampling policy of the n-th episode to230

π̂i,n = (1 − εn)πi,n + εn UnifAi . (14)

i.e., π̂i,n is the mixture between πi,n and the uniform distribution UnifAi over Ai. The resulting231

algorithm is known as ε-Greedy Policy Gradient; for a pseudocode, see Algorithm 2.232

Importantly, by calling Reinforce at π̂n, v̂n becomes biased (because of the difference between π̂n and233

πn), but its variance is bounded; in particular, by invoking Lemma 4, we have234

�[∥bi,n∥ |Fn] ≤ Gεn and �[∥Ui,n∥
2 |Fn] ≤

24|Ai|
2

εnζ4 (15)

where G is a constant that depends on the smoothness of V and the cardinalities of A and S. In this235

way, Algorithm 2 can be seen as a special case of (PG) with Bn = O(εn) and σn = O(1/
√
εn). ¶236

4 Convergence analysis and results237

We are now in a position to state and discuss our main results. For convenience, we will present238

our results in order of increasing structure, starting with stable policies, and then moving on to239

second-order stationary and deterministic Nash policies. All proofs are deferred to the appendix.240

4.1. Asymptotic convergence to stable Nash policies. Our first convergence result concerns Nash241

policies that satisfy the stability requirement ⟨v(π), π − π∗⟩ < 0 of Definition 2. In this case, we have242

the following guarantee:243

Theorem 1. Let π∗ be a stable Nash policy, and let πn be the sequence of play generated by (PG)244

with step-size γn = γ/(n + m)p, p ∈ (1/2, 1], and policy gradient estimates such that p + ℓb > 1 and245

p− ℓσ > 1/2 as per (8). Then there exists a neighborhood U of π∗ in Π such that, for any given δ > 0,246

we have247

�(πn converges to π∗ | π1 ∈ U) ≥ 1 − δ (16)

provided that γ is small enough (or m large enough) relative to δ.248

Corollary 1. Suppose that Models 1–3 are run with a step-size of the form γn = γ/(n +m)p, p > 1/2,249

and if applicable, an exploration parameter εn = ε/(n + m)r such that 1 − p < r < 2p − 1. Then:250

• For Models 1 and 2: the conclusions of Theorem 1 hold as stated.251

• For Model 3: the conclusions of Theorem 1 hold as long as p > 2/3.252

We note here that Theorem 1 provides a trajectory convergence guarantee which is otherwise quite253

difficult to obtain even in structured stochastic games. For example, if we zoom in on the class of254

stochastic potential (or min-max) games, the existing guarantees in the literature concern the “best255

iterate” of the algorithm, cf. [33, 68] and references therein. Because of this, said guarantees do not256

apply to the actual trajectory of play generated by (PG); this makes them less suitable for agent-based257

learning where the players involved are learning “as they go”, as opposed to simulating the game in258

order to approximately compute an equilibrium policy offline.259

We should also note that the convergence guarantees of Theorem 1 hold locally with arbitrarily high260

probability. Without further assumptions, it is not possible to obtain global trajectory convergence261

guarantees that hold with probability 1, even in the simple case where the game only has a single262

state – that is, the case of learning in finite normal form games. In this (much simpler) setting, the263
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well-known impossibility result of Hart and Mas-Colell [24, 25] shows that it is not possible to expect264

convergence to Nash equilibrium in all games – not even locally. In this regard, the local convergence265

caveat in Theorem 1 cannot be lifted without further structural properties in place – such as the266

existence of a potential function in the spirit of [33].267

4.2. Convergence to second-order stationary policies. Albeit valuable as an asymptotic conver-268

gence guarantee, Theorem 1 does not provide an indication of how long it will take players to actually269

converge to a Nash policy. Of course, in full generality, it is not plausible to expect to be able to270

derive such a convergence rate because the stability requirement provides no indication on how271

fast the players’ policy gradients stabilize near a solution. This kind of estimate is provided by272

the second-order sufficient condition (SOS), which allows us to establish sufficient control over the273

sequence of play as indicated by the following theorem.274

Theorem 2. Let π∗ be a Nash policy such that (SOS) holds on some open set B containing π∗, and275

let πn be the sequence of play generated by (PG) with step-size γn = γ/(n + m)p, p ∈ (1/2, 1], and276

policy gradient estimates such that p + ℓb > 1 and p − ℓσ > 1/2 as per (8). Then:277

1. There exists a neighborhood U of π∗ in Π such that, for any confidence level δ > 0, the event278

E = {πn ∈ B for all n = 1, 2, . . . } (17)

occurs with probability �(E | π1 ∈ U) ≥ 1 − δ if m is large enough relative to δ.279

2. The sequence πn converges to π∗ with probability 1 on E; in particular, we have280

�(πn converges to π∗ | π1 ∈ U) ≥ 1 − δ (18)

if m is large relative to δ. Moreover, conditioned on E and taking q = min{ℓb, p − 2ℓσ}, we have281

�[∥πn − π
∗∥2 | E] =

{
O(1/n2µγ) if p = 1 and 2µγ < q,
O(1/nq) otherwise.

(19)

Corollary 2. Suppose that Models 1–3 are run with a step-size of the form γn = γ/(n +m)p, p > 1/2,282

and if applicable, an exploration parameter εn = ε/(n + m)p/2. Then:283

• For Models 1 and 2: the conclusions of Theorem 2 hold with q = p; in particular, (19) gives an284

O(1/n) rate of convergence if p = 1 and 2µγ > q.285

• For Model 3: the conclusions of Theorem 2 hold for p > 2/3 with q = p/2; in particular, (19)286

gives an O(1/
√

n) rate of convergence if p = 1 and 2µγ > q.287

Besides providing a general framework for achieving trajectory convergence, Theorem 2 gives the288

rates of convergence of the sequence of play to the Nash policy in question. In particular, with this289

result in hand, one can confidently argue about the distance of the iterates of (PG) from equilibrium in290

a series of different environments. More to the point, this convergence guarantee allows the algorithm291

designer to adapt the parameters of the learning process according to the complexity and limitations292

of the environment, a feature which further highlights the significance of this result.293

We should also note the delicate interplay between the method’s step-size and the achieved con-294

vergence rate. In the case of Model 1, Corollary 2 suggests a step-size of the form γn = Θ(1/n),295

leading to a O(1/n) convergence rate. As we show in the appendix, this rate can be improved: in the296

deterministic case with perfect gradient information, (PG) with a suitably chosen constant step-size297

achieves a geometric convergence rate, i.e., ∥πn − π
∗∥ = O(exp(−ρn)) for some ρ > 0. By contrast, in298

the case of Model 2, the O(1/n) rate we provide cannot be improved, even if the quadratic minorant299

(3a) that characterizes SOS policies holds globally – and this because the learning process is running300

against standard lower bounds from convex optimization [9, 41].301

Perhaps the most significant guarantee from a practical point of view is the O(1/
√

n) convergence rate302

attained in Model 3 (cf. Algorithms 1 and 2). This guarantee amounts to a O(1/n1/4) convergence rate303

in terms of the (non-squared) distance to equilibrium which, mutatis mutandis, represents a notable304
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improvement over the O(1/n1/6) guarantee of Leonardos et al. [33] (expressed in norm values). Of305

course, the latter guarantee is global – because the focus of [33] is stochastic potential games – but306

it also concerns the “best iterate” of the process (not its “last iterate”), so the two results are not307

immediately comparable. However, a useful “best-of-both-worlds” heuristic that can be inferred by308

the combination of these works is that, given a budget of training episodes, Algorithm 2 can be run309

with a constant step-size as per [33] for a sufficient fraction of this budget, and then with a O(1/n)310

“cooldown” schedule for the rest. In this way, after an aggressive “exploration” phase, the algorithm’s311

O(1/n1/4) rate would kick in and supply faster stabilization to an SOS policy.312

4.3. Convergence to deterministic Nash policies. Our last series of results concerns the rate of313

convergence to deterministic Nash policies in generic stochastic games. As we discussed in Section 2,314

deterministic Nash policies also satisfy (SOS), so the rate of convergence of (PG) to such policies315

can be harvested directly from Theorem 2. However, as we show below, a simple projection tweak in316

(SOS) can improve this rate dramatically.317

The tweak in question is inspired by the geometry of Π around a deterministic policy: by definition,318

such policies are corner points of Π, so any consistent drift towards them will cause πn to hit the319

boundary of Π in finite time. Of course, under (PG), the process may rebound from the boundary and320

return to the interior of Π if the policy gradient estimate is not particularly good at a given iteration321

of the algorithm. However, if we replace the projection step of (PG) with a “lazy projection” in the322

spirit of Zinkevich [69], the aggregation of gradient steps will eventually push the process far inside323

the normal cone of Π at π∗, so rebounds of this type can no longer occur.324

Formally, we will consider the following lazy policy gradient (LPG) scheme:325

yn+1 = yn + γnv̂n πn+1 = projΠ(yn+1) (LPG)

where yn = (yi,n)i∈N ∈
∏

i

(
�Ai

)S
is an auxiliary variable that maintains an aggregate of gradient326

steps before projecting them back to Π. We then have the following convergence result:327

Theorem 3. Let πn be the sequence of play under (LPG) with step-size and policy gradient estimates328

such that p + ℓb > 1 and p − ℓσ > 1/2 as per (8). If π∗ is a deterministic Nash policy, there exists an329

unbounded open set W ⊆
∏

i

(
�Ai

)S
of initializations such that, for any δ > 0, we have330

�(πn converges to π∗ | y1 ∈W) ≥ 1 − δ, (20)
provided that γ > 0 is small enough. Moreover, conditioned on this event, πn converges to π∗ at a331

finite number of iterations, i.e., there exists some n0 such that πn = π
∗ for all n ≥ n0.332

Corollary 3. Suppose that Models 1–3 are run with parameters γn = γ/np, p ∈ (1/2, 1], and if333

applicable, εn = ε/nr with 1 − p < r < 2p − 1. Then the conclusions of Theorem 3 hold.334

Theorem 3 – and, by extension, Corollary 3 – are fairly unique because they provide a guarantee for335

convergence to an exact Nash equilibrium in a finite number of iterations. To the best of our knowledge,336

the only comparable result in the literature is that of [68], where the authors provide a finite-time337

convergence guarantee to strict equilibria with perfect policy gradients (as per Model 1). The result338

of Zhang et al. [68] echoes the convergence properties of deterministic first-order algorithms around339

sharp minima of convex functions [45], but the fact that Theorem 3 applies to models with stochastic340

gradient feedback of unbounded variance (Models 2 and 3 respectively) is a major difference. As far341

as we are aware, this is the first guarantee of its kind in the literature on learning in stochastic games.342

Concluding remarks. A key roadblock encountered by practical applications of multi-agent343

reinforcement learning is the lack of universal equilibrium convergence guarantees. While the344

impossibility results of [24, 25] imply that unconditional convergence is not a reasonable aspiration345

without further assumptions on the game, the existence of local convergence results mitigates this346

deficiency as it provides a range of theoretically grounded stability and runtime guarantees. In347

this regard, second-order stationary and deterministic policies acquire particular importance, as the348

convergence of policy gradient methods is especially rapid and robust and this case. Of course, this349

leaves open the question of non-tabular settings and parametrically encoded policies, e.g., as in the350

case of deep reinforcement learning; we defer these investigations to future work.351
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Notation Description

s ∈ S States of the game
αi ∈ Ai Actions of agent i ∈ N
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T (τ) Episode stopping time
ζ Minimum stopping probability

ri,t Realized reward of i-th player at time t
γn Step size at episode n
εn Explicit exploration parameter at episode n
v(πn) Policy gradients at policy πn of episode n
v̂n Policy gradient proxy at episode n.

Table 1: Index of the most common notations used in our paper.
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A Errata and omissions568

When preparing the supplementary material of our paper, we noticed a number of typographic errors569

and omissions in the main paper that could possibly cause confusion. We clarify those below:570

• L48: The reference pointers should point to Perkins [44] and Leslie et al. [34].571

• L157: (NE) should read (FOS)572

• L166: Only the one-way implication is relevant; Proposition 1 was amended accordingly.573

• L188: The text should read γn = γ/(n + m)p for some γ > 0, m ≥ 0 and p ≥ 0.574

• L246: The text of Theorem 1 was amended to explicitly include the above clarification.575

• L251–L252: the relation “1 − p < r/2 < p − 1/2” should read “1 − p < r < 2p − 1”.576

• L250, L283: “εn = ε/nr” should read “εn = ε/(n + m)r” and “εn = ε/(n + m)p/2” respectively.577

• L331, Eq. (20): “U” should read “W”578

• L125, the minimax mismatch coefficient can be defined either as CG B maxπ,π′∈Π
{
∥d̃πρ/d̃

π′

ρ ∥∞
}

or579

simpler. CG B maxπ,∈Π
{ 1
ζ
∥dπρ/ρ∥∞

}
.580

The errata and omissions identified above have all been corrected in the file at hand.581

B Asymptotic convergence to stable Nash policies582

Our goal in this appendix is to prove Theorem 1 and Corollary 1, which we restate below for583

convenience:584

Theorem 1. Let π∗ be a stable Nash policy, and let πn be the sequence of play generated by (PG)585

with step-size γn = γ/(n + m)p, p ∈ (1/2, 1], and policy gradient estimates such that p + ℓb > 1 and586

p− ℓσ > 1/2 as per (8). Then there exists a neighborhood U of π∗ in Π such that, for any given δ > 0,587

we have588

�(πn converges to π∗ | π1 ∈ U) ≥ 1 − δ (16)

provided that γ is small enough (or m large enough) relative to δ.589

Corollary 1. Suppose that Models 1–3 are run with a step-size of the form γn = γ/(n +m)p, p > 1/2,590

and if applicable, an exploration parameter εn = ε/(n + m)r such that 1 − p < r < 2p − 1. Then:591

• For Models 1 and 2: the conclusions of Theorem 1 hold as stated.592

• For Model 3: the conclusions of Theorem 1 hold as long as p > 2/3.593

Our proof strategy will comprise the following basic steps:594

1. To begin with, we will show that the squared distance595

D(π) =
1
2
∥π − π∗∥2 (B.1)

can be seen as a “local Lyapunov function” for (PG) in the sense that it is locally decreasing near596

π∗, up to a series of error terms – both zero-mean and non-zero-mean.597

2. Due to these errors, the evolution of the iterates Dn B D(πn) of D over time may exhibit598

significant jumps: in particular, a single “bad” realization of the noise could carry πn out of the599

basin of attraction of π∗, possibly never to return. To exclude this event, our second step will be600

to show that the aggregation of these errors can be controlled with probability at least 1 − δ.601

3. Conditioned on the above, we will show that, with probability at least 1 − δ, the iterates Dn602

cannot grow more than a token value. As a result, if (PG) is initialized close to π∗, it will remain603

in a neighborhood thereof for all n (again, with probability at least 1 − δ).604

4. Thanks to this “stochastic Lyapunov stability” result, we employ a series of martingale limit605

theory arguments to extract a subsequence converging to π∗.606
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5. Finally, we show that the increments of Dn are summable; hence, by invoking the Gladyshev’s607

lemma [45, p. 49], we conclude that Dn converges to some (finite) random variable D∞. Combin-608

ing this fact with the existence of a convergent subsequence, we obtain the desired conclusion609

that πn converges to π∗ with probability at least 1 − δ.610

In the sequel, we make the above precise in a series of intermediate results.611

B.1. Energy inequality. We begin by establishing a “quasi-Lyapunov” inequality for the iterates612

Dn = ∥πn − π
∗∥2/2 of (B.1).613

Lemma B.1. Let Dn B D(πn). Then, for all n = 1, 2, . . . , we have614

Dn+1 ≤ Dn + γn⟨v(πn), πn − π
∗⟩ + γnξn + γnχn + γ

2
nψ

2
n, (B.2)

where the error terms ξn, χn, and ψn are given by615

ξn = ⟨Un, πn − π
∗⟩, χn = ∥Π∥Bn and ψ2

n =
1
2∥v̂n∥

2. (B.3)

with ∥Π∥ B maxπ,π′∈Π∥π − π′∥.616

Proof. By the definition of the iterates of (PG), we have617

Dn+1 =
1
2
∥πn+1 − π

∗∥2 =
1
2
∥projΠ(πn + γnv̂n) − projΠ(π∗)∥2

≤
1
2
∥πn + γnv̂n − π

∗∥2

=
1
2
∥πn − π

∗∥2 + γn⟨v̂n, πn − π
∗⟩ +

1
2
γ2

n∥v̂n∥
2

= Dn + γn⟨v(πn) + Un + bn, πn − π
∗⟩ +

1
2
γ2

n∥v̂n∥
2

≤ Dn + γn⟨v(πn), πn − π
∗⟩ + γnξn + γnχn + γ

2
nψ

2
n (B.4)

where we used the Cauchy-Schwarz inequality to bound the bias term as ⟨bn, πn − π
∗⟩ ≤ ∥bn∥ · ∥πn −618

π∗∥ ≤ ∥Π∥Bn = χn. ■619

B.2. Error control and stability. The second major step in our proof (and the most challenging one620

from a technical standpoint) is to establish a suitable measure of control over the error increments in621

(B.1), with the aim of showing that the process πn never leaves a neighborhood of π∗.622

To make this idea precise, let B = {π ∈ Π : ∥π − π∗∥ ≤ r} be a ball of radius r based on π∗ in Π so that623

⟨v(π), π − π∗⟩ < 0 for all π ∈ B\{π∗} (without loss of generality, we can assume that B is maximal in624

that regard). We will then examine the event that the aggregation of the error terms in (B.1) is not625

sufficient to drive πn to escape from B.626

To that end, we will begin by aggregating the errors in (B.1) as627

Mn =

n∑
k=1

γkξk and S n =

n∑
k=1

[γkχk + γ
2
kψ

2
k]. (B.5)

Since �[ξn |Fn] = 0, we have �[Mn |Fn] = Mn−1, so Mn is a martingale; likewise, �[S n |Fn] ≥ S n−1,628

so S n is a submartingale. Then, using a technique of Hsieh et al. [26] that builds on an earlier idea by629

Mertikopoulos and Zhou [37], we will also consider the “mean square” error process630

Rn = M2
n + S n, (B.6)

and the associated indicator events631

En = {πk ∈ B for all k = 1, 2, . . . , n} and Hn = {Rk ≤ a for all k = 1, 2, . . . , n}, (B.7a)

where, with a fair amount of hindsight, the error tolerance level a > 0 is such that 2a +
√

a < r, and632

we are employing the convention E0 = H0 = Ω (since every statement is true for the elements of the633

empty set). We will then assume that π1 is initialized in a ball of radius
√

2a centered at π∗, viz.634

U = {π ∈ Π : D(π) ≤ a} = {π ∈ Π : ∥π − π∗∥2/2 ≤ a}. (B.8)
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With all this in hand, the key to showing that πn remains close to π∗ with high probability is the635

following conditional estimate:636

Lemma B.2. Let πn be the sequence of play generated by (PG) initialized at π1 ∈ U . We then have:637

1. En+1 ⊆ En and Hn+1 ⊆ Hn for all n = 1, 2, . . .638

2. Hn−1 ⊆ En for all n = 1, 2, . . .639

3. Consider the “bad realization” event640

H̃n B Hn−1 \ Hn = {Rk ≤ a for k = 1, 2, . . . , n − 1 and Rn > a}, (B.9)

and let R̃n = Rn 1Hn−1 be the cumulative error subject to the noise being “small”. Then we have:641

�[R̃n] ≤ �[R̃n−1] + γn∥Π∥Bn + γ
2
n∥Π∥

2σ2
n +

3
2γ

2
n(G2 + B2

n + σ
2
n) − a�(H̃n−1), (B.10)

where, by convention, H̃0 = ∅ and R̃0 = 0.642

Remark. In the above (and what follows), the notation 1A is used to indicate the logical indicator of643

an event A ⊆ Ω, i.e., 1A(ω) = 1 if ω ∈ A and 1A(ω) = 0 otherwise.644

The proof of Lemma B.2 is quite technical, so we first proceed to derive an important stability result645

based on this estimate.646

Proposition B.1. Fix some confidence threshold δ > 0 and let πn be the sequence of play generated647

by (PG) with step-size and policy gradient estimates as per Theorem 1. We then have:648

�(Hn | π1 ∈ U) ≥ 1 − δ for all n = 1, 2, . . . (B.11)

provided that γ is small enough (or m large enough) relative to δ.649

Proof. We begin by bounding the probability of the “bad realization” event H̃n = Hn−1 \ Hn. Indeed,650

if π1 ∈ U , we have:651

�(H̃n) = �(Hn−1 \ Hn) = �[1Hn−1 ×1{Rn > a}] ≤ �[1Hn−1 ×(Rn/a)] = �[R̃n]/a (B.12)

where, in the penultimate step, we used the fact that Rn ≥ 0 (so 1{Rn > a} ≤ Rn/a). Telescoping652

(B.10) then yields653

�[R̃n] ≤ �[R̃0] + ∥Π∥
n∑

k=1

γkBk +

n∑
k=1

γ2
kϱ

2
k − a

n∑
k=1

�(H̃k−1) (B.13)

where we set654

ϱ2
n = ∥Π∥

2σ2
n +

3
2 (G2 + B2

n + σ
2
n). (B.14)

Hence, combining (B.12) and (B.13) and invoking our stated assumptions for γn, Bn and σn, we get655

n∑
k=1

�(H̃k) ≤
1
a

n∑
k=1

[γkBk∥Π∥ + γ
2
kϱ

2
k] ≤

C
a

(B.15)

for some C ≡ C(γ,m) > 0 with limγ→0+ C(γ,m) = limm→∞C(γ,m) = 0.656

Now, by choosing γ sufficiently small (or m sufficiently large), we can ensure that C/a < δ; thus,657

given that the events H̃k are disjoint for all k = 1, 2, . . . , we get �
(⋃n

k=1 H̃k
)
=

∑n
k=1 �(H̃k) ≤ δ. In658

turn, this implies that �(Hn) = �
(
H̃c1 ∩· · · ∩ H̃cn

)
≥ 1 − δ, and our assertion follows. ■659

We conclude this appendix with the proof of our technical result on the events En and Hn:660

Proof of Lemma B.2. The first claim of the lemma is obvious. For the second, we proceed inductively:661

1. For the base case n = 1, we have E1 = {π1 ∈ B} ⊇ {π1 ∈ U } = Ω (recall that π1 is initialized in662

U ⊆ B). Since H0 = Ω, our claim follows.663
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2. Inductively, assume that Hn−1 ⊆ En for some n ≥ 1. To show that Hn ⊆ En+1, suppose that664

Rk ≤ a for all k = 1, 2, . . . , n. Since Hn ⊆ Hn−1, this implies that En also occurs, i.e., πk ∈ B for665

all k = 1, 2, . . . , n; as such, it suffices to show that πn+1 ∈ B. To do so, given that πk ∈ U ⊆ B666

for all k = 1, 2, . . . n, telescoping the bound (B.2) over k = 1, 2, . . . , n gives667

Dk+1 ≤ Dk + γkξk + γkχk + γ
2
kψ

2
k , for all k = 1, 2, . . . n, (B.16)

and hence, after telescoping over k = 1, 2, . . . , n, we get668

Dn+1 ≤ D1 + Mn + S n ≤ D1 +
√

Rn + Rn ≤ a +
√

a + a = 2a +
√

a. (B.17)

We conclude that D(πn+1) ≤ 2a +
√

a, i.e., πn+1 ∈ B, as required for the induction.669

For our third claim, note first that670

Rn = (Mn−1 + γnξn)2 + S n−1 + γnχn + γ
2
nψ

2
n

= Rn−1 + 2γnξnMn−1 + γ
2
nξ

2
n + γnχn + γ

2
nψ

2
n, (B.18)

so, after taking expectations, we get671

�[Rn |Fn] = Rn−1 + 2Mn−1γn �[ξn |Fn] + �[γ2
nξ

2
n + γnχn + γ

2
nψ

2
n |Fn] ≥ Rn−1, (B.19)

i.e., Rn is a submartingale. To proceed, let R̃n = Rn 1Hn−1 so672

R̃n = Rn 1Hn−1 = Rn−1 1Hn−1 +(Rn − Rn−1)1Hn−1

= Rn−1 1Hn−2 −Rn−1 1H̃n−1
+(Rn − Rn−1)1Hn−1 ,

= R̃n−1 + (Rn − Rn−1)1Hn−1 −Rn−1 1H̃n−1
, (B.20)

where we used the fact that Hn−1 = Hn−2 \ H̃n−1 so 1Hn−1 = 1Hn−2 −1H̃n−1
(since Hn−1 ⊆ Hn−2). Then,673

(B.18) yields674

Rn − Rn−1 = 2Mn−1γnξn + γ
2
nξ

2
n + γnχn + γ

2
nψ

2
n (B.21)

and hence, given that Hn−1 is Fn-measurable, we get:675

�[(Rn − Rn−1)1Hn−1 ] = 2�[γnMn−1ξn 1Hn−1 ] (B.22a)

+ �[γ2
nξ

2
n 1Hn−1 ] (B.22b)

+ �[(γnχn + γ
2
nψ

2
n)1Hn−1 ]. (B.22c)

However, since Hn−1 and Mn−1 are both Fn-measurable, we have the following estimates:676

1. For the noise term in (B.22a), we have:677

�[Mn−1ξn 1Hn−1 ] = �[Mn−1 1Hn−1 �[ξn |Fn]] = 0. (B.23)

2. The term (B.22b) is where the reduction to Hn−1 kicks in; indeed, we have:678

�[ξ2
n 1Hn−1 ] = �[1Hn−1 �[|⟨πn − π

∗,Un⟩|
2 |Fn]]

≤ �[1Hn−1∥πn − π
∗∥2 �[∥Un∥

2 |Fn]] # by Cauchy–Schwarz

≤ �[1En∥πn − π
∗∥2 �[∥Un∥

2 |Fn]] # because Hn−1 ⊆ En

≤ ∥Π∥2σ2
n. (B.24)

3. Finally, for the term (B.22c), we have:679

�[ψ2
n 1Hn−1 ] ≤ 3

2 [G2 + B2
n + σ

2
n] (B.25)

where we used the bound ∥v(π)∥ ≤ G. Likewise, χn 1Hn−1 ≤ ∥Π∥Bn, so680

(B.22c) ≤ γn∥Π∥Bn +
3
2γ

2
n(G2 + B2

n + σ
2
n) (B.26)

Thus, putting together all of the above, we obtain:681

�[(Rn − Rn−1)1Hn−1 ] ≤ γn∥Π∥Bn + γ
2
n∥Π∥

2σ2
n +

3
2γ

2
n(G2 + B2

n + σ
2
n) (B.27)

Going back to (B.20), we have Rn−1 > a if H̃n−1 occurs, so the last term becomes682

�[Rn−1 1H̃n−1
] ≥ a�[1H̃n−1

] = a�(H̃n−1). (B.28)

Our claim then follows by combining Eqs. (B.20), (B.25), (B.26) and (B.28). ■683
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B.3. Extraction of a convergent subsequence. Our next step is to show that any realization πn of684

(PG) that is contained in B admits a subsequence πnk converging to π∗.685

Proposition B.2. Let π∗ be a stable Nash policy, and let πn be the sequence of play generated686

by (PG) with step-size and policy gradient estimates such that p + ℓb > 1 and p − ℓσ > 1/2 as687

per (8). Then πn admits a subsequence πnk that converges to π∗ with probability 1 on the event688

E =
⋂

n En = {πn ∈ B for all n = 1, 2, . . . }.689

Proof. Let Q = {πn ∈ B for all n} ∩ {lim infn∥πn − π
∗∥ > 0} denote the event that πn is contained in B690

but the sequence πn does not admit a subsequence converging to π∗. We will show that �(Q) = 0.691

Indeed, assume ad absurdum that �(Q) > 0. Hence, with probability 1 on Q, there exists some692

positive constant c > 0 (again, possibly random) such that ⟨v(πn), πn − π
∗⟩ ≤ −c < 0 for all n. Thus,693

going back to (B.1), we get694

Dn+1 ≤ Dn − γnc + γnξn + γnχn + γ
2
nψ

2
n, (B.29)

so if we let τn =
∑n

k=1 γk and telescope the above, we obtain the bound695

Dn+1 ≤ D1 − τn

[
c −

Mn

τn
−

S n

τn

]
(B.30)

with ξn, χn and ψn given by (B.3), and Mn =
∑n

k=1 γkξk, S n =
∑n

k=1[γkχk + γ
2
kψ

2
k] defined as in (D.10).696

Also, (7) readily gives697

∞∑
n=1

�[γ2
nξ

2
n |Fn] ≤

∞∑
n=1

γ2
n �[∥πn − π

∗∥2∥Un∥
2 |Fn] ≤ ∥Π∥2

∞∑
n=1

γ2
nσ

2
n < ∞ (B.31)

so, by the strong law of large numbers for martingale difference sequences [23, Theorem 2.18], we698

conclude that Mn/τn converges to 0 with probability 1. In a similar vein, for the submartingale S n we699

have700

�[S n] =
n∑

k=1

γkχk

n∑
k=1

γ2
k �[ψ2

k] ≤ ∥Π∥
n∑

k=1

γkBk +
3
2

n∑
k=1

γ2
k [G2 + B2

k + σ
2
k], (B.32)

so, by (7) and the stated conditions for the method’s step-size and bias/noise parameters, it follows that701

S n is bounded in L1. Therefore, by Doob’s submartingale convergence theorem [23, Theorem 2.5],702

we further deduce that S n converges with probability 1 to some (finite) random variable S∞.703

Going back to (B.30) and letting n→ ∞, the above shows that Dn → −∞ with probability 1 on Q.704

Since D is nonnegative by construction and �(Q) > 0 by assumption, we obtain a contradiction and705

our proof is complete. ■706

B.4. Convergence of the energy values. Our last auxiliary result concerns the convergence of the707

values of the dual energy function D. We encode this as follows.708

Proposition B.3. If (PG) is run with assumptions as in Proposition B.1, there exists a finite random709

variable D∞ such that710

�(Dn → D∞ as n→ ∞ | πn ∈ B for all n) = 1. (B.33)

Proof. Let En = {πk ∈ B for all k = 1, 2, . . . , n} be defined as in (B.7), and let D̃n = 1En Dn. Then, by711

the energy inequality (B.2) and the fact that En+1 ⊆ En, we get712

D̃n+1 = 1En+1 Dn+1 ≤ 1En Dn+1

≤ 1En Dn + 1En γn⟨v(πn), πn − π
∗⟩ +

(
γnξn + γnχn + γ

2
nψ

2
n
)
1En

≤ D̃n + γn 1En ξn +
(
γnχn + γ

2
nψ

2
n
)
1En , (B.34)

where we used the fact that that ⟨v(πk), πk − π
∗⟩ ≤ 0 for all k = 1, 2, . . . , n if En occurs. Since En is713

Fn-measurable, conditioning on Fn and taking expectations yields714

�[D̃n+1 |Fn] ≤ D̃n + γn 1En �[ξn |Fn] + 1En γnχn + 1En �[γ2
nψ

2
n |Fn]
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≤ D̃n + γn∥Π∥Bn + γnχn + �[γ2
nψ

2
n |Fn]

≤ D̃n + γn∥Π∥Bn +
3
2
[
G2 + B2

n + σ
2
n
]
. (B.35)

By our step-size assumptions, we have
∑

n γ
2
n(1 + B2

n + σ
2
n) < ∞ and

∑
n γnBn < ∞, which means that715

D̃n is an almost supermartingale with almost surely summable increments, i.e.,716

∞∑
n=1

[
�[D̃n+1 |Fn] − D̃n

]
< ∞ with probability 1 (B.36)

Therefore, by Gladyshev’s lemma [45, p. 49], we conclude that D̃n converges almost surely to some717

(finite) random variable D∞. Since 1En = 1 for all n if and only if πn ∈ B for all n, we conclude that718

�
(
Dn converges

∣∣∣ πn ∈ B for all n
)
= �(D̃n converges) = 1, and our claim follows. ■719

B.5. Putting everything together. We are now in a position to prove Theorem 1 and Corollary 1.720

Proof of Theorem 1. Let E =
⋂

n En = {πn ∈ B for all n} denote the event that πn lies in B for all721

n. By Proposition B.1, if π1 is initialized within the neighborhood U defined in (B.8), we have722

�(E | π1 ∈ U ) ≥ 1 − a, noting also that the neighborhood U is independent of the required confidence723

level a. Then, by Propositions B.2 and B.3, it follows that a) lim infn∥πn − π
∗∥ = 0; and b) Dn724

converges, both events occurring with probability 1 on the set E ∩ {π1 ∈ U }. We thus conclude that725

limn→∞ Dn = 0 and hence726

�(πn → π∗ | π1 ∈ U) ≥ �(E ∩ {πn → π∗} | π1 ∈ U)
= �(πn → π∗ | π1 ∈ U , E) × �(E | π1 ∈ U) ≥ 1 − δ,

and our proof is complete. ■727

Proof of Corollary 1. For Models 1 and 2, taking ℓb = ∞, ℓσ = 0, we obtain p > 1/2. Since we have728

that
∑∞

n=1 γn = ∞, we get that p ≤ 1, i.e., p ∈ (1/2, 1].729

For Model 3, we have that Bn = O(εn) and σn = O(1/
√
εn), i.e., ℓb = r and ℓσ = r/2. Now, since730

p ≤ 1, p + ℓb > 1 and p − ℓσ > 1/2, we obtain that p ∈ (2/3, 1] and (1 − p)/2 < r/2 < p − 1/2. ■731

C Rate of convergence to second-order stationary policies732

We now proceed with the proof of Theorem 2, which we again restate below for convenience:733

Theorem 2. Let π∗ be a Nash policy such that (SOS) holds on some open set B containing π∗, and734

let πn be the sequence of play generated by (PG) with step-size γn = γ/(n + m)p, p ∈ (1/2, 1], and735

policy gradient estimates such that p + ℓb > 1 and p − ℓσ > 1/2 as per (8). Then:736

1. There exists a neighborhood U of π∗ in Π such that, for any confidence level δ > 0, the event737

E = {πn ∈ B for all n = 1, 2, . . . } (17)

occurs with probability �(E | π1 ∈ U) ≥ 1 − δ if m is large enough relative to δ.738

2. The sequence πn converges to π∗ with probability 1 on E; in particular, we have739

�(πn converges to π∗ | π1 ∈ U) ≥ 1 − δ (18)

if m is large relative to δ. Moreover, conditioned on E and taking q = min{ℓb, p − 2ℓσ}, we have740

�[∥πn − π
∗∥2 | E] =

{
O(1/n2µγ) if p = 1 and 2µγ < q,
O(1/nq) otherwise.

(19)

Proof. We will follow an approach similar to Theorem 1 for the first part of the theorem. More741

precisely, let B = {π ∈ Π : ∥π−π∗∥ ≤ r} be a ball of radius r centered at π∗ in Π such that (SOS) holds742
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for all π ∈ B. Then, for all π ∈ B\{π∗}, we have ⟨v(π), π − π∗⟩ ≤ −µ∥π − π∗∥ < 0 by Proposition 1.743

Hence, defining the events En and Hn as in Eq. (B.7), and assuming that π1 is initialized in a ball of744

radius
√

2a centered at π∗, viz.745

U = {π ∈ Π : D(π) ≤ a} = {π ∈ Π : ∥π − π∗∥2/2 ≤ a}. (C.1)

then, by Lemma B.2 and Proposition B.1, we readily obtain that746

�(Hn | π1 ∈ U) ≥ 1 − δ for all n = 1, 2, . . . (C.2)

which implies that747

�(E | π1 ∈ U) ≥ 1 − δ (C.3)

if m is large enough relative to δ.748

For the second part, constraining Eq. (B.2) on the event En, we get:749

Dn+1 1En ≤ Dn 1En +γn⟨v(πn), πn − π
∗⟩1En +1En

(
γnξn + γnχn + γ

2
nψ

2
n

)
≤ (1 − 2µγn)Dn 1En +1En

(
γnξn + γnχn + γ

2
nψ

2
n

)
(C.4)

where the last inequality comes from (SOS). Therefore, taking expectations, we obtain:750

�
[
Dn+1 1En

]
≤ (1 − 2µγn)�

[
Dn 1En

]
+ �

[
1En

(
γnξn + γnχn + γ

2
nψ

2
n

)]
≤ (1 − 2µγn)�

[
Dn 1En

]
+ γn �

[
1En ξn

]
+ γn �[1En χn] + γ2

n �[1En ψ
2
n]

= (1 − 2µγn)�
[
Dn 1En

]
+ γn �[1En χn] + γ2

n �[1En ψ
2
n]

≤ (1 − 2µγn)�
[
Dn 1En

]
+ ∥Π∥�(En)γnBn + �(En)

(
Gγ2

n + 3γ2
nσ

2
n + 3γ2

nB2
n

)
(C.5)

where the equality in the third line comes from the fact that751

�[1En ξn] = �
[
�[ξn 1En |Fn]

]
= �

[
1En �[ξn |Fn]

]
= 0. (C.6)

Now, since 1En+1 ≤ 1En , we further have752

�
[
Dn+1 1En+1

]
≤ �

[
Dn+1 1En

]
(C.7)

and hence, setting D̄n B �
[
Dn 1En

]
, we get753

D̄n+1 ≤ (1 − 2µγn)D̄n + ∥Π∥�(En)γnBn + �(En)
(
Gγ2

n + 3γ2
nσ

2
n + 3γ2

nB2
n

)
≤ (1 − 2µγn)D̄n + ∥Π∥γnBn +Gγ2

n + 3γ2
nσ

2
n + 3γ2

nB2
n. (C.8)

Therefore, taking γn, Bn, σn as per the statement of the theorem and noting that the terms γ2
n and γ2

nB2
n754

are respectively dominated by the terms γ2
nσ

2
n and γnBn, we obtain755

D̄n+1 ≤

(
1 −

2µγ
(n + m)p

)
D̄n +

C1

(n + m)p+ℓb
+

C2

(n + m)2p−2ℓσ

≤

(
1 −

2µγ
(n + m)p

)
D̄n +

C1 +C2

(n + m)p+q (C.9)

for some C1,C2 > 0, where q = min{ℓb, p − 2ℓσ}, as per the theorem’s statement. Therefore, by a756

straightforward modification of Chung’s lemma [14, Lemmas 2&3], [45, p. 45], we get757

D̄n =

{
O(1/n2µγ) if p = 1 and 2µγ < q,
O(1/nq) otherwise.

(C.10)

Accordingly, letting n→ ∞ and recalling that �[Dn 1E ] ≤ �[Dn 1En ] = D̄n758

lim
n→∞
�[Dn 1E ] = 0. (C.11)

Then, by Fatou’s lemma [21], we obtain759

0 ≤ �[lim inf
n→∞

Dn 1E ] ≤ lim inf
n→∞

�[Dn 1E ] = 0, (C.12)
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which readily shows that �[lim infn→∞ Dn 1E ] = 0. Finally, since lim infn→∞ Dn 1E ≥ 0 (a.s.) and760

�[lim infn→∞ Dn 1E ] = 0, we get that761

lim inf
n→∞

Dn 1E = 0 with probability 1. (C.13)

Therefore, there exists a subsequence Dnk that converges to 0 with probability 1 on the event E , i.e.,762

πnk converges to π∗. Hence, invoking Proposition B.3, we further deduce that Dn converges to some763

D∞ with probability 1 on E , and thus, we obtain that limn→∞ Dn = 0 on E . We thus get764

�(πn → π∗ | π1 ∈ U) ≥ �(E ∩ {πn → π∗} | π1 ∈ U)
= �(πn → π∗ | π1 ∈ U , E) × �(E | π1 ∈ U) ≥ 1 − δ, (C.14)

as claimed.765

For the last part of the theorem, note that766

D̄n = �[Dn 1En ] ≥ �[Dn 1E ] = �[�[Dn |σ(E)]1E ]
= �[�[Dn | E]1E ]
= �[Dn | E]�[1E ]
= �[Dn | E]�(E) (C.15)

where we used the fact that �[Dn |σ(E)]1E = �[Dn | E]1E . We thus conclude that767

�
[
∥πn − π

∗∥2
∣∣∣ E]
= 2�[Dn | E] ≤

2
�(E)

D̄n ≤
2

1 − δ
D̄n

(C.16)

and hence768

�
[
∥πn − π

∗∥2
∣∣∣ E]
=

{
O(1/n2µγ) if p = 1 and 2µγ < q,
O(1/nq) otherwise.

■

Proof of Corollary 2. For Models 1 and 2, taking ℓb = ∞, ℓσ = 0 we readily get that q = p and769

p > 1/2. Since we require that
∑∞

n=1 γn = ∞, we obtain that p ∈ (1/2, 1]. Hence, for p = 1 and770

2µγ > 1 we obtain O(1/n) rate of convergence.771

For Model 3, we have that Bn = O(εn) and σn = O(1/
√
εn), i.e., ℓb = p/2 and ℓσ = p/4, and,772

hence, we readily get that q = p/2. Now, since p ≤ 1, p + ℓb > 1 and p − ℓσ > 1/2, we obtain that773

p ∈ (2/3, 1]. Hence, for p = 1 and µγ > 1, we obtain O(1/
√

n) rate of convergence. ■774

D Rate of convergence to strict Nash policies775

D.1. Structural preliminaries. To prove Theorem 3, we will first require some notions describing776

the geometry of Π near π∗. Referring to [47] for a full treatment, we have:777

Definition 3. Let C be a convex set and let x ∈ C. Then the tangent cone TCC(x) is defined as the set778

of all rays emanating from x and intersecting C to at least one other point different from x. The polar779

cone PCC(x) to C at x is then defined PCC(x) = {y : ⟨y, z⟩ ≤ 0 for all z ∈ TCC(x)}, where y belong in780

the dual space of the vector space in which C is defined.781

With these general definitions in hand, we proceed to characterize some further projections of782

Euclidean projections on Π that will play an important role in the sequel. For notational simplicity,783

we suppress the player and state indices in the statement and proof of the next lemma.784

Lemma D.1. x = proj(y) if and only if there exist µ ∈ � and να ∈ �+ such that, for all α ∈ A, we785

have yα = xα + µ − να with να ≥ 0 and xανα = 0.786

Proof. Recall that proj(y) = arg minx∈∆(A)∥y − x∥2. Our result then follows by applying the KKT787

conditions to this optimization problem and noting that, since the constraints are affine, the KKT788

conditions are sufficient for optimality. Our Langragian is789

L(x, µ, ν) =
∑
α∈A

1
2

(yα − xα)2 − µ(
∑
α∈A

xα − 1) +
∑
α∈A

ναxα
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where the set of constraints (i) of the statement of the lemma are the stationarity constraints, which in790

our case are ∇L(x, µ, ν) = 0⇔ ∇(
∑
α∈A

1
2 (yα− xα)2) = µ∇(

∑
α∈A xα−1)−

∑
α∈A να∇xα , while the set791

of constraints (ii) of the statement of the lemmas are the complementary slackness constraints. Note792

that complementary slackness implies να > 0 whenever α < supp(x), so our proof is complete. ■793

Our next result is a concrete consequence of Proposition 1 which will be very useful in establishing794

the stability estimates required for the proof of Theorem 3.795

Lemma D.2. Let π∗ = (α∗i,s)i∈N ,s∈S be a strict Nash policy. Then there exists a neighborhood U of π∗796

and constants ci,s such that for each player i ∈ N and state s ∈ S, we have:797

viα∗i,s (π) − viαi,s (π) ≥ ci,s for all π ∈ U and αi , α
∗
i , αi ∈ Ai. (D.1)

Proof. Our claim is a consequence of the definition of strict Nash policies. Specifically, from798

Proposition 1 we have799

⟨v(π∗), z⟩ < 0 for all z ∈ TC(π∗), z , 0 (D.2)
Let z = ei,αi,s − ei,α∗i,s , then we get that800

viα∗i,s (π
∗) − viαi,s (π

∗) > 0 (D.3)

where ei,αi,s is the vector that has one only in the index and zero anywhere else. By continuity there801

exists a neighborhood U ⊆ X and ci,s > 0 for each player i ∈ N such that802

viα∗i,s (π) − viαi,s (π) ≥ ci,s for all π ∈ U ■

Our final result is intimately tied to the lazy projection step in (LPG), and quantifies the relation803

between initializations in
∏

i

(
�Ai

)S
and Π.804

Lemma D.3. Let π∗ = (α∗i,s)i∈N ,s∈S , be a deterministic policy. For each agent i ∈ N and each state805

s ∈ S, let yi,αi,s − yi,α∗i,s be the difference of the aggregated gradients between the strategy of the806

equilibrium and any other strategy α∗i , αi ∈ Ai. Then for any ε > 0 such that Uε = {π : πi,α∗i,s ≥807

1 − ε for all i ∈ N and s ∈ S}, there exist Mi,ε,s such that if Wi,s = {y ∈ �
Ai : yi,αi,s − yi,α∗i,s < −Mi,ε,s}808

then
∏

i∈N ,s∈S projΠi
(Wi,s) ⊆ Uε.809

Proof. Consider an arbitrary player i ∈ N , a state s ∈ S , and let Wi(Mi,ε,s) be an open set as defined810

in the statement of the lemma. For notational simplicity, we will drop the index s. We will show that811

any Mi,ε > 1− ε
|Ai |

> 0 satisfies our claim. By using Lemma D.1 for a yi ∈Wi(Mi,ε) with πi = proj(yi)812

we have that813

yiα∗i − yiαi > Mi,ε (D.4)
πiα∗i − πiαi − (να∗i − ναi ) > Mi,ε (D.5)

with ναi ≥ 0 and πiαi = 0 whenever ναi > 0. Notice that since Mi,ε > 1 − ε
|Ai |

we have that814

πiα∗i > πiαi + 1 − ε
|Ai |
+ (να∗i − ναi ) or815

πiαi < πiα∗i − 1 +
ε

|Ai|
− (να∗i − ναi ) <

ε

|Ai|
(D.6)

Hence, by summing over all strategies of player i we get the desired result. ■816

D.2. Proof of the main theorem. We are now in a position to prove our main result on the rate of817

convergence towards strict Nash policies. For ease of reference, we restate Theorem 3 below.818

Theorem 3. Let πn be the sequence of play under (LPG) with step-size and policy gradient estimates819

such that p + ℓb > 1 and p − ℓσ > 1/2 as per (8). If π∗ is a deterministic Nash policy, there exists an820

unbounded open set W ⊆
∏

i

(
�Ai

)S
of initializations such that, for any δ > 0, we have821

�(πn converges to π∗ | y1 ∈W) ≥ 1 − δ, (20)

provided that γ > 0 is small enough. Moreover, conditioned on this event, πn converges to π∗ at a822

finite number of iterations, i.e., there exists some n0 such that πn = π
∗ for all n ≥ n0.823
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Proof of Theorem 3. We start by fixing a confidence level δ > 0 and all the parameters of the824

algorithm, such that all the assumptions stated in the theorem are satisfied and. We will prove that for825

each agent i ∈ N , s ∈ S there exist M1,i,s > 0, W1,i,s = {y ∈ �
Ai : yi,αi − yi,α∗i < −M1,i,s for all αi ∈826

Ai, αi , α
∗
i }, such that if y1 ∈W1 B

∏
i∈N ,s∈S W1,i,s then the agents’ sequence of play, converge to827

the deterministic Nash policy, in finite number of iterations.828

To simplify the notation, we will drop the indices s and i referring to the states and agents, accordingly,829

and we will focus on a specific agent and a specific state. From Lemma D.3, Lemma D.2 we have830

that there exist constants c,M, neighborhood Uc = {π ∈ Π : ∥π − π∗∥ ≤ β} and open set WM such that831

vα∗ (π) − vα(π) ≥ c for all α , α∗, α ∈ A and π ∈ Uc (D.7)
yα∗ − yα > Mc for all α , α∗, α ∈ A and π = proj(y) ∈ Uc (D.8)

The first step is to prove that for an appropriate initialization for y1, we have yn ∈ W(Mc) for all832

n = 1, 2, . . . , with probability at least 1− δ. Assume that yk ∈W(Mc) for all k = 1, . . . , n; then for the833

differences of the scores at a round n+ 1 between any α ∈ A and the equilibrium strategy α∗, we have834

yα,n+1 − yα∗,n+1 = yα,n − yα∗,n + (v̂α,n − v̂α∗,n)

= yα,1 − yα∗,1 +

n∑
k=1

γk[(vα,k − vα∗,k) + (Uα,k − Uα∗,k) + (bα,k − bα∗,k)]

≤ −M1 +

n∑
k=1

γk[(vα,k − vα∗,k) + (Uα,k − Uα∗,k) + (bα,k − bα∗,k)]

≤ −M1 − c
n∑

k=1

γk +

n∑
k=1

γk[(Uα,k − Uα∗,k) + (bα,k − bα∗,k)]

≤ −M1 − c
n∑

k=1

γk +

n∑
k=1

γk[ξk + χk] (D.9)

where ξk = (Uα,k − Uα∗,k) and χk = 2∥bk∥. Now, similarly to the proofs of Theorems 1 and 2 we will835

proceed to control the aggregate error terms836

Rn =

n∑
k=1

γkξk and S n =

n∑
k=1

γkχk. (D.10)

Since �[ξn |Fn] = 0, we have �[Rn |Fn] = Rn−1, so Rn is a martingale; likewise, �[S n |Fn] ≥ S n−1,837

so S n is a sub-martingale. Furthermore from (7) we have:838

I. �[ξ2
n] ≤ �[∥Un∥

2] ≤ �[�[∥Un∥
2 |Fn]] ≤ σ2

n839

II. �[χn] = 2�[∥bn∥] ≤ �[�[∥bn∥ |Fn]] ≤ Bn840

Moreover, for any η1 > 0, we get by Doob’s Maximal Inequality:841

�

(
sup

1≤k≤n
Rk ≥ η1

)
≤
�[R2

n]
η2

1

(a)
=

∑n
k=1 γ

2
k �[ξ2

k ]

η2
1

(I.)
≤

∑n
k=1 γ

2
kσ

2
k

η2
1

(D.11)

where (a) comes from the fact that �[ξiξ j] = 0 for i , j. Since γn = γ/np, σn = O(nℓσ) and842

p − ℓσ > 1/2, there exists γ1 sufficiently small such that if γ ≤ γ1 then843

∞∑
k=1

γ2
kσ

2
k <

δη2
1

2
(D.12)

and so we automatically get that844

�

(
sup

1≤k≤n
Rk ≥ η1

)
≤
δ

2
(D.13)
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Furthermore, notice that the term {S n}n∈� is a sub-martingale, since �[|S n| |Fn] < ∞ and845

�[S n+1 |Fn] > S n, for all n. As before, using Doob’s Maximal Inequality, we get for any η2 > 0:846

�

(
sup

1≤k≤n
S k ≥ η2

)
≤
�[S n]
η2

=

∑n
k=1 γk �[χk]

η2
≤

2
∑n

k=1 γkBk

η2
(D.14)

So, since p + ℓb > 1 there exists γ2 sufficiently small such that if γ ≤ γ2 then847

n∑
k=1

γkBk ≤
η2δ

4
(D.15)

which immidiately implies that848

�

(
sup

1≤k≤n
S k ≥ η2

)
≤
δ

2
(D.16)

By choosing γ ≤ min{γ1, γ2} we get that849

�

(
sup

1≤k≤n
Rn + S n ≤ Mc

)
≥ 1 − δ. (D.17)

Notice now that by choosing M1 > Mc + η1 + η2, from (D.9) we have that with probability at least850

1 − δ, yα,n+1 − yα∗,n+1 < −Mc, which implies that πn+1 ∈ Uc.851

Defining the sequences of "good" events {En}n∈� and {E ′n}n∈� as En B {πk ∈ Uc,∀k = 1, . . . , n} and852

E ′n B
{
sup1≤k≤n Rk + S k ≤ η1 + η2

}
, accordingly, we get that E ′n ⊆ En for all n. Because �

(
E ′n

)
≥ 1− δ,853

we get that854

�(En) ≥ 1 − δ (D.18)
and since {En}n∈� is a decreasing sequence converging to E B {πn ∈ Uc,∀n ∈ �}, we obtain855

�(E) ≥ 1 − δ. (D.19)
i.e.,856

�(πn ∈ Uc, ∀n | y1 ∈W1) ≥ 1 − δ (D.20)
Notice that the above conclusions immediately imply convergence in finite time. More specifically,857

constrained to the event E with probability at least 1 − δ, from Eq. (D.9) we have858

yα,n+1 − yα∗,n+1 ≤ −Mc − c
n∑

k=1

γk (D.21)

for all n = 1, 2, . . . . Assume ad absurdum that there exists at least one strategy α , α∗, α ∈ A such859

that lim supn→∞ πα,n ≥ ε > 0. for all sufficiently large n. Recall also that for π ∈ Uc, it holds that860

πα∗ > 0 by construction. Using Lemma D.1 we get861

yα,n+1 − yα∗,n+1 = πα,n+1 − πα∗,n+1 ≤ −Mc − c
n∑

k=1

γk (D.22)

Notice that the L.H.S. of this inequality is bounded, while the R.H.S. goes to −∞, which is a862

contradiction. Thus, with probability at least 1 − δ, πn → π∗ as n→ ∞.863

We can rewrite the previous inequality as864

πα,n+1 ≤ 1 − Mc − c
n∑

k=1

γk for all α∗ , α ∈ A (D.23)

Now aggregating over all strategies, on the previous inequality, we get that865

∥πn+1 − π
∗∥1 = 2(1 − πα∗,n+1) ≤ 2

∑
α∗,α∈A

(1 − Mc − c
n∑

k=1

γk) (D.24)

Thus, once
∑n

k=1 γk becomes at least (1 − Mc)/c, which occurs in finite time, the convergence is866

implied. ■867

Proof of Corollary 3. For Models 1 and 2, taking ℓb = ∞, ℓσ = 0 we readily get that p > 1/2. Since868

we require that
∑∞

n=1 γn = ∞, we obtain that p ∈ (1/2, 1].869

For Model 3, we have that Bn = O(εn) and σn = O(1/
√
εn), i.e., ℓb = r and ℓσ = r/2. Now, since870

p ≤ 1, p + ℓb > 1 and p − ℓσ > 1/2, we obtain that p ∈ (2/3, 1]. ■871
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E Structural properties of policy gradient methods872

In this part of the appendix we will establish the necessary properties about the value function, its
gradient. More precisely,
• In Lemma E.1 we prove that in the random stopping episodic framework visitation the notion of

discounted state visitation distribution is well-defined.
• In Lemma 1, we prove the conversion lemma, a standard lemma that connects a sample by visitation

distribution and a random trajectory.
• In Lemma E.4, we establish different versions of Policy Gradient theorem via Q-value function for

the random stopping episodic framework.
• In Lemma E.5 and E.7, we establish the boundedness and the Lipschitz smoothness of policy gradient

vector field, i.e., v(π) = (vi(π))i∈N where vi(π) = ∇πi Vi,s(π)
873

For a policy profile π ∈ Π and an arbitrary initial state distribution s0 ∼ ρ, let’s recall the definition of874

discounted state visitation measure/distribution as875

d̃πρ(s) = �τ∼MDP

[∑T (τ)

t=0
1{st = s}

∣∣∣∣s0 ∼ ρ
]
, dπρ(s) B d̃πρ(s)/Zπ

ρ

To begin with, we prove formally that the above definition is well-posed for the random stopping876

episodic framework described above, i.e., d̃πρ(s) < ∞, so Zπ
ρ B

∑
s∈S d̃πρ(s) is well-defined.877

Lemma E.1. For any s ∈ S, d̃πρ(s) < ∞ and Zπ
ρ ≤

1
ζ
.878

Proof. For the sake of the proof, we define a new state s f , indicating that the game has stopped. In879

other words, we have that P(s f | s, α) = ζs,α ≥ ζ > 0 for all α ∈ A, s ∈ S. Hence, for s ∈ S we880

obtain:881

d̃πρ(s) = �τ∼MDP

[∑T (τ)

t=0
1{st = s}

∣∣∣∣s0 ∼ ρ
]

(E.1)

= �τ∼MDP

 ∞∑
t=0

1{st = s, si , s f , 1 ≤ i ≤ t} | s0 ∼ ρ

 (E.2)

≤
∑
s∈S

d̃πρ(s) (E.3)

= �τ∼MDP

 ∞∑
t=0

1{si , s f , 1 ≤ i ≤ t} | s0 ∼ ρ

 (E.4)

=

∞∑
t=0

�(si , s f , 1 ≤ i ≤ t | s0 ∼ ρ) (E.5)

=

∞∑
t=0

t∏
i=1

�(si , s f | s0 ∼ ρ, s j , s f , 1 ≤ j ≤ i − 1) (E.6)

≤

∞∑
t=0

(1 − ζ)t ≤
1
ζ

(E.7)

< ∞. (E.8)

■882

Lemma 1. [Conversion Lemma] For an arbitrary state-action function f : S ×A → �, a policy883

profile π and an initial state distribution s0 ∼ ρ, we have884

�τ∼MDP

[∑T (τ)

t=0
f (st, αt)

]
= Zπ

ρ �s∼dπρ �α∼π(·|s)
[
f (s, α)

]
(2)

Proof.

�τ∼MDP

[∑T (τ)

t=0
f (st, αt)

]
=

∞∑
t=0

∑
s∈S

∑
α∈A
�τ∼MDP

[
1{t ≤ T (τ), st = s, αt = α} f (s, α)

]
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=
∑
s∈S

∞∑
t=0

∑
α∈A
�
π(s = st | s0 ∼ ρ)π(α | s) f (s, α)

=
∑
s∈S

∞∑
t=0

�
π(s = st | s0 ∼ ρ)

∑
α∈A

π(α | s) f (s, α)

=
∑
s∈S

d̃πρ(s)�α∼π(·|s)
[
f (s, α)

]
= Zπ

ρ �s∼dπρ �α∼π(·|s)
[
f (s, α)

]
(E.9)

where Zπ
ρ B �s∼Unif(S)

[
d̃πρ(s)

]
· |S | is well-defined by E.1. ■885

An equivalent but very useful way to describe compactly the aforementioned lemma is via the matrix886

representation of the discounted visitation distribution:887

Lemma E.2 ( Conversion Lemma (Matrix form) ). For an arbitrary state-action function f : S×A→888

� and a policy profile π, we have889

�τ∼MDP

[∑T (τ)

t=0
f (st, αt) | α0 = α, s0 = s

]
= e⊤s,αT (π) f (E.10)

where T is a discounted visitation distribution (action-state)-matrix under poliy profile π i.e.,890

[T (π)](α, s)︸︷︷︸
Row Index

→(α′, s′)︸ ︷︷ ︸
Column Index

=
∑∞

t=0 �
π(st = s′, αt = α

′ | s0 = s, α0 = α)891

Proof. By definition we have892

e⊤s,αT (π) f = ⟨e⊤s,αT (π), f ⟩ (E.11)

=
∑
s′∈S

∑
α′∈A

(
e⊤s,αT (π)

)
(s′,α′)

· f (s′, α′) (E.12)

=
∑
s′∈S

∑
α′∈A

e⊤s,αT (π)es′,α′ · f (s′, α′) (E.13)

=
∑
s′∈S

∑
α′∈A

∞∑
t=0

�
π(st = s′, αt = α

′ | s0 = s, α0 = α) · f (s′, α′) (E.14)

=

∞∑
t=0

∑
s′∈S

∑
α′∈A
�τ∼MDP

[
1{t ≤ T (τ), s′t = s, α′t = α, } f (s, α) | s0 = s, α0 = α

]
(E.15)

= �τ∼MDP

[∑T (τ)

t=0
f (st, αt) | α0 = α, s0 = s

]
(E.16)

■893

Remark 1. Notice that T is a well-defined matrix. Indeed, let’s us define P(π) as the state-action one894

step transition matrix:895

[P(π)](α, s)︸︷︷︸
Row Index

→(α′, s′)︸ ︷︷ ︸
Column Index

= �π(s1 = s′, α1 = α
′ | s0 = s, α0 = α) = π(α′ | s′)P(s′|s, α).

Notice that P(π) is a substochastic matrix and therefore spectral(P(π)) < 1 or equivalently (I−P(π))−1
896

is invertible. Thus using Neumann series we have that (I − P(π))−1 =
∑∞

t=0 P(π)t. By induction, a897

folklore probabilistic-graph theoretic fact, we can show that
∑∞

t=0 P(π)t = T (π).898

In order to analyze the gradient of MARL policy gradient methods, we will introduce the notions899

Q, A and their per-player averages that are useful in the MDP analysis.900

Definition 4. For a state s ∈ S, a policy π and α = (α1, . . . , αN) ∈ A, we define:901

(i) The Q-value function of player i as:902

Qπ
i (s, α) := �τ∼MDP(π|s)

T (τ)∑
t=0

Ri(st(τ), αt(τ)) | s0 = s, α0 = α

 (E.17)

27



(ii) The Advantage-function of player i as:903

Aπ
i (s, α) := Qπ

i (s, α) − Vi,s(π) (E.18)

We also define Qπ
i , A

π
i to be the averaged for i-th player single MDP Q-value and advantage functions:904

(i) The averaged Qπ
i -value function of player i as:905

Qπ
i (s, αi) := �α−i∼π−i(·|s)

[
Qπ

i (s, (αi;α−i))
]

(E.19)

(ii) The averaged Advantage , Aπ
i -function of player i as:906

Aπ
i (s, αi) := �α−i∼π−i(·|s)

[
Aπ

i (s, (αi;α−i))
]
, (E.20)

Using Remark 1, we can rewrite the above notations using T ,P .907

Lemma E.3. For a policy profile π, we have that908

1. Qπ
i (s, α) = e⊤s,αT (π)ri909

2. d̃πρ(s) =
[∑

s′∈S ρ(s′)
∑
α′∈A π(α′ | s′)es′,α′

]⊤T (π)
∑
α∈A es,α910

Proof. We separately have using Lemma E.3 and Remark 1.911

1. Qπ
i (s, α) = �τ∼MDP(π|s)

[∑T (τ)
t=0 Ri(st(τ), αt(τ)) | s0 = s, α0 = α

]
= e⊤s,αT (π)Ri912

2.

d̃πρ(s) = �τ∼MDP

[∑T (τ)

t=0
1{st = s}

∣∣∣∣s0 ∼ ρ
]

(E.21)

= �s′∼ρ �τ∼MDP

T (τ)∑
t=0

∑
α∈A

1{st = s, αt = α}
∣∣∣∣s0 = s′

 (E.22)

= �s′∼ρ �α′∼π(·|s) �τ∼MDP

T (τ)∑
t=0

∑
α∈A

1{st = s, αt = α}
∣∣∣∣s0 = s′, α0 = α

′

 (E.23)

= �s′∼ρ �α′∼π(·|s)

e⊤s′,α′T (π)
∑
α∈A

es,α

 (E.24)

=

∑
s′∈S

ρ(s′)
∑
α′∈A

π(α′ | s′)es′,α′

⊤T (π)
∑
α∈A

es,α (E.25)

■913

Having defined the above notions, we are ready to provide equivalent forms of the v(π) operator that914

will permit us to prove its boundedness and smoothness. We start with the following versions of915

Policy gradient theorem for random stopping setting:916

Lemma E.4. For the independent gradient operator v(π) per player the following expressions are917

equal to vi(π):918

1. vi(π) = �τ∼MDP

[∑T (τ)
t=0 ∇i

(
log πi(αi,t(τ) | st(τ))

)
Qπ

i (st(τ), αi,t(τ))
]

919

2. vi(π) = Zπ
ρ �s∼dπρ �αi∼πi(·|s)

[
∇i

(
log πi(αi | s)

)
Qπ

i (s, αi)
]

920

3. (vi(π))α◦i ,s◦ =
∂Vi,ρ(π)
∂πi(α◦i |s

◦) = d̃πρ(s◦)Qπ
i (s◦, α◦i ) = Zπ

ρdπρ(s◦)Qπ
i (s◦, α◦i )921

Proof. Let as recall again the definition of our independent gradient operator v(π):922

vi(π) = ∇iVi,ρ(π)
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First, we will show that:923

∇i

(
Vi,ρ(π)

)
= �τ∼MDP

T (τ)∑
t=0

∇i
(
log πi(αi,t(τ) | st(τ))

)
Qπ

i (st(τ), αi,t(τ))

 (E.26)

We will start with an arbitrary s0, and by linearity of ∇πi (·) and �s0∼ρ[·], we will obtain the result.924

∇i
(
Vi,s0 (π)

)
= ∇i (�τ [Ri(τ)])

= ∇i

(
�αi∼πi(·|s0)

[
Qπ

i (s0, αi)
])

= ∇i

 ∑
αi∈Ai

πi(αi | s0)Qπ
i (s0, αi)


=

∑
αi∈Ai

∇i (πi(αi | s0)) Qπ
i (s0, αi) + πi(αi | s0)∇i

(
Qπ

i (s0, αi)
)

=
∑
αi∈Ai

∇i
(
log πi(αi | s0)

)
πi(αi | s0)Qπ

i (s0, αi) + πi(αi | s0)∇i

(
Qπ

i (s0, αi)
)

= �αi∼πi(·|s0)

[
∇i

(
log πi(αi | s0)

)
Qπ

i (s0, αi)
]

+
∑
αi∈Ai

πi(αi | s0)∇i

�α−i∼π−i(·|s0)

Ri(s0, α) +
∑
s1∈S

P(s1 | s0, α)Vi,s1 (π)




= �αi∼πi(·|s0)

[
∇i

(
log πi(αi | s0)

)
Qπ

i (s0, αi)
]

+
∑
αi∈Ai

πi(αi | s0)�α−i∼π−i(·|s0)

∑
s1∈S

P(s1 | s0, α)∇i
(
Vi,s1 (π)

)
= �αi∼πi(·|s0)

[
∇i

(
log πi(αi | s0)

)
Qπ

i (s0, αi)
]

+ �α∼π(·|s0)

∑
s1∈S

P(s1 | s0, α)∇i
(
Vi,s1 (π)

)
(E.27)

Thus, we can rewrite it as:925

∇i
(
Vi,s0 (π)

)
= �αi∼πi(·|s0)

[
∇i

(
log πi(αi | s0)

)
Qπ

i (s0, αi)
]

+ �α∼π(·|s0)

∑
s1∈S

P(s1 | s0, α)∇i
(
Vi,s1 (π)

)
= �τ∼MDP(π|s0)

[
∇i

(
log πi(αi,0(τ) | s0)

)
Qπ

i (s0, αi,0(τ))
]

+ �τ∼MDP(π|s0)
[
1 {T (τ) ≥ 1} ∇i

(
Vi,s1(τ)(π)

)]
=

∞∑
t=0

�τ∼MDP(π|s0)

[
1{t ≤ T (τ)}∇i

(
log πi(αi,t(τ) | st(τ))

)
Qπ

i (st(τ), αi,t(τ))
]

+ �τ∼MDP(π|s0) [1{T (τ) = ∞}A∞]

(a)
= �τ∼MDP(π|s0)

T (τ)∑
t=0

∇i
(
log πi(αi,t(τ) | st(τ))

)
Qπ

i (st(τ), αi,t(τ))

 (E.28)

where (a) holds because �(T (τ) = ∞) = 0, and A∞ is some limiting quantity.926

Hence,we readily obtain:927

∇i

(
Vi,ρ(π)

)
= �s0∼ρ

[
∇i

(
Vi,s0 (π)

)]
(E.29)

Now we are ready to utilize our Lemma 1:928

∇i

(
Vi,ρ(π)

)
= Zπ

ρ �s∼dπρ �α∼π(·|s)

[
∇i

(
log πi(αi | s)

)
Qπ

i (s, αi)
]

(E.30)
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= Zπ
ρ �s∼dπρ �αi∼πi(·|s)

[
∇i

(
log πi(αi | s)

)
Qπ

i (s, αi)
]

(E.31)

Decoupling ∇i per a state s◦ and action α◦i , we get929

∂Vi,ρ(π)
∂πi(α◦i | s

◦)
= Zπ

ρ �s∼dπρ �αi∼πi(·|s)

[
∂
(
log πi(αi | s)

)
∂πi(α◦i | s

◦)
Qπ

i (s, αi)
]

(E.32)

= Zπ
ρ �s∼dπρ �αi∼πi(·|s)

[
1{α◦i = αi, s◦ = s}

1
πi(α◦i | s

◦)
Qπ

i (s◦, α◦i )
]

(E.33)

=
∑
s∈S

d̃πρ(s)
∑
αi∈Ai

πi(αi | s)1{α◦i = αi, s◦ = s}
1

πi(α◦i | s
◦)

Qπ
i (s◦, α◦i ) (E.34)

= d̃πρ(s◦)Qπ
i (s◦, α◦i ) = Zπ

ρdπρ(s◦)Qπ
i (s◦, α◦i ) (E.35)

■930

We are ready to bound the amplitude of the independent player gradient operator:931

Lemma E.5. For a given initial state distribution ρ, the independent player policy gradient operator932

v(π) is bounded. More precisely,933

∥vi(π)∥ ≤
√
|Ai|

ζ2 & ∥v(π)∥ ≤
∑

i∈N
√
|Ai|

ζ2

Proof. We start by analyzing ∥vi(π)∥2 using the aforementioned Lemma E.4.934

∥vi(π)∥2 =
∑

α◦i ,s
◦,∈Ai,S

(vi(π)α◦i ,s◦ )
2

=
∑
s◦∈S

∑
α◦i ∈Ai

(
∂Vi,ρ(π)

∂πi(α◦i | s
◦)

)2

=
∑
s◦∈S

∑
α◦i ∈Ai

(Zπ
ρdπρ(s◦)Qπ

i (s◦, α◦i ))2

≤ (Zπ
ρ )2 max

α◦i ,s
◦,∈Ai,S

(Qπ
i (s◦, α◦i ))2

∑
s◦∈S

∑
α◦i ∈Ai

dπρ(s◦)2

≤
1
ζ2 max

α◦i ,s
◦,∈Ai,S

(�α−i∼π−i(·|s)

[
Qπ

i
(
s◦, (α◦i ;α−i)

)]
)2

∑
s◦∈S

∑
α◦i ∈Ai

dπρ(s◦)

≤
1
ζ2 max

α◦,s◦,∈A,S
(Qπ

i (s◦, α◦))2
∑
α◦i ∈Ai

∑
s◦∈S

dπρ(s◦)

≤
1
ζ2 max

α◦,s◦,∈A,S

�τ∼MDP(π|s)

T (τ)∑
t=0

Ri(st(τ), αt(τ)) | s0 = s◦, α0 = α
◦




2 ∑
α◦i ∈Ai

1

≤
|Ai|

ζ2

�τ∼MDP(π|s)

T (τ)∑
t=0

1 | s0 = s◦, α0 = α
◦




2

≤
|Ai|

ζ4

Thus we conclude that935

∥vi(π)∥ ≤
√
|Ai|

ζ2 & ∥v(π)∥ ≤
∑

i∈N
√
|Ai|

ζ2

■936

To prove the smoothness of the policy gradient operator, we have first to establish the performance937

lemma for our setting. Respectively, we get938

30



Lemma E.6 (Performance lemma). For any pair of policy profiles π = (πi, π−i), π′ = (π′i , π
′
−i), it939

holds940

Vi,ρ(πi, π−i) − Vi,ρ(π′i , π
′
−i) = �τ∼MDP(π|ρ)

T (τ)∑
t=0

Aπ′i ,π
′
−i

i (st, αt)

 (E.36)

where MDP(π|ρ) signifies that players follow π as policy profile with ρ as the initial state distribution.941

Proof. We will initial prove the aforementioned result for an arbitrary deterministic initial state942

s0 = s:943

Vi,s(π) − Vi,s(π′) = �τ∼MDP(π|ρ)

T (τ)∑
t=0

Ri(st, αt)

 − Vi,s(π′) (E.37)

= �τ∼MDP(π|s)

T (τ)∑
t=0

(
Ri(st, αt) + Vi,st (π

′) − Vi,st (π
′)
) − Vi,s(π′) (E.38)

= �τ∼MDP(π|s)

T (τ)∑
t=0

Ri(st, αt) +
T (τ)∑
t=0

(
Vi,st (π

′) − Vi,s(π′) − Vi,st (π
′)
) (E.39)

= �τ∼MDP(π|s)

T (τ)∑
t=0

(
Ri(st, αt) + 1{T (τ) ≥ t + 1}Vi,st+1 (π′)

)
− Vi,st (π

′)

 (E.40)

= �τ∼MDP(π|s)

T (τ)∑
t=0

(
Qπ′

i (st, αt) − Vi,st (π
′)
) (E.41)

= �τ∼MDP(π|s)

T (τ)∑
t=0

Aπ′

i (st, αt)

 (E.42)

where in the last equation we recall the definition of the Advantage function and in the pre-last the944

equivalent definitions of Qπ
i (s, α)945

Qπ
i (s, α) = �τ∼MDP(π|s)

T (τ)∑
t=0

Ri(st(τ), αt(τ)) | s0 = s, α0 = α


= Ri(s, α) + �τ∼MDP(π|s)

[
1{T (τ) ≥ 1}Vi,s1 (π) | s0 = s, α0 = α

]
(E.43)

Applying the linearity of �s∼ρ[·], we get the desired result:946

Vi,ρ(π) − Vi,ρ(π′) = �τ∼MDP(π|ρ)

T (τ)∑
t=0

Aπ′

i (st, αt)

 = Zπ
ρ �s∼dπρ �α∼π(·|s)

[
Aπ′

i (s, α)
]

(E.44)

where the last expression comes from Lemma 1. ■947

Before closing this section by proving the Lipschitz-smoothness of our operator, we describe a useful948

observation that would be helpful in the smoothness bounds.949

Proposition E.1. For any pair of policy profiles π = (πi, π−i), π′ = (π′i , π
′
−i) and an arbitrary initial950

state distribution ρ and a subset M ⊆ N , it holds that:951 ∑
s

dπρ (s)
∑
αM

|(πM − π
′

M)(αM | s)| ≤
∑
i∈M

√
|Ai|∥πi − π

′
i∥

where πM = (πi)i∈M and αM = (αi)i∈M, correspondingly.952

Proof. ∑
s

dπρ (s)
∑
αM

|(πM − π
′

M)(αM | s)| = 2
∑

s

dπρ (s)
1
2
∥(πM − π

′

M)∥1 (E.45)
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= 2
∑

s

dπρ (s)
1
2

dTV(πM(·|s), π
′

M(·|s)) (E.46)

≤ 2
∑

s

dπρ (s)
∑
i∈M

1
2

dTV(πi(·|s), π
′

i(·|s)) (E.47)

=
∑

s

dπρ (s)
∑
i∈M
∥(πi(·|s) − π

′

i(·|s))∥1 (E.48)

=
∑

s

dπρ (s)
∑
i∈M

√
|Ai|∥πi − π

′
i∥2 (E.49)

=
∑
i∈M

√
|Ai|∥πi − π

′
i∥2(

∑
s

dπρ (s)) (E.50)

=
∑
i∈M

√
|Ai|∥πi − π

′
i∥2 (E.51)

where dTV corresponds to the total variation distance. Indeed notice that dTV actually equals to the953

normalized difference of the histograms between two distributions. Additionally, the first inequality954

is derived by the “triangle inequality” that holds for dTV in product-measure distributions. ■955

Lemma E.7. For a given initial state distribution ρ, the independent player policy gradient operator956

v(π) is lipschitz-smooth. More precisely, for any pair of policy profiles π = (πi, π−i), π′ = (π′i , π
′
−i), it957

holds958

∥vi(π) − vi(π′)∥ = ∥∇i(Vi,ρ(π) − ∇i(Vi,ρ(π
′

)∥ ≤
3
√
|Ai|

ζ3

N∑
j=1

√
|Ai|∥π j − π

′
j∥ ∀i ∈ N

and consequently,959

∥v(π) − v(π′)∥ ≤
3|A|
ζ3 ∥π − π

′∥

Proof. For the proof, we will follow the approach of Zhang et al. [68] and Agarwal et al. [1]. Our960

first task is to bound the directional derivative of the i-th player’s value function. We start by setting961

some notation. Let π, π′ ∈ Π and pert ∈ S ×A such that ∥pert∥ = 1. Then, we define the following962

λ-almost perturbed policies:963 {
π�λ (α | s) = (πi + λpert, π−i)
π�λ (α | s) = (π′i + λpert, π′

−i)
964 ∣∣∣∣∣∣∂Vi,ρ(π�λ )

∂λ
−
∂Vi,ρ(π�λ )

∂λ

∣∣∣∣∣∣ =
∣∣∣∣∣∣∂Vi,ρ(π�λ ) − Vi,ρ(π�λ )

∂λ

∣∣∣∣∣∣ (E.52)

=

∣∣∣∣∣∣∣∣
∂
(
Vi,ρ(π�λ ) − Vi,ρ(π�λ )

)
∂λ

∣∣∣∣∣∣∣∣ (E.53)

=

∣∣∣∣∣∣∣∣∣∣∣∣
∂

(
Zπ�λ
ρ �

s∼d
π�
λ
ρ

�α∼π�λ (·|s)

[
Aπ�λ

i (s, α)
])

∂λ

∣∣∣∣∣∣∣∣∣∣∣∣ (E.54)

=

∣∣∣∣∣∣∣∣∣∣∣∣
∂

(
Zπ�λ
ρ �

s∼d
π�
λ
ρ

�α∼π�λ (·|s)

[
Aπ�λ

i (s, α)
])

∂λ

∣∣∣∣∣∣∣∣∣∣∣∣ (E.55)

=

∣∣∣∣∣∣∣∣∣∣
∂
(
Zπ�λ
ρ

∑
s,α dπ

�
λ
ρ (s)(π�λ − π

�
λ )(α | s)Aπ�λ

i (s, α)
)

∂λ

∣∣∣∣∣∣∣∣∣∣ (E.56)
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=

∣∣∣∣∣∣∣∣∣∣
∂
(
Zπ�λ
ρ

∑
s,α dπ

�
λ
ρ (s)(π�λ − π

�
λ )(α | s)Qπ�λ

i (s, α)
)

∂λ

∣∣∣∣∣∣∣∣∣∣ (E.57)

=

∣∣∣∣∣∣∣∣∣∣
∂
(∑

s,α d̃π
�
λ
ρ (s)(π�λ − π

�
λ )(α | s)Qπ�λ

i (s, α)
)

∂λ

∣∣∣∣∣∣∣∣∣∣ (E.58)

where (E.54) leverages the Performance Lemma E.6 and (E.56) uses the fact
∑
α∈A π(α | s)Aπ

i (s, α) =,965

for all s ∈ S and the last one is derived by the definition dπρ(s) B d̃πρ(s)/Zπ
ρ .966

By triangular inequality, the linearity of ∂ operator and Lemma E.1, we have:967 ∣∣∣∣∣∣∂(Vi,ρ(π�λ ) − Vi,ρ(π�λ ))
∂λ

∣∣∣∣
λ=0

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣∣
∑
s,α

∂d̃π
�
λ
ρ (s)
∂λ

∣∣∣∣
λ=0

(π − π
′

)(α | s)Qπ
′

i (s, α)

∣∣∣∣∣∣∣∣
+ Zπ�

ρ

∣∣∣∣∣∣∣∑s,α dπρ (s)
∂(π�λ − π

�
λ )(α | s)

∂λ

∣∣∣∣
λ=0

Qπ
′

i (s, α)

∣∣∣∣∣∣∣
+ Zπ�

ρ

∣∣∣∣∣∣∣∣
∑
s,α

dπρ (s)(π − π
′

)(α | s)
∂Qπ�λ

i (s, α)
∂λ

∣∣∣∣
λ=0

∣∣∣∣∣∣∣∣ (E.59)

We will bound the following three terms separately:968 

TermA =

∣∣∣∣∣∣∑s,α
∂d̃

π�
λ
ρ (s)
∂λ

∣∣∣∣
λ=0

(π − π
′

)(α | s)Qπ
′

i (s, α)

∣∣∣∣∣∣
TermB =

∣∣∣∣∣∑s,α dπρ (s) ∂(π�λ −π
�
λ )(α|s)

∂λ

∣∣∣∣
λ=0

Qπ
′

i (s, α)
∣∣∣∣∣

TermC =

∣∣∣∣∣∣∑s,α dπρ (s)(π − π
′

)(α | s) ∂Q
π�
λ

i (s,α)
∂λ

∣∣∣∣
λ=0

∣∣∣∣∣∣
For TermA, we will use Lemma E.3 in order to compute compactly the derivative:969

∂d̃π
�
λ
ρ (s)
∂λ

=

∂
([∑

s′∈S ρ(s′)
∑
α′∈A π�λ (α′ | s′)es′,α′

]⊤
T (π�λ )

∑
α∈A es,α

)
∂λ

(E.60)

=

 ∑
s′∈S

ρ(s′)
∑
α′∈A

∂π�λ (α′ | s′)
∂λ

es′,α′

⊤T (π�λ )
∑
α∈A

es,α


+

 ∑
s′∈S

ρ(s′)
∑
α′∈A

π�λ (α′ | s′)es′,α′

⊤ ∂T (π�λ )
∂λ

∑
α∈A

es,α

 (E.61)

=
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ρ(s′)
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+
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π�λ (α′ | s′)es′,α′
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ρ(s′)
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′)es′,α′
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+
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s′∈S

ρ(s′)
∑
α′∈A

π�λ (α′ | s′)es′,α′

⊤(T (π�λ )
∂P(π�λ )
∂λ

T (π�λ )
) ∑
α∈A
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 (E.63)

Thus for λ = 0, we get970

∂d̃π
�
λ
ρ (s)
∂λ

∣∣∣∣
λ=0
=

 ∑
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ρ(s′)
∑
α′∈A

pert(α′i | s
′) · π−i(α′−i | s
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α∈A
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+

 ∑
s′∈S

ρ(s′)
∑
α′∈A
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T (π)
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Notice that
[
∂P(π�λ )
∂λ

∣∣∣∣
λ=0

]
(s◦,α◦)→(s⋆,α⋆)

= pert(α⋆i | s
⋆) · π−i(α⋆−i | s

⋆)P(s⋆|s◦, α◦).971

To compactify the notation let us call auxA B
[∑

s′∈S ρ(s′)
∑
α′∈A pert(α′i | s

′) · π−i(α′−i | s
′)es′,α′

]
,972

auxB B
[∑

s′∈S ρ(s′)
∑
α′∈A π(α′ | s′)es′,α′

]
and auxC(s) B

∑
α∈A es,α.973

Then, we get that:974

TermA =

∣∣∣∣∣∣∣∣
∑
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∂d̃π
�
λ
ρ (s)
∂λ
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∣∣∣∣∣∣∣∣ (E.65)
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∂λ
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T (π)
)
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(π − π′ )(α | s)Qπ
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i (s, α)

∣∣∣∣∣∣∣
(E.66)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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∂P(π�λ )
∂λ
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(E.67)

≤ ∥auxA∥1∥T (π)auxD∥∞ + ∥auxB∥1∥
(
T (π)

∂P(π�λ )
∂λ

∣∣∣∣
λ=0

T (π)
)
auxD∥∞ (E.68)

It is easy to see that ∥auxA∥1 ≤
√
|Ai|, ∥auxB∥1 = 1. Indeed,975

∥auxA∥1 =
∑
s′∈S

ρ(s′)
∑
α′∈A
|pert(α′i | s

′)| · π−i(α′−i | s
′) =

∑
s′∈S

ρ(s′)
∑
α′i∈Ai

|pert(α′i | s
′)|

=
∑
s′∈S

ρ(s′)∥perti|s′∥1 ≤
∑
s′∈S

ρ(s′)
√
|Ai|∥perti|s′∥2 ≤

√
|Ai| (E.69)

∥auxB∥1 =
∑
s′∈S

ρ(s′)
∑
α′∈A

π(α′ | s′) = 1 (E.70)

Additionally by Conversion Lemma in Matrix form (See Lemma E.2), we have that:976

∥T (π)x∥∞ = max
s,α
|e⊤s,αT (π)x| = max

s,α
|�τ∼MDP

[∑T (τ)

t=0
x(st, αt) | α0 = α, s0 = s

]
| ≤

1
ζ
∥x∥∞ (E.71)

Similarly, for the matrix ∂P(π�λ )
∂λ

∣∣∣∣
λ=0

, we have that977

∥
∂P(π�λ )
∂λ

∣∣∣∣
λ=0

x∥∞ = max
s,α
|e⊤s,α

∂P(π�λ )
∂λ

∣∣∣∣
λ=0
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s,α
|
∑
s′,α′

pert(α′i | s
′) · π−i(α′−i | s

′)P(s′|s, α)xs′,α′ |

≤
∑
s′,α′
|pert(α′i | s

′)| · π−i(α′−i | s
′)P(s′|s, α) ≤

√
|Ai|∥perti|s′∥2∥x∥∞ ≤

√
|Ai|∥x∥∞

(E.72)

since ∥pert∥2 = 1. Then, using (E.72) and (E.71) in (E.68) we get that :978

TermA ≤

√
|Ai|

ζ
∥auxD∥∞ +

√
|Ai|

ζ2 ∥auxD∥∞ (E.73)

≤

√
|Ai|

ζ
(1 +

1
ζ

)

∥∥∥∥∥∥∥∑s,α (π − π
′

)(α | s)Qπ
′

i (s, α)auxC(s)

∥∥∥∥∥∥∥
∞

(E.74)

≤

√
|Ai|

ζ2 (1 +
1
ζ

) max
s

∣∣∣∣∣∣∣∑α (π − π
′

)(α | s)

∣∣∣∣∣∣∣∥auxC(s)∥∞ (E.75)
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≤

√
|Ai|

ζ2 (1 +
1
ζ

)
N∑

j=1

√
|Ai|∥π j − π

′
j∥ ≤

√
|Ai|

ζ3

N∑
j=1

√
|Ai|∥π j − π

′
j∥ (E.76)

where we used above the fact that Q function is bounded by 1/ζ, ∥pert∥ = 1 and the proposition E.1979

to bound the difference of the policy profiles.980

For the TermB, we have that:981

TermB =

∣∣∣∣∣∣∣∑s,α dπρ (s)
∂(π�λ − π

�
λ )(α | s)

∂λ

∣∣∣∣
λ=0

Qπ
′

i (s, α)

∣∣∣∣∣∣∣ (E.77)

=

∣∣∣∣∣∣∣∑s,α dπρ (s)pert(αi | s)(π−i − π
′

−i)(α | s)Qπ
′

i (s, α)

∣∣∣∣∣∣∣ (E.78)

≤
1
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∑
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≤
1
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|pert(αi | s)|
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(π−i − π
′

−i)(α | s)

∣∣∣∣∣∣∣ (E.80)

≤
1
ζ
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s
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∑
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dπρ (s)
∑
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|(π−i − π
′

−i)(α | s)| (E.81)

≤

√
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s
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(∑
s

dπρ (s)
∑
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|(π−i − π
′
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(E.82)

≤

√
|Ai|

ζ

∑
j∈N \{i}

√
|Ai|∥π j − π

′
j∥ ≤

√
|Ai|

ζ

N∑
j=1

√
|Ai|∥π j − π

′
j∥ (E.83)

where we used again the fact that Q function is bounded by 1/ζ and the proposition E.1 to bound the982

difference of the policy profiles.983

For the TermC , we get that:984

TermC =

∣∣∣∣∣∣∣∣
∑
s,α

dπρ (s)(π − π
′

)(α | s)
∂Qπ�λ

i (s, α)
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∣∣∣∣∣∣∣∣ (E.84)

≤ max
s,α

∣∣∣∣∣∣∣∣∂Qπ�λ
i (s, α)
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∣∣∣∣
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∑
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dπρ (s)
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≤ max
s,α

∣∣∣∣∣∣∣∣∂Qπ�λ
i (s, α)
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∣∣∣∣
λ=0
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√
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j∥ (E.86)

≤ max
s,α

∣∣∣∣∣∣e⊤s,α ∂T (π�λ )
∂λ

∣∣∣∣
λ=0
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∣∣∣∣∣∣ N∑
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√
|Ai|∥π j − π

′
j∥ (E.87)

≤ max
s,α

∣∣∣∣∣∣e⊤s,α ∂(I − P(π�λ ))−1
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√
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j∥ (E.88)

≤ max
s,α

∣∣∣∣∣∣e⊤s,α(T (π)
∂P(π�λ )
∂λ
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λ=0

T (π)
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≤

√
|Ai|

ζ2

N∑
j=1

√
|Ai|∥π j − π

′
j∥ (E.90)

using again (E.72) and (E.71) and proposition E.1. Thus, we are ready now to bound the gradient per985

player:986 ∣∣∣∣∣∣∂(Vi,ρ(π�λ ) − Vi,ρ(π�λ ))
∂λ

∣∣∣∣
λ=0

∣∣∣∣∣∣ ≤ TermA + Zπ�

ρ (TermB + TermC) ≤
3
√
|Ai|
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N∑
j=1

√
|Ai|∥π j − π

′
j∥
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where we recall that Zπ�

ρ ≤ 1
ζ

Since we prove it for an arbitrary perturbation vector pert for the987

directional derivative, for the independent player’s policy gradient it holds also that:988

∥vi(π) − vi(π′)∥ = ∥∇i(Vi,ρ(π) − ∇i(Vi,ρ(π
′

)∥ ≤
3
√
|Ai|

ζ3

N∑
j=1

√
|Ai|∥π j − π

′
j∥ ∀i ∈ N

Finally for the concatenated gradient operator we get:989

∥v(π) − v(π′)∥ =
√∑

i∈N
∥vi(π) − vi(π′)∥2 =

√∑
i∈N
∥∇i(Vi,ρ(π) − ∇i(Vi,ρ(π

′ )∥2 (E.91)

≤

√∑
i∈N

9|Ai|
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j∈N

√
|Ai|∥π j − π

′
j∥
)2
≤

√∑
i∈N

9|Ai|

ζ6

∑
j∈N
|Ai|

∑
j∈N
∥π j − π

′
j∥

2 (E.92)

≤
3
ζ3

√
(
∑
i∈N
|Ai|)2∥π − π′∥2 ≤

3|A|
ζ3 ∥π − π

′∥ (E.93)

■990

F Statistics of Reinforce991

Let’s first recall our notation: We will write ∇i to denote the gradient of the quantity in question
with respect to πi, i.e., when π−i is kept fixed and only πi is varied. For concision, we will write
vi(π) = ∇iVi,ρ(π) for the individual gradient of player i’s value function, and v(π) = (vi(π))i∈N for the
ensemble thereof. Below we present two fundamental properties of Reinforce Policy Gradient estimator
that we will utilize later in the our analysis.
• Reinforce is an unbiased estimator of v(π).
• Reinforce’s variance is bounded by O(1/mins∈S,αi∈Ai πi(αi|s)) for each i ∈ N .

992

Lemma 4. Suppose that each agents i ∈ N follows a stationary policy πi ∈ Πi. Then, letting993

κi = mins∈S,αi∈Ai πi(αi|s) for each i ∈ N , we have994

a) �τ∼MDP[Reinforce(π)] = v(π). (12a)

b) �τ∼MDP

[
∥Reinforcei(π) − vi(π)∥2

]
≤

24|Ai|

κiζ4 . (12b)

Proof. In order to prove �τ∼MDP[Reinforce(π)] = v(π), it is equivalent to prove that995

�τ∼MDP[Reinforcei(π)] = vi(π) for each i ∈ N .

Without loss of generality let’s assume that MDP ≡ MDP(π | ρ) for some initial state distribution ρ.996

Additionally, we denote �π(τ) the induced probability of a random trajectory τ = (st, αt, rt)t≤T (τ).997

�τ∼MDP[v̂i] = �τ∼MDP[Ri(τ) · Λi(τ)] =
∑
τ∈T
�
π(τ)Ri(τ) · Λi(τ) (F.1)

=
∑
τ∈T
�
π(τ)Ri(τ) · [

T (τ)∑
t=0

∇i(log πi(ai,t |st))] (F.2)

=
∑
τ∈T
�
π(τ)Ri(τ) · ∇i

T (τ)∑
t=0

log πi(ai,t |st)

 (F.3)

=
∑
τ∈T
�
π(τ)Ri(τ)∇i

T (τ)∑
t=0

log πi(ai,t |st)

+
∑
τ∈T
�
π(τ)Ri(τ)

∇i

∑
j∈N \{i}

T (τ)∑
t=0

log π j(α j,t |st) + ∇i

T (τ)∑
t=0

log�(st | st−1, at−1)


+

∑
τ∈T
�
π(τ)Ri(τ)∇i log ρ(s0)

(F.4)
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=
∑
τ∈T
�
π(τ)Ri(τ)∇i(log�π(τ)) =

∑
τ∈T

(∇i �
π(τ))Ri(τ) = ∇i(

∑
τ∈T
�
π(τ)Ri(τ)) (F.5)

= ∇iVi,ρ(π) (F.6)

where in the second to last inequality we used the definition for the derivative of the logarithm. We998

also note here that999

�τ∼MDP[v̂i] = �τ∼MDP[Ri(τ)∇i(log�π(τ))] (F.7)

For the variance of Reinforce estimator we have that1000

�τ∼MDP

[
∥Reinforcei(π) − vi(π)∥2

]
=�τ∼MDP

[
∥Reinforcei(π)∥2

]
− 2�τ∼MDP[⟨Reinforcei(π), vi(π)⟩]

+ �τ∼MDP

[
∥vi(π)∥2

]
or equivalently �τ∼MDP

[
∥Reinforcei(π) − vi(π)∥2

]
= �τ∼MDP

[
∥Reinforcei(π)∥2

]
− �τ∼MDP

[
∥vi(π)∥2

]
.1001

Therefore, we have that1002

�τ∼MDP

[
∥Reinforcei(π) − vi(π)∥2

]
≤ �τ∼MDP

[
∥Reinforcei(π)∥2

]
= �[∥v̂i∥

2] (F.8)

1003

�[∥v̂i∥
2] = �τ∼MDP[∥Ri(τ)Λi(τ)∥2] ≤ �τ∼MDP[∥Ri(τ)∥2∥Λi(τ)∥2] (F.9)

≤ �τ∼MDP[(T (τ) + 1)2∥

T (τ)∑
t=0

∇i log πi(ai,t, st)∥2] (F.10)

≤ �τ∼MDP[(T (τ) + 1)3
∞∑

t=0

∑
s,a∈S×Ai

1{t ≤ T }1{st = s, ai,t = a}∥∇i log πi(a, s)∥2] (F.11)

=

∞∑
t=0

∑
s,a∈S×Ai

�τ∼MDP[(T (τ) + 1)31{t ≤ T }1{st = s, ai,t = a}
1

(πi(a, s))2 ] (F.12)

≤

∞∑
t=0

∑
s,a∈S×Ai

1
(πi(a, s))2 �τ∼MDP[(T (τ) + 1)31{t ≤ T }1{st = s, ai,t = a}] (F.13)

≤

∞∑
t=0

∑
s,a∈S×Ai

1
πi(a, s)

�τ∼MDP[(T (τ) + 1)31{t ≤ T }1{st = s}] (F.14)

≤

∞∑
t=0

∑
s,a∈S×Ai

1
κi
{(T (τ) + 1)31{t ≤ T }1{st = s}} (F.15)

=

∞∑
t=0

∑
s∈S

|Ai|

κi
�τ∼MDP[(T (τ) + 1)31{t ≤ T }1{st = s}] (F.16)

=
|Ai|

κi
�τ∼MDP[(T (τ) + 1)3

T∑
t=0

1{t ≤ T }] (F.17)

≤
|Ai|

κi
�τ∼MDP[(T (τ) + 1)4] (F.18)

≤
|Ai|

κi

∞∑
t=0

(1 − ζ)tζ(t + 1)4 ≤
24
ζ4

|Ai|

κi
(F.19)

we note that to go from the first to the second inequality we used the boundeness by one of the1004

rewards, while from the second to the third using Jensen’s inequality. ■1005
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G Solution concepts1006

In this part, we will establish three important facts that certifies the leitmotif of our focus to variational
optima. More precisely,
• In Lemma 2, we prove the crucial property of Gradient Dominance for the multi-agent random

stopping setting.
• In Lemma 3, we establish that any stationary point corresponds to Nash Equilibria.
• In Proposition 1, we prove the “drift” inequalities for all the different types of stationary points.
Proposition 1 will be crucial to prove the corresponding rate of convergence at the following sections of
the supplement

1007

Lemma 2. [Gradient dominance property] For any policy profile π = (πi)i∈N ∈ Π, we have that1008

Vi,ρ(π′i ; π−i) − Vi,ρ(πi; π−i) ≤ CG max
π̄i∈Πi

⟨∇iVi,ρ(π), π̄i − πi⟩ (GDP)

for any unilateral deviation π′i ∈ Πi of each player i ∈ N .1009

Proof. We start by rewriting the LHS of the demanded expression using Performance Lemma E.61010

and Conversion Lemma 1 for π� = (π′i ; π−i) and π� = (πi; π−i):1011

Vi,ρ(π�) − Vi,ρ(π�) =
∑
s∈S

d̃π
�

ρ (s)�α∼π�(·|s)

[
Aπ�i

i (s, α)
]

(G.1)

=
∑
s∈S

d̃π
�

ρ (s)
∑

ai∈Ai

π′i(ai|s)
∑

a−i∈A−i

π−i(a−i|s)Aπ�

i (s, α) (G.2)

=
∑
s∈S

d̃π
�

ρ (s)
∑

ai∈Ai

π′i(ai|s)A
π�

i (s, ai) (G.3)

≤
∑
s∈S

d̃π
�

ρ (s)
∑

ai∈Ai

π′i(ai|s) max
ai∈Ai

A
π�

i (s, ai) (G.4)

Vi,ρ(π�) − Vi,ρ(π�) ≤ max
π̃i∈∆(A)S

∑
s∈S

d̃π
�

ρ (s)
∑

ai∈Ai

π̃i(ai|s)A
π�

i (s, ai) (G.5)

≤ max
π̃i∈∆(A)S

∑
s∈S

d̃π
�

ρ (s)
∑

ai∈Ai

(π̃i(ai|s) − πi(ai|s))A
π�

i (s, ai) (G.6)

≤ max
π̃i∈∆(A)S

∑
s∈S

d̃π
�

ρ (s)

d̃π�ρ (s)
d̃π
�

ρ (s)
∑

ai∈Ai

(π̃i(ai|s) − πi(ai|s))A
π�

i (s, ai) (G.7)

≤

∥∥∥∥∥∥∥ d̃π
�

ρ (s)

d̃π�ρ (s)

∥∥∥∥∥∥∥
∞

max
π̃i∈∆(A)S

∑
s∈S

∑
ai∈Ai

d̃π
�

ρ (s)(π̃i(ai|s) − πi(ai|s))Q
π�

i (s, ai) (G.8)

≤

∥∥∥∥∥∥∥ d̃π
�

ρ (s)

d̃π�ρ (s)

∥∥∥∥∥∥∥
∞

max
π̃i∈∆(A)S

∑
s∈S,ai∈Ai

(π̃i(ai|s) − πi(ai|s))d̃π
�

ρ (s)Q
π�

i (s, ai) (G.9)

≤

∥∥∥∥∥∥∥ d̃π
�

ρ (s)

d̃π�ρ (s)

∥∥∥∥∥∥∥
∞

max
π̃i∈∆(A)S

∑
s∈S,ai∈Ai

(π̃i(ai|s) − πi(ai|s))
∂Vi,ρ(π)
∂πi(αi | s)

(G.10)

Vi,ρ(π′i ; π−i) − Vi,ρ(πi; π−i) ≤ CG max
π̄i∈Πi

⟨∇iVi,ρ(π), π̄i − πi⟩ (G.11)

Notice that we have assumed that d̃π
�

ρ > 0. If this wasn’t the case we could take a trivial bound of∞.1012

■1013

Lemma 3. [First-order stationary policies are Nash] A profile π∗ = (π∗i )i∈N ∈ Π is a Nash policy1014

profile if and only if it satisfies the first-order stationary condition1015

⟨v(π∗), π − π∗⟩ ≤ 0 for all π ∈ Π. (FOS)
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Proof. Let’s apply the definition of first-order stationary point for the pair of policy profiles {π∗, π}:1016

π∗ = (π∗i , π
∗
−i) and π = (πi, π

∗
−i):1017

⟨v(π∗), π∗ − π⟩ ≥ 0 ⇔ (G.12)
⟨v(π∗), (π∗i , π

∗
−i) − (πi, π

∗
−i)⟩ ≥ 0 ⇔ (G.13)

⟨v(π∗), (π∗i − πi, 0)⟩ ≥ 0 ⇔ (G.14)
⟨vi(π∗), π∗i − πi⟩ ≥ 0 ⇔ (G.15)

⟨∇iVi,ρ(π∗), π∗i − πi⟩ ≥ 0 ⇔ (G.16)
min
π̄i∈Πi
⟨∇iVi,ρ(π∗), π∗i − π̄i⟩ ≥ 0 ⇔ (G.17)

max
π̄i∈Πi

⟨∇iVi,ρ(π∗), πi − π̄
∗
i ⟩ ≤ 0 ⇔ (G.18)

(G.19)

By Gradient Dominance Property and Lemma 2, we have that1018

Vi,ρ(πi; π∗−i) − Vi,ρ(π∗i ; π∗−i) ≤ CG max
π̄i∈Πi

⟨∇iVi,ρ(π∗), π̄i − π
∗
i ⟩ ≤ 0⇒ (G.20)

Vi,ρ(πi; π∗−i) ≤ Vi,ρ(π∗i ; π∗−i) ∀πi ∈ Πi. (G.21)

■1019

With all this in place, we are finally in a position to prove the characterization of second-order1020

stationary and strict Nash policies that of Proposition 1. For ease of reference, we restate the relevant1021

claims below.1022

Proposition 1. Let π∗ = (π∗i )i∈N ∈ Π be a Nash policy. Then:1023

a) If π∗ is second-order stationary, there exists some µ > 0 such that1024

⟨v(π), π − π∗⟩ ≤ −µ ∥π − π∗∥2 for all π sufficiently close to π∗. (3a)

b) If π∗ is strict, there exists some µ > 0 such that1025

⟨v(π), π − π∗⟩ ≤ −µ ∥π − π∗∥ for all π sufficiently close to π∗. (3b)

Proof. We begin with the characterization of second-order stationary policies. To that end, let1026

d = |S |
∑

i|Ai| denote the ambient dimension of
∏

i

(
�Ai

)S
and consider the mapping φ : �d×d → �1027

mapping H 7→ max{z⊤Hz : z ∈ TC(π∗), ∥z∥ = 1}. Clearly, φ is convex as the pointwise maximum of a1028

set of linear – and hence convex – functions. This in turn implies the continuity of φ as every convex1029

function is continuous on the interior of its effective domain. Since π∗ satisfies (SOS) by assumption,1030

we have φ(Jacv(π∗)) < 0, so, by continuity and the convexity of Π, there exists some µ > 0 and a1031

convex neighborhood U of π∗ in Π such that φ(Jacv(π)) ≤ −µ for all π ∈ U .1032

With this in mind, letting z = π − π∗ ∈ TC(π∗) for some π ∈ U , a straightforward Taylor expansion1033

with integral remainder yields1034

v(π) − v(π∗) =
∫ 1

0
Jacv(π∗ + τz)z dτ (G.22)

and hence, setting πτ = π∗ + τz, we get1035

⟨v(π) − v(π∗), π − π∗⟩ =
∫ 1

0
z⊤ Jacv(πτ)z dτ

≤ ∥z∥2
∫ 1

0
φ(Jacv(πτ)) dτ ≤ −µ∥z∥2 = −µ∥π − π∗∥2 (G.23)

However, by (FOS), we have ⟨v(π∗), π−π∗⟩ ≤ 0 which, combined with the above, yields ⟨v(π), π−π∗⟩ ≤1036

−µ∥π − π∗∥2, as claimed.1037
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For the second part of our lemma, pick some π , π∗ and let z = (π − π∗)/∥π − π∗∥, so z ∈ TC(π∗)1038

and ∥z∥ = 1. Then, given that (FOS) is satisfied as a strict inequality for all π , π∗, we readily get1039

⟨v(π∗), z⟩ < 0 for all z ∈ TC(π∗) with ∥z∥ = 1. Thus, by the joint continuity of the function ⟨v(π), z⟩1040

in π and z, there exists a compact convex neighborhood K of π∗ in Π such that µ B min{⟨v(π), z⟩ :1041

π ∈ K, z ∈ TC(π∗), ∥z∥ = 1} < 0. Thus, letting z = (π − π∗)/∥π − π∗∥ as above, we conclude that1042

⟨v(π), π − π∗⟩ ≤ −µ∥π − π∗∥, as claimed. ■1043
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