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Abstract

Signal recovery under generative neural network priors has emerged as a promising
direction in statistical inference and computational imaging. Theoretical analysis
of reconstruction algorithms under generative priors is, however, challenging.
For generative priors with fully connected layers and Gaussian i.i.d. weights,
this was achieved by the multi-layer approximate message (ML-AMP) algorithm
via a rigorous state evolution. However, practical generative priors are typically
convolutional, allowing for computational benefits and inductive biases, and so the
Gaussian i.i.d. weight assumption is very limiting. In this paper, we overcome this
limitation and establish the state evolution of ML-AMP for random convolutional
layers. We prove in particular that random convolutional layers belong to the same
universality class as Gaussian matrices. Our proof technique is of an independent
interest as it establishes a mapping between convolutional matrices and spatially
coupled sensing matrices used in coding theory.

1 Introduction

In a typical signal recovery problem, one seeks to recover a data signal x0 given access to measure-
ments y0 = G✓(x0), where the parameters ✓ of the signal model are known. In many problems, it is
natural to view the measurement generation process as a composition of simple forward operators, or
‘layers.’ In this work, we are concerned with multi-layer signal models of the form

G✓(x0) = '
(1)(W (1)

'
(2)(W (2)

. . .'
(L)(W (L)

x0; ⇣
(L)) . . .). (1)

where W
(l) 2 Rnl�1⇥nl are linear sensing matrices and where '(l)(z; ⇣) are separable channel

functions that may be non-linear and may depend on unknown channel noise ⇣. In the multi-layer
case L > 1, this signal model can be viewed as a simple instance of recovery under a Generative
Neural Network (GNN) prior, a technique which has recently shown promise as a generalization
of sparsity priors for signal processing applications Bora et al. [2017]. For example, Gaussian
compressive sensing y0 = AG✓(x0)+⇣ under a prior with random Gaussian weights can be naturally
viewed as an instance of the multilayer signal model, and given an estimate x̂, one can recover
the target signal ŝ = G✓(x̂) from the weights {W (l)} and noise-independent channel functions
{'(l)(z)}.

In practical settings GNNs often use structured convolutional weight matrices, preventing the direct
application of estimators that require W

(l) to have unstructured entries. Motivated by this, we take
interest in a variant of the recovery problem (1) in which some of the sensing matrices W (l) may be
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Figure 1: Agreement between the performance of the AMP algorithm run with random multichannel
convolutional matrices and its state evolution as proven in this paper. (left) Compressive sensing
y0 = Wx0 + ⇣ for noise ⇣i ⇠ N (0, 10�4) and signal prior x0 ⇠ ⇢N (0, 1) + (1 � ⇢)�(x), where
W 2 RDq⇥Pq has varying aspect ratio � = D/P . Crosses correspond to AMP evaluations for
W ⇠ MCC(D,P, q, k) according to Definition 3.2, averaged over 10 independent trials. Dots
correspond to AMP evaluations for W 2 RD⇥P with i.i.d. Gaussian entries Wij ⇠ N (0, 1/P ).
Lines show the state evolution predictions when Wij ⇠ N (0, 1/Pq). The system size is P = 1024,
q = 1024, k = 3, where � and D = �P vary. While our theorem treats the limit P,D ! 1,
q, k = O(1), we observe strong empirical agreement even when q ⇠ P . In Appendix C.1 we give the
same figure for q = 10 ⌧ P . (right) AMP iterates at ⇢ = 0.25 and � near the recovery transition.
Rather than showing these models have equivalent fixed points, we show a stronger result: the state
evolution equations are equivalent at each iteration.

multi-channel convolutional (MCC) matrices, having a certain block-sparse circulant structure which
captures the convolutional layers used by many modern generative neural network architectures
Karras et al. [2018, 2019].

In this work, we develop an asymptotic analysis of the performance of an Approximate Message
Passing (AMP) algorithm Donoho et al. [2009] for recovery from multichannel convolutional signal
models. This family of algorithms originates in statistical physics Mézard and Montanari [2009],
Zdeborová and Krzakala [2016] and allows to compute the marginals of an elaborate posterior
distribution defined by inference problems involving dense random matrices. A number of AMP
iterations have been proposed for various inference problems, such as compressed sensing Donoho
et al. [2009], low-rank matrix recovery Rangan and Fletcher [2012] or generalized linear modeling
Rangan [2011]. More recently, composite AMP iterations (ML-AMP) have been proposed to study
multilayer inference problems Manoel et al. [2017], Aubin et al. [2019]. Here we consider the
ML-AMP proposed in Manoel et al. [2017] to compute marginals of a multilayer generalized linear
model with unstructured random weights, but we replace these weights random convolutional weight
matrices. A major benefit of AMP lies in the fact that the asymptotic distribution of their iterates
can be exactly determined by a low-dimensional recursion: the state evolution equations. This
enables to obtain precise theoretical results for the reconstruction performance of the proposed
algorithm. Another benefit of such iterations is their low computational complexity, as they only
involve matrix-multiplication and, in the separable case, pointwise non-linearities.

Previous works on AMP suggest that the state evolution is not readily applicable to our setting
because its derivation requires strong independence assumptions on the coordinates of the {W (l)}
which are violated by structured multi-channel convolution matrices. Despite this, we use AMP for
our setting and rigorously prove its state evolution. Our main contributions are:

1. We rigorously prove state evolution equations for models of the form (1), where weights are
allowed to be either i.i.d. Gaussian or random structured MCC matrices, as in Definition 3.2.

2. For separable channel functions '(l) and separable signal priors, we show that the original
ML-AMP of Manoel et al. [2017] used with sensing matrices that are either dense Gaussian
matrices or random convolutional ones admits the same state evolution equations, up to a
rescaling. Multi-layer MCC signal models can therefore simulate dense signal models while
making use of fast structured matrix operations for convolutions.
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3. The core of our proof shows how an AMP iteration involving random convolutional matrices
may be reduced to another one with dense Gaussian matrices. We first show that random
convolutional matrices are equivalent, through permutation matrices, to dense Gaussian
ones with a (sparse) block-circulant structure. We then show how the block-circulant
structure can be embedded in a new, matrix-valued, multilayer AMP with dense Gaussian
matrices, the state evolution equations of which are proven using the results of Gerbelot and
Berthier [2021], with techniques involving spatially coupled matrices Krzakala et al. [2012],
Javanmard and Montanari [2013].

4. We validate our theory numerically and observe close agreement between convolutional
AMP iterations and its state evolution predictions, as shown in Figure 1 and in Section
5. Our code can be used as a general purpose library to build compositional models and
evaluate AMP and its state evolution. We make this code available at https://github.
com/mdnls/conv-ml-amp.git.

2 Related Work

AMP-type algorithms arose independently in the contexts of signal recovery and spin-glass theory. In
the former case, Donoho et al. [2009] derives AMP for Gaussian compressive sensing. This approach
was later generalized by Rangan [2011] to recovery problems with componentwise channel functions
that may be stochastic and/or nonlinear, and generalized further by Manoel et al. [2017] to multi-layer
or compositional models. Due to the versatility of this approach, a wide variety of general purpose
frameworks for designing AMP variants have since been popularized Fletcher et al. [2018], Baker
et al. [2020], Gerbelot and Berthier [2021]. Proof techniques to show the concentration of AMP
iterates to the state evolution prediction developed alongside new variants of the algorithm. In the
context of spin-glass theory, Bolthausen’s seminal work Bolthausen [2009] introduces a Gaussian
conditioning technique used widely to prove AMP concentration. Following this approach, Bayati
and Montanari [2011], Javanmard and Montanari [2013], Berthier et al. [2020] treat signal models
with dense couplings and generalized channel functions. More recently, a proof framework adaptable
to composite inference problems was proposed in Gerbelot and Berthier [2021], which we use in our
proof.

There has also been significant interest in relaxing the strong independence assumptions required by
AMP algorithms on sensing matrix coordinates. In one direction, Vector AMP (VAMP) algorithms
target signal models whose sensing matrices are drawn from right orthogonally invariant distributions.
The development of VAMP algorithms followed a similar trajectory to that of vanilla AMP Schniter
et al. [2016], Fletcher et al. [2018], Rangan et al. [2019], Baker et al. [2020]. The MCC ensemble
considered in this work is not right orthogonally invariant, but we observe strong empirical evidence
that an analogous version of Theorem 4.2 holds for VAMP as well, as described in Appendix C.2. In a
second direction, there has been much interest in spatial coupling sensing matrices, which were used
to achieve the information-theoretically optimal performance in sparse compressive sensing Donoho
et al. [2013], Barbier et al. [2015], Krzakala et al. [2012], with complementary state evolution
guarantees Javanmard and Montanari [2013]. The concept of spatial coupling and proofs of its
performance originated in the literature of error correcting codes Kudekar et al. [2011, 2013], where
it developed from the so-called convolutional codes Felstrom and Zigangirov [1999]. The connection
between spatial coupling and convolution layers of neural networks, that we establish in this paper, is
as far as we know novel.

Another direction of related work is the design of generative neural network architectures, and
correspondingly, the design of signal recovery procedures that can make use of new generative prior
models. Bora et al. [2017], one of the original works on compressive sensing with generative models,
studies signal recovery under a fully connected VAE prior and a convolutional DC-GAN prior. More
advanced convolutional architectures such as PG-GAN Karras et al. [2018] and Style-GAN Karras
et al. [2019] have been studied in followup work as priors for a variety of signal recovery problems
Daras et al. [2021], Gu et al. [2020]. For simplicity and theoretical tractibility, we do not consider
some fine-grained practical modifications used by these architetures, like batch normalization Ioffe
and Szegedy [2015] or strided convolution layers Radford et al. [2015], focusing instead on the
essential elements of simple convolutional networks. Lastly, while our focus is on feedforward
convolutional priors such as GAN/VAE networks, there is growing interest in alternative approaches
to signal recovery under neural network priors, such as normalizing flows Rezende and Mohamed
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Figure 2: MCC matrices operate on Pq dimensional input data, composed of q-dimensional signals for
each of P separate channels. The i-th output channel is a linear combination of convolutional features
extracted from input channels, where k is the convolutional filter size: y(i) =

P
j=1...P Cijx

(j). Each
row of W is a concatenation of P different rows from convolutional matrices, each row hvaing k

nonzero entries, for a total of kP nonzero entries. Blue boxes show which kP input entries contribute
to a single output entry.

[2015], Dinh et al. [2015, 2017], Kingma and Dhariwal [2018], Asim et al. [2020] and score-based
generative models Song and Ermon [2020], Jalal et al. [2021]. These approaches fall outside the
scope of our work and may be interesting directions for future investigation.

3 Definition of the problem

3.1 Multi-channel Convolutional Matrices

We focus our attention on multichannel convolution matrices that have localized convolutional filters.
In this section, we introduce our notation and define the random matrix ensembles which are relevant
to our result. We consider block structured signal vectors x 2 RPq of the form x = [x(i)]Pi=1, and we
refer to the blocks x(i) 2 Rq as ‘channels.’ For any vector of dimension d, we denote by Pd 2 Rd⇥d

the cyclic coordinate permutation matrix of order d, whose coordinates are hei,Pdeji = 1[i = j+1].
For a block-structured vector x 2 RPq , we denote by PP,q 2 RPq⇥Pq the block cyclic permutation
matrix satisfying (PP,qx)(i) = x

(i+1) for 1  i < P , and (PP,qx)(P ) = x
(1). Similarly, we denote

by Si,j 2 RPq⇥Pq the swap permutation matrix which exchanges blocks i, j: [Si,jx](i) = x
(j),

[Si,jx](j) = x
(i), and [Si,jx](k) = x

(k) for k 6= i, j. Last, given a vector ! 2 Rk for k  q, denote
by Zero-Padq,k(!) the vector whose first k coordinates are !, and whose other coordinates are
zero.

Zero-Padq,k(!) = [!1 !2 . . . !k 0 . . . 0] 2 Rq
.

We define the following ensemble for random multi-channel convolution matrices.
Definition 3.1 (Gaussian i.i.d. Convolution). Let q � k be integers. The convolutional en-
semble C(q, k) contains random circulant matrices C 2 Rq⇥q whose first row is given by
C1 = Zero-padq,k[!] where ! 2 Rk has i.i.d. Gaussian coordinates !i ⇠ N (0, 1/k). The
remaining rows Ci are determined by circulant structure, ie. Ci = Pi�1

q Zero-padq,k[!].

Random multi-channel convolutions are block-dense matrices with independent C(q, k) blocks.
Definition 3.2 (Multi-channel Gaussian i.i.d. Convolution). Let D,P � 1 and q � k � 1 be integers.
The random multi-channel convolution ensemble M(D,P, k, q) contains random block matrices
M 2 RDq⇥Pq of the form

M =
1p
P

2

6664

C1,1 C1,2 . . . C1,P

C2,1
. . .

...
...

CD,1 . . . CD,P

3

7775

where each Ci,j ⇠ C(q, k) is sampled independently.

Fig. 2 gives a graphical explanation of the link between these matrices and the convolutional layers.
The parameter P (D) is the number of input (output) channels, q is the dimension of the input and k

the filter size.
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Layer D P q k

1 ! 2 1024 512 42 1
2 ! 3 512 256 82 5
3 ! 4 256 128 162 5
4 ! 5 128 3 642 5

Figure 3: System sizes for convolutional layers in a DC-GAN architecture used to generate LSUN
images [Radford et al., 2015, Figure 1]. These are not directly comparable to MCC matrices, as
DCGAN uses fractionally strided convolutions, which can be thought of as a composition of an MCC
matrix with superresolution. However, they give a reasonable picture of the sizes of typical layers in
convolutional neural networks.

3.2 Thermodynamic-like Limit and Finite-size Regimes

We prove our main result in a thermodynamic-like limit D,P ! 1 while � = D/P is fixed and
q, k = O(1). From a practical perspective, convolutional layers in deep neural networks often use
large channel dimensions (D,P � 1), large signal dimensions (q � 1), and a small filter size
(k = O(1)). As an example, we show in Figure 3 the sizes of convolutional layers used by the
DC-GAN architecture to generate LSUN images [Radford et al., 2015, Figure 1].

Interestingly, our theoretical predictions do not depend explicitly on the relative sizes of q and (D,P ).
We observe empirically that these predictions become accurate at finite sizes of (D,P ) which may
seem small relative to q, and which are realistic from a practical neural network perspective. For
example, in Figure 1, we observe strong empirical agreement with predictions for q = P = 1024 as
� and D = �P vary.

3.3 Multi-layer AMP

In this section, we define a class of probabilistic graphical models (PGMs) that captures the inference
problems of interest, and we state the Multi-layer Approximate Message Passing (ML-AMP) Manoel
et al. [2017] iterations, which can be used for inference on these PGMs. We consider the following
signal model.
Definition 3.3 (Multi-layer Signal Model). Let {W (l)}1lL be matrices of dimension W

(l) 2
Rnl�1⇥nl . Let {'(l)(z; ⇣)}1lL be scalar channel functions for which z is the estimation quantity
and ⇣ represents channel noise. For vectors z, ⇣ 2 Rnl�1 , we write '(l)(z; ⇣) to indicate the
coordinatewise application of '(l). The multi-layer GLM signal model is given by

y = '
(1)(W (1)

'
(2)(W (2)(. . .'(L)(W (L)

x; ⇣(L)) . . .).

We assume x 2 RnL follows a known separable prior, xi ⇠ PX(x) i.i.d., and that the channel noise
⇣
(l) has i.i.d. N (0, (�(l))2) coordinates of known variance (�(l))2 � 0.

The full estimation quantities of the model are the coordinates of the vectors {h(l)}1lL,
{z(l)}1lL, which are related by

yµ = '
(1)(z(1); ⇣(1)) z

(1)
µ =

X

i

W
(1)
µi h

(1)
i , (2)

h
(1)
i = '

(2)(z(2); ⇣(2)) z
(2)
µ =

X

i

W
(2)
µi h

(2)
i ,

...

h
(L�1)
i = '

(L)(z(L); ⇣(L)) z
(L)
µ =

X

i

W
(L)
µi xi

where we take h(L) = x0. The corresponding conditional probabilities, which define the factor nodes
of the underlying PGM, are given by

P
(l)(h | z) =

Z
d⇣ e

� 1
2 ⇣

2

�(h � '(z; ⇣)) ,
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To compute the posterior marginals, ML-AMP iteratively updates the parameters of independent 1D
Gaussian approximations to each marginal. Each coordinate h

(l)
i (t) has corresponding parameters

{A(l)
i (t), B(l)

i (t)} and each z
(l)
µ (t) has corresponding {V (l)

µ (t),!(l)
µ (t)}, where t � 1 indexes the

ML-AMP iterations. The recursive relationship between these parameters is defined in terms of scalar
denoising functions, ĥ(l) and g

(l), which compute posterior averages of the estimation quantities
given their prior parameters.

In general, these denoising functions can be chosen (up to regularity assumptions) to adjust ML-
AMP’s performance in applied settings, such as in Metzler et al. [2015], and in these cases the
denoisers may be nonseparable vector valued functions. However, in the separable, Bayes-optimal
regime where Px(x) and P

(l)(h | z) are known, the optimal denoisers are given by,

ĥ
(l)
i (t+ 1) := @B logZ(l+1)(A(l)

i , B
(l)
i , V

(l+1)
i ,!

(l+1)
i ) (3)

�
(l)
i (t+ 1) := @Bĥ

(l)
i (t+ 1)

g
(l)
µ (t) := @! logZ(l)(A(l�1)

µ , B
(l�1)
µ , V

(l)
µ ,!

(l)
µ )

⌘
(l)
µ (t) := @!g

(l)
µ (t)

Z(l)(A,B, V,!) :=
1p
2⇡V

Z
P

(l)(h | z) exp
✓
Bh � 1

2
Ah

2 � (z � !)2

2V

◆
dh dz

where 2  L  L � 1, t � 2 and the prior parameters on the right hand side are taken at iteration
t � 2. The corresponding ML-AMP iterations are given by,

V
(l)
µ (t) =

X

i

[W (l)
µi ]

2
�
(l)
i (t) !

(l)
µ (t) =

X

i

W
(l)
µi ĥ

(l)
i (t) � V

(l)
µ (t) g(l)µ (t � 1) (4)

A
(l)
i (t) = �

X

µ

[W (l)
µi ]

2
⌘
(l)
µ (t) B

(l)
i (t) =

X

µ

W
(l)
µi g

(l)
µ (t) +A

(l)
i (t)ĥ(l)

i (t).

For the boundary cases t = 1, l = 1, and l = L, the iterations (3), (4) are modified as follows.

1. At t = 1, we initialize B
(l)
i ⇠ P

(l)
B0

and !(l)
µ ⇠ P

(l)
!0 , where P

(l)
B0

, P (l)
!0 are the distributions

of the signal model parameters (2) when xi ⇠ PX . We take (A(l)
i )�1 = Var(B(l)

i ) and
V

(l)
µ = Var(!(l)

µ ).

2. At l = 1, the denoiser g(1)µ (t) = @! logZ(1)(y, V (1)
µ ,!

(1)
µ ), where

Z(1)(y, V (1)
µ ,!

(1)
µ ) =

1p
2⇡V

Z
P

(1)(y | z) exp
 

� (z � !
(1)
µ )2

2V (1)
µ

!
dz.

3. At l = L, the denoiser ĥ(L)(t) = @B logZ(L)(A(L)
i , B

(L)
i ), where

Z(L)(A(L)
i , B

(L)
i ) =

Z
PX(h) exp

✓
B

(L)
µ h � 1

2
A

(L)
µ h

2

◆
dh .

3.3.1 Computational Savings of MCC Matrices

As ML-AMP requires only matrix-vector products, its computational burden can be significantly
reduced when using structured and/or sparse sensing matrices. In our setting, multi-channel con-
volutions M ⇠ MCC(D,P, q, k) have DPk nonzero coordinates, compared to DPq

2 nonzero
coordinates of a Gaussian i.i.d. matrix. Typically, k represents the size of a localized filter applied
to a larger image, with k ⌧ q [Gonzalez and Woods, 2008, Section 3.4], leading to significant
space savings by a factor k/q

2. This same is true in convolutional neural networks, where the
use of localized convolutional filters represents an inductive bias towards localized features that is
considered a key aspect of their practical success Krizhevsky et al. [2012], Zeiler and Fergus [2014].

In addition to space savings, specialized matrix-vector product implementations can reduce the time
complexity of ML-AMP with MCC sensing matrices. Simple routines for sparse matrix-vector
products run in time proportional to the number of nonzero entries, resulting in the same k/q

2

constant factor speed up for MCC matrix-vector products. Alternatively, if k � log q, then a simple
algorithm using a fast Fourier transform for convolution-vector products yields time complexity
O(DPq log q). Such an algorithm is sketched Appendix B.
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4 Main result

We now state our main technical result, starting with the set of required assumptions.

(A1) for any 1 6 l 6 L, the function '(l)(z; ⇣) is continuous and there exists a polynomial b(l) of
finite order such that, for any x 2 R, |'(l)(x; ⇣)| 6 |b(l)(x, ⇣)|.
(A2) for any 1 6 l 6 L, the matrix W(l) is sampled from the ensemble M(Dl

, P
l
, k

l
, q

l) where
P

l
q
l = D

l�1
q
l�1

(A3) the iteration (4) is initialized with a random vector independent of the mixing matrices verifying
1
N kh0k22 < +1 almost surely, and the prior distribution PX is subGaussian
(A4) for any 1 6 l 6 L, Dl, Pl ! 1 with constant ratio �l = Dl/Pl, with finite ql.

Under these assumptions, we may define the following state evolution recursion
Definition 4.1 (State Evolution). Consider the following recursion,

̂
(l)(t) = ��(l)E(l)[@!g(̂

(l�1)
, b, ⌧1 � 

(l)
, h)] (5)


(l�1)(t+ 1) = E(l)[h ĥ(l�1)(̂(l�1)

, b, ⌧1 � 
(l)
, h)], (6)

where ⌧ (l) is the second moment of P (l)
B0

, where the right hand side parameters are taken at time t,
and the expectations E(l) are taken with respect to

P
(l)(w, z, h, b) = P

(l)
out (h | z)N (z;w, ⌧ (l) � 

(l))N (w; 0,(l))N (b; ̂(l�1)
h, ̂

(l�1)).

At t = 1, the state evolution is initialized at (l) = 0 and (̂(l))�1 = ⌧
(l). At the boundaries l = 1, L,

the expectations are modified analogously to the ML-AMP iterations as described by Manoel et al.
[2017]. We then have the following asymptotic characterization of the iterates from the convolutional
ML-AMP algorithm
Theorem 4.2. Under the set of assumptions (A1)-(A4), for any sequences of uniformly pseudo-
Lipschitz functions  N

1 , 
N
2 of order k, for any 1 6 l 6 L and any t 2 N, the following holds

1

Dlql

DlqlX

i=1

 1(!
(l)
i (t), B(l�1)

i (t))
P' E

h
 1

⇣
Z

(l)(t), Ẑ(l�1)(t)
⌘i

(7)

1

Plql

PlqlX

i=1

 2(!
(l+1)
i (t), B(l)

i (t))
P' E

h
 2

⇣
Z

(l+1)(t), Ẑ(l)(t)
⌘i

(8)

where Z
l(t) ⇠ N (0,l(t)), Ẑl(t) ⇠ N (0, ̂l(t)) are independent random variables.

4.1 Proof Sketch

The proof of Theorem 4.2, which is given in Appendix A, has two key steps. First, we construct
permutation matrices U, Ũ such that for W ⇠ MCC(D,P, q, k), the matrix W̃ = UWŨ

T is a block
matrix whose blocks either have i.i.d. Gaussian elements or are zero valued, and has a block-circulant
structure. The effect of the permutation is that entries of W̃ which are correlated due to circulant
structure of W are relocated to different blocks. Once these permutation matrices are defined,
we define a new, matrix-valued AMP iteration involving the dense Gaussian matrices obtained
from the permutations, and whose non-linearities account for the block-circulant structures and the
permutation matrices. The state evolution of this new iteration is proven using the results of Gerbelot
and Berthier [2021]. This provides an explicit example of how the aforementioned results can be used
to obtain rigorous, non Bayes-optimal SE equations on a composite AMP iteration. The separability
assumption is key in showing that the AMP iterates obtained with the convolutional matrices can be
exactly embedded in a larger one. Note that this is a stronger result than proving SE equations for an
algorithm that computes marginals of a random convolutional posterior: we show the SE equations
are the same as in the dense case. We finally invoke the Nishimori conditions, see e.g. Krzakala et al.
[2012], to simplify the generic, non Bayes-optimal SE equations to the Bayes-optimal ones.
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Figure 4: A sketch of the permutation lemma applied to matrix W ⇠ MCC(4, 3, 3, 2). Left: W

before permutation. Right: after permutation, UWŨ
T .

The idea of embedding a non-separable effect such as a block-circulant structure or different variances
in a mixing matrix is the core idea in the proofs of SE equations for spatially coupled systems, notably
as done in Javanmard and Montanari [2013], Donoho et al. [2013]. We note that in the numerical
experiments shown at Figure 1, the parameter q, considered finite in the proof, is actually comparable
to the number of channel, considered to be extensive. Empirically we observe that this does not
hinder the validity of the result, something that was also observed in the spatial coupling literature,
e.g. Krzakala et al. [2012], where large number of different blocks in spatially coupled matrices were
considered, with convincing numerical agreement.
The existence of permutations matrices verifying the property described above is formalized in the
following lemma:
Lemma 4.3 (Permutation Lemma). Let W ⇠ M(D,P, k, q) be a multi-channel convolution matrix.
There exist row and column permutation matrices U 2 RDq⇥Dq, Ũ 2 RPq⇥Pq such that W̃ =
UWŨ

T is a block-convolutional matrix with dense, Gaussian i.i.d. blocks. That is,

W̃ =
1p
k

2

6666664
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(k)

. . .
...

A
(2)

A
(3)

. . . A
(k)

A
(1)

3

7777775

where each A
(s) 2 RD,P , 1  s  k has i.i.d. N (0, 1/P ) coordinates.

Proof. Consider the elements of the matrix M which are non-zero and sampled i.i.d. as opposed to
exact copies of other variables. They are positioned on the first row of each block of size q ⇥ q, and
thus the indexing for their rows and columns can be written as Maq+1,bq+c where a, b, c are integers
such that 0 6 a 6 D � 1, 0 6 b 6 P � 1 and 1 6 c 6 k. The integers a, b describe the position of
the q ⇥ q block the variable is in, and c describes, for each block, the position in the initial random
Gaussian vector of size k that is zero-padded and circulated to generate the block. The goal is to
find the mapping that groups these variables into k dense blocks of extensive size D ⇥ P . To do
so, one can use the following bijection M̃�,↵P+� = Maq+1,bq+c where � = a+ 1, ↵ = c � 1 and
� = b+ 1. By doing this, c becomes the block index and a, b become the position in the dense block.
This mapping can be represented by left and right permutation matrices which also prescribe the
permutation for the rest of the elements of M . Figure 4 shows a sketch of this permutation.

The state evolution recursion given in Definition 4.1 is equivalent to the state evolution for unstructured
matrices proposed by Manoel et al. [2017], which may seem surprising relative to existing literature on
spatial coupling, where spatially coupled sensing matrices are used to achieve improved performance
over unstructured sensing matrices. This equivalence is a consequence of the fact that W̃ has dense
Gaussian blocks which each have the same variance, whereas in the literature, spatially coupled
matrices typically have Gaussian blocks with inhomogeneous variances that can be tuned to improve
recovery performance.
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5 Numerical Experiments

In this section, we compare state evolution predictions from Theorem 4.2 with a numerical imple-
mentation of the ML-AMP algorithm described in Section 3.3. Our first experiment, shown in Figure
1, is a noisy compressive sensing task under a sparsity prior PX(x) = ⇢N (x; 0, 1) + (1 � ⇢)�(x),
where ⇢ is the expected fraction of nonzero components of x0. Measuremements are generated
y0 = Wx0 + ⌘ for noise ⌘ ⇠ N (0, 10�4), where W ⇠ MCC(D,P, q, k). We show recovery
performance at sparsity levels ⇢ 2 {0.25, 0.5, 0.75} as the measurement ratio � = D/P varies,
averaged over 10 independent AMP iterates. Additionally, we show convergence of the (averaged)
AMP iterates for sparsity ⇢ = 0.25 at a range of � near the recovery threshold. We observe strong
agreement between AMP empirical performance and the state evolution prediction. The system sizes
are P = 1024, q = 1024, with D = �P varying.

In Figure 5, we consider two examples of L = 2, 3, 4 layer models following Equation (2). In
both, the output channel l = 1 generates noisy, compressive linear measurements y = z

(1) + ⇣ for
⇣i ⇠ N (0,�2) and for dense couplings W (1)

ij ⇠ N (0, 1/n(1)). Layers 2  l  4 use MCC couplings
W

(l) ⇠ MCC(Dl, Pl, q, k), where qPl = nl and Dl = �Pl = qnl�1. Channel functions {'(l)} vary
across the two experiments. The input prior is PX(x) = N (x; 0, 1) and the problem parameters
are q = 10 channels, filter size k = 3, noise level �2 = 10�4, input dimension n

(L) = 5000, and
layerwise aspect ratios �(L) = 2 and �(l) = 1 for 2  l < L. Finally, the channel aspect ratio �(1)

varies in each experiment.
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Figure 5: ML-AMP compressive sensing recovery under multichannel convolutional designs (crossed)
and the state evolution for the corresponding fully connected model (lined). For comparison, we
also plot the corresponding fully connected AMP iterations (dotted), in which W

(l) 2 RDl⇥Pl with
Wij ⇠ N (0, 1/Pl), with the dimensions of the prior and output channel adjusted appropriately.
Left: For 2  l  L, the channel functions are '(l)(z; ⇣) = z + ⇣ where ⇣i ⇠ N (0,�2). Right:
For 2  l  L, the channel functions are '(l)(z; ⇣) = max(z, 0) where the maximum is applied
coordinatewise. This channel function is the popular ReLU activation function used by generative
convolutional neural networks such as in Radford et al. [2015], Bora et al. [2017].

We compare the state evolution equations to empirical AMP results in two cases. In the left panel, we
show multilayer models with identity channel functions, and in the right panel, we show models with
ReLU channel functions. The latter captures a simple but accurate example of a convolutional GNN.

6 Discussion and Future Work

We have proven state evolution recursions for the ML-AMP algorithm for signal recovery from multi-
layer convolutional networks. We consider networks whose weight matrices are drawn either i.i.d.
Gaussian or from an ensemble of random multi-channel convolution matrices. Interestingly, under a
separable prior and separable channel functions, these two matrix ensembles yield the same state
evolution (up to a rescaling). These predictions closely match empirical observations in compressive
sensing under a sparsity prior (Figure 1) and under multi-layer priors (Figure 5).
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Based on the discussion in Section 4.1, the equivalence property is expected to break down if W̃ is
replaced by a block matrix W̃sp with dense Gaussian blocks organized in the same block-circulant
structure, with inhomogeneous variances. As we discuss in Appendix D, by inverting the permutation
lemma, W̃sp corresponds to a multi-channel convolution Wsp with inhomogeneous convolutional
filters, which can be taken as a simple model for structured convolutions. Inhomogeneous blocks
can also easily be incorporated in the Graph-AMP framework using nonseparable denoisers, so the
key elements of our proof also apply to the inhomogeneous case. This generalized model for MCC
matrices represents an interesting direction for future exploration, whose state evolution is expected
to diverge from that of the dense Gaussian ensemble.
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