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Abstract

By inferring latent groups in the training data, recent works introduce invariant
learning to the case where environment annotations are unavailable. Typically,
learning group invariance under a majority/minority split is empirically shown
to be effective in improving out-of-distribution generalization on many datasets.
However, theoretical guarantee for these methods on learning invariant mechanisms
is lacking. In this paper, we reveal the insufficiency of existing group invariant
learning methods in preventing classifiers from depending on spurious correlations
in the training set. Specifically, we propose two criteria on judging such sufficiency.
Theoretically and empirically, we show that existing methods can violate both
criteria and thus fail in generalizing to spurious correlation shifts. Motivated by
this, we design a new group invariant learning method, which constructs groups
with statistical independence tests, and reweights samples by group label proportion
to meet the criteria. Experiments on both synthetic and real data demonstrate that
the new method significantly outperforms existing group invariant learning methods
in generalizing to spurious correlation shift

1 Introduction

In many real-world applications, machine learning models inevitably encounter data that are rarely
presented in the training environment, i.e. being out-of-distribution (OOD). For example, data
collected under new weather [36], locations [6], or light conditions [9]] in vision tasks. However,
machine learning models often fail in generalizing to OOD data, which blocks their deployment
to critical applications [12; 38]]. The dependence on spurious correlations that are prone to change
across environments has been recognized as a major cause of such failure [4; 125 37]. For example, it
has been shown that models trained on MNLI [39] usually classify sentence pairs with high word
overlap as the label ‘entailment’, regardless of their semantics [25]. On a new dataset where such
relation no longer holds, the performance drops over 25% [25; [7].

A notable line of research on improving the robustness of models to distribution shifts is learning
features with invariant conditioned label distribution across training environments [285 14; [15]], which
has been termed invariant learning (IL). These methods are based on the assumption that the causal
mechanism keeps invariant across environments [28]], while the spurious correlation varies. By
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penalizing the variance of model prediction across environments, models are then encouraged to
capture the causal mechanism instead of spurious correlations.

Recently, invariant learning has been introduced to the scenario where environment labels are
unknown (33} [8]], which we term the group invariant learning (group-IL). These methods utilize
prior knowledge of spurious correlations to split the training data into groups. For example, Teney
et al. [33] cluster training samples with their predefined spurious features. A more generic method,
EIIL [8], splits training data into the majority/minority sets on which the spurious feature conditioned
label distribution varies maximally. Similar to a priori environments, these groups are supposed to
encode variations of spurious information, while holding the causal mechanism.

Though some performance improvements have been gained on several datasets, much uncertainty
still exists on the effectiveness of group-IL methods. In particular, when these methods can effectively
address spurious correlations remain a question. Though some theoretical analysis on the success
and failure cases of IL with known environments has been proposed [2; 315 215 3], they are not
sufficient for group-IL. First, inferred groups may not meet the assumptions on environments in
existing theoretical analysis, thus their conclusions cannot generalize to group-IL. For example,
in each environment, the spurious feature is assumed to have a Gaussian type distribution in [31]].
However, the inferred group may not satisfy that condition, for example each group may only contain
one unique value of spurious feature. Second, as environments are known and defined with causal
structures, exiting analysis on the effect of environment on IL focus mostly on their number [315 13]]
but less on their property or validity. However, the later are important for group-IL. Therefore, we
need specific theoretical analysis under the setting of group-IL.

In this study, we discuss necessary conditions for group-IL to survive spurious correlations. For this
purpose, we first formalize the setting of group-IL and clarify the necessary assumptions required
for group-IL, which underlie our theoretical analysis. We then propose two criteria for group-IL,
namely falsity exposure criterion and label balance criterion. They are respectively for judging
whether spurious correlations are sufficiently exposed through their variation across groups and
whether group invariance can reach spurious-free conditions. Based on that, we discuss the success
and failure cases of existing methods. In some synthetic benchmarks (e.g. colored-MNIST in [4; 8])),
the majority/minority groups meet the two criteria. However, in a case when the spurious feature is
multivariate, the majority/minority split violates both criteria according to our theoretical analysis
and observations on real datasets. As a result, existing group-IL. methods are insufficient for solving
spurious correlations.

To fix these problems, we propose a new group-IL method guided by the two criteria. Specifically,
this method contains the following two steps to meet the two criteria. First, groups are defined by
stratifying the prediction of a reference predictor which encodes spurious correlations. The strata is
constructed with statistical tests, such that the spurious prediction is independent of the label on each
group. Second, the label proportion of each inferred group is balanced by attaching weights to each
instance within the group. Models are then trained with invariant learning objectives on the defined
groups. We term this method Spurious-Correlation-Strata Invariant Learning with Label-balancing,
abbreviated as SCILL. We further show that SCILL is provably sufficient in reaching spurious-free
with ideal reference models.

To demonstrate the effectiveness of our proposed strategy, we conduct experiments on both synthetic
and real data benchmarks on spurious correlations shifts in image classification and natural language
inference (NLI). Specifically, we adopt two different invariant learning objectives, IRM (IRMv1) [4]]
and REx (V-REXx) [13]], to show the consistency of SCILL. To show the availability of SCILL, we also
experiment with PGI [1]] and cMMD [16; [1]], which are feature invariance targets used with EIIL [§]]
in [1]]. The experimental results show that SCILL with all the four invariance objectives consistently
outperforms the existing state-of-the-art method EIIL in generalizing to spurious correlation shifts.
Ablation study further shows the effectiveness of each component in SCILL.

Our main contributions can be summarized as follows.

* We propose two criteria for group-IL and analyze the insufficiency of existing methods.

* Guided by the two criteria, we propose a new practical group-IL method which is provably
sufficient in solving spurious correlations.

» Extensive experiments on both synthetic and real-data benchmarks show that SCILL signifi-
cantly outperforms existing methods on image classification and NLI tasks.



2 Related works

Combating spurious correlations. A typical kind of distribution-shift is caused by the shift of
spurious correlations [38]], which are correlations between meaningless features (e.g. hospital tokens
on a lung scan) and labels (e.g. has pneumonia or not) in the training set. The existence of spurious
correlations in popular benchmarks have been revealed by many works [[135 29} 1255 32]. For example,
predictive models with only incomplete semantic inputs or syntactic statistics can achieve high
accuracy in NLI benchmarks [[13;29]]. Geirhos et al. [[11] point out that deep neural networks are
prone to take easy-to-fit spurious correlations, i.e. shorfcut strategies, in solving problems. As a
result, resolving model’s dependence on spurious correlation is important for their robustness to
distribution shifts.

Invariant learning. Many works on domain generalization focus on capturing invariancies across
training environments [[12]]. Recently a new kind of strategy which has made significant impacts is to
learn features that permit an invariant predictor across environments [28; 14; [15k37]], termed invariant
learning in this paper. Such strategy is grounded upon the theory of causality [27]], where Structural
Equation Models [28]] or causal graphs [37] are used to describe assumptions on the data generation
process. The feature-conditioned label distribution invariance is then induced by the invariance of
causal mechanisms in different environments. Recent theoretical works on IL study their failure cases
in the domain generalization task where environments are known a priori [2; 315215 3]. In this study,
we focus on the setting of group-IL.

Group invariant learning. In recent works, invariant learning is extended to the scenario without a
priori environment labels, but with knowledge on spurious correlations in the training data [33[8]].
Such knowledge is proven to be necessary in this setting [17]. They are utilized to split the training
data into groups, which are supposed to encode variations of spurious information so that they can
be avoided by learning the invariance. For example, Teney et al. [33]] cluster samples according to
their question types. Liu et al. [19] construct groups with varying spurious correlations, based on
the spurious features uncovered with feature selection. A more generic method proposed in EIIL [8]]
assume the access to a reference predictor which encodes spurious correlations, and exploit the
outputs of the reference predictor to split training data into two groups, namely the majority and the
minority. This strategy is shown effective, sometimes even outperform an oracle method using true
environment labels in proving the OOD generalization [8] and also systematic generalization [1]].
These empirical observations show the potential of group-IL methods, while also reveal the difference
between the inferred groups and prior environments. As will be discussed in Section 3] group-IL
methods need different assumptions on the causal structure from those for IL. Thus existing theoretical
conclusions for IL can not generalize to group-IL. Therefore, we need specific theoretical analysis
under the setting of group-IL. In a recent work, Lin et al. [17] derived the sufficient and necessary
assumptions for their proposed algorithm. However, in this paper we focus on group criteria for
general group-IL methods.

3 Formalization of group invariant learning

In this section, we introduce the problem setting and formalization of the scheme of group-IL.

Consider the task of learning a classifier f : X — ), which maps a value x € X of the input variable
X to avalue y € ) of the target variable Y. For example, map an image of horse on grass to the
label ‘horse’. We denote x;,,, as the essential features of an instance x of the input variable X which
define its class label (e.g. the shape of the horse), while ), as features of & should not inform the
label of z (e.g. the grass background). X, X, denote the corresponding random variables. The
target is then to learn a spurious-free predictor whose predictions only depend on the feature .,
thus is supposed to have invariant performance on any dataset.

We first introduce the setting of IL. IL methods suppose that the training data D are collected under
multiple environments &, i.e. D = {D,}ece. De = {xf,y$};_, contains data i.i.d. sampled from
the probability distribution P°(X x V). P°(Y'| X,y ) is invariant among different e, while P°(Y'| X,)
varies. Such an idea is based on the invariance of causal mechanisms across environments [28; 4], with
assumptions on the causal structure of the data generating process. Figure[I|demonstrates four kinds of
different assumptions in existing works on invariant learning. In these causal structures, environment



(a) anti-causal [4]] (b) anti-causal [31] (¢) confounded [25 23] (d) hybrid [37; 21]]

Figure 1: The causal graph depicting different assumptions on the data generating process in existing
IL works (some are simplified). Shading indicates the variable is observed. Dotted arrow indicates
possible causal relation. The spurious feature is anti-causal in (a) and (b), confounded with the
invariant feature in (c), and both anti-causal and confounded in (d).

is treated as a random variable E take values in £y, which satisfies £ C Eqyy. P¢(+) := P(:|E = e).
Xino and X, are latent feature variables generating the observation X, i.e. X = r(Xiny, Xsp).
Here r is generally assumed as a bijective function so that the latent features can be recovered from
the observations [31;2;[37]]. Align with the formalization in the former paragraph where X, X;,,
are assumed recognizable from X, in this paper we adopt the same assumption. In all the four kinds
of causal graphs, P¢(Y|X;n,) := P(Y| X0, E = €) keeps invariant under different e € &, while
Pe(Y|Xsp), P(Xsp), P(Xiny), and P¢(X,,,,|Y") can vary across different e € £,;.

Suppose the predictor f can be decomposed into f = co @, where & : X — H denotes a feature
encoder which maps the input into a representation space H, ¢ : H — ) is a classifier. The target of
invariant learning is then to search for a & which satisfies the following constraint:

P(Y|®(X),E =¢) =P(Y|®(X),E =¢'),Ve,e’ €E. (EIC)

It is termed as Environment Invariance Constraint (EIC). Note that the EIC stated in [8]] is a weaker
form of this EIC. The constraint is incorporated into the training target via a penalty term. In a generic
form, the learning target of invariant learning methods can be written as follows:

mfinZ/\eRe(f) + A - penalty({Se(f)}eee) (1

ecé

where R°(f) stands for the expected loss of f on the environment e, weighted by a scalar A.. Se(f)
stands for some statistics of f on e, and the penalty is on the variation of S.(f) to measure the
deviation degree of EIC. In IRM [4], the penalty is the summation of S.(f) = ||V.,R¢(w o f)]||?,
where w is a constant scalar multiplier of 1.0 for each output dimension. In V-REx [13]], S.(f) =
Re(f), and the penalty is the variance of S.(f) on different environments. In CLOVE [37], the
penalty is defined as the summation of calibration errors of the model on each environment.

Group invariant learning methods release the dependency of invariant learning on predefined environ-
ments by splitting the training data into groups. Suppose D is sampled from the distribution P(X x )).
Intuitively, those groups are expected to hold the invariant mechanism P(Y| X;,,, ), while informing
the variation of X,,. As aresult, it is meaningless to divide groups according to Xy, In group-IL
methods [33;[19;[8]], group inference algorithms are designed to utilize knowledge on X, or the cor-
relation between X, and Y. Formally, denote the inferred groups as G := {g1, g2, . . ., gm }. Define
G : X x Y — T as the function which maps a sample to its group identity, i.e. G(z,y) = i if and
only if (x,y) € g;. G is then the set of events {G = i},i € Z. We have G is 0(X,p, Y)-measurable,
i.e. itis a function of X, as in [33|19], or both X, and Y [&].

In the following sections, we ground our analysis on group-IL with the causal structures in Figure[T](a)
and (b), while without additional assumptions on the causal models. Our choice of causal structures is
based on the following two observations. First, in the causal graph (d), X, is a backdoor variable [27]]
between X, and Y and confounded with X, by an unobserved variable. As a result, whether the
invariant mechanism holds on each group is indeterminate without additional assumptions on the
mechanisms between X, and X;,,. Second, as shown by Ahuja et al. [2], invariance itself can not
deal with spurious feature for causal structure (c). Additional knowledge or penalty, e.g. information
bottleneck, is needed together with group-IL. Therefore, we investigate group-IL under the causal
structures depicted by graphs (a) and (b).



4 'Two group criteria

With the above formulation, we are ready to theoretically analyze the ability of existing group-IL
methods in learning spurious-free predictors. For this purpose, in this section we derive two necessary
conditions for group-IL in surviving spurious correlations, i.e. falsity exposure, and label balance.
Both conditions can be used as criteria to judge the sufficiency of group-IL methods. We then show
that existing methods can violate the two criteria, thus become insufficient for learning a spurious-free
predictor.

4.1 Falsity exposure criterion

As groups are supposed to expose variance of spurious features so that they can be avoided by
invariant learning, a natural idea is to take into account the sufficiency of such exposure on inferred
groups. Ideally, if groups are split according to X, any variance of P(Y'| X, ) is then fully exposed.
However, such split is only practical when the value of X, is accessible and sparse. On the contrary,
we consider the condition when groups provide insufficient exposure. Intuitively, if some spurious
correlation keeps invariant across groups, its variation is then not exposed, thus group invariant
predictor may still depend on such correlation. Formally, this can be written as the following
criterion.

Criterion 4.1 (Falsity Exposure). For any o(X,)-measurable function h that satisfies Vg, ¢’ € G,
P(Y|h(Xsp), 9) = P(Y|h(Xsp), ¢'), it must satisfies P(Y'|h(X,,)) = P(Y).

Intuitively, if the falsity exposure criterion is not satisfied, h(X,) will be an invariant feature across
environments, with predictive ability on Y. The predictor depending on both X;,,, and h(X,,) can
satisfy EIC but fails to be free of spurious features. The following theorem formalizes the significance
of the falsity exposure criterion.

Theorem 4.2. Suppose the falsity exposure criterion is violated, i.e. 3h which satisfies
P(Y|h(Xsp),9) = PY|h(Xsp),¢') #P(Y),Vg,9' € G. Then the optimal solution of group-IL
is f(X)=PY|Xinv, M(Xsp)], which fails to generalize when P(Y | X,) shifts.

4.2 Label balance criterion

Even if we have sufficient falsity exposure, would the constraint in group-IL, i.e. EIC, guarantee
the model to be free of spurious correlations? We study this problem by analyzing the relation
between EIC and the constraint for a predictor to be spurious-free. In our assumed causal structures,
Xinv L Xp|Y. Thus, a spurious-free predictor, which only depends on X, satisfies f(X) L
Xsp|Y. In fact, it can be proved that this is a sufficient condition for a predictor f(X) to be invariant
to the intervention [27] on X, (See the appendix). As a result, we term f(X) L X,,|Y as the
spurious-free constraint, i.e.

P(f(X)|Xsp =0Y) =P(f(X)|Xsp =b,Y), Vb, € B, (SFC)

where B is the image set of X,,. The following is a necessary condition for EIC to induce the above
constraint, which we term as the label balance criterion. It states that the label proportion in different
groups should be the same.

Criterion 4.3 (Label Balance). Forany g,¢' € G and y,y’ € ) with non-zero P(Y = y|g),P(Y =
¥'19),P(Y = y|g') and P(Y = ¢/|g’), the following equation holds.
P(Y = ylg)/P(Y =y'|lg) =P(Y =ylg)/P(Y =y'|g) (2)

Formally, the following theorem shows the significance of this criterion on the effectiveness of
group-IL.

Theorem 4.4. With a set of groups G inferred by (Xp,Y), i.e. G C 0(Xsp,Y), if the label balance
criterion is violated, functions satisfying EIC can not satisfy SFC.

4.3 Analysis of existing group invariant learning methods

Now we analyze whether the groups in existing group-IL methods meet the two criteria. Directly,
randomly grouped clusters of X, as in [33]] do not guarantee to meet either criteria, and clusters of



P(Y|Xsp) [19] do not meet the label balance criterion. In the following discussions, we focus on the
majority/minority groups inferred by the EI algorithm in EIIL [8]. We find that in some synthetic
datasets where the spurious feature only has two distinct values, the majority/minority groups satisfy
the two criteria. However, observation on real datasets and theoretical results on the case when the
spurious feature is multivariate show that they can violate both criteria.

On some synthetic datasets constructed in existing works [1} 8], the majority/minority groups satisfy
these two criteria. For example, on both colored-MNIST [4] and coloured-MNIST [1]], Y has a
uniform distribution, and the spurious correlation has the same ratio for any spurious features, e.g.
P(Y = O|color = green) = P(Y = 1|color = red) on colored-MNIST. It can be proved that in this
case, the majority/minority groups satisfy both criteria (See the appendix).

However, it no longer holds in general cases. Empirically, we observe that on MNLI, the label
distributions of the two groups inferred by EI are significantly different. Specifically, the ratio of
the counts of label 0 and label 1 in the two groups are 2.87 and 0.17 respectively. The following
proposition theoretically provides a case where the majority/minority split satisfies the label balance
but breaks the falsity exposure, and invariant learning objectives fail to find the spurious-free classifier.

Proposition 4.5. Suppose we have (X,Y) ~P(X,Y). Y takes value in {0,1}. X is formed with
spurious feature variable X5, = (By, B1), and invariant feature variable S, i.e. X = r(By, B, S),
for some bijective function r. By and By are both binary variables, which take values in {b3, by} and
{69, b1} respectively. By, By and S are conditionally independent given'Y . Suppose P(Y = j|B; =
b!) = p;, Vi,j € {0,1}, and po > p1. Then we have 1) the majority/minority groups €mar, €min
violate the falsity exposure criterion. 2) the optimal classifier under invariant learning objectives
depends on B.

In this case, we suppose the spurious feature can be decomposed into two variables that are condi-
tionally independent with each other given the label. Such case can realize when the dataset contains
multiple kinds of spurious features. For example, in the image classification task, the background
pattern and the color of an object can be independent but both correlate with the label spuriously.

5 SCILL: a new method

According to the above discussion in Section ] existing group-IL methods may fail to meet the
two criteria, leading to insufficient training loss for solving spurious correlations. Faced with this
challenge, we propose a new group-IL method, to satisfy the two criteria. For the generality, we
only assume the access to a reference model, as in EIIL, instead of spurious features. Our new
method includes two steps. In the group inference step, we define groups as spurious correlation strata
constructed with the reference model, for the falsity exposure criterion. While in the training objective
step, we reweight each sample with group label proportion to meet the label balance criterion. To
highlight the two parts, our method is named as Spurious-Correlation-strata Invariant Learning with
Label-balance, abbreviated as SCILL. Theoretically, we prove that this method is provably sufficient
with ideal reference models, i.e. its optimal solution is spurious-free.

5.1 Group inference with statistical split

We first introduce the group inference step in SCILL. As in EIIL, we assume a reference classifier f,
is available, which is expected to predict only depending on X,,. f, can be a model trained with
empirical risk minimization (ERM) [8]] or a model designed to capture spurious correlations [20].

We propose to construct groups G by stratify the outputs of f,., with the target that Y L f,.(X)lg,
Vg € G. The motivation for introducing spurious correlation strata comes from the deduction of
the falsity exposure criterion, i.e. when groups meet the requirements that X, L Y|g, the falsity
exposure criterion is satisfied. That is because with the above condition, we have for any function
By h(Xep) L Ylg, as a result B(Y [h(X.,), ) = P(V]g). If B(Y|h(Xyp),g) = P(Y[h(Xsp): 9):
Vg,9' € G, we have P(Y|g) = P(Y|¢') = P(Y). Thus P(Y|h(Xsp),g) = P(Y). As aresult, the
falsity exposure criterion is satisfied. As different output values of the reference model f,. inform
the difference in P(Y'|X,), Y L f,.(X)|g approximates P(Y|X,) L Y|g, which is equivalent to
Xop L Y]g.



We propose to construct such groups through the statistical-split algorithm, inspired by the algorithm
proposed in [14] for propensity score estimation. Specifically, we split current groups into subgroups
according to the hypothesis-test statistics. For example, for the binary classification case, a sample
set B is first divided into two subsets Lg, L1 according to the labels of samples. Then the two-sample
t-statistics t g of log[f,-(z)o/ f-(x)1] are computed on the two sets. If ¢ 5 exceeds a fixed threshold
thr, B is then split into two subsets according to the median of f,.(x)o on B. In this way, we enhance
fr(X) LY in each group. Note that thr is a hyperparameter of this algorithm. Empirical robustness
analysis on thr is conducted in our experiments. More details about the algorithm and the robustness
study are provided in the appendix.

5.2 Training with reweighted loss

Now we introduce the second step. To guarantee the label balance criterion, we reweight each sample
with group label proportion in the training loss. Correspondingly, the objective of invariant learning
becomes the following form:

L(f) = RI(f)+ A penalty({Sy(f)}qeq) 3)

g€y

where RI(f) = E[w9(Y)LI(f(X),Y)],w9(y) :==P(Y = y)/P(Y = ylg) for nonzero P(Y = ylg).
The weight function is defined to balance the label distribution between groups, i.e. P(Y|g) =
P(Ylg'), Vg, ¢, for achieving the label balance criterion.

With the above two steps, SCILL is then able to meet the two group criteria. Now we further
investigate the theoretical capability of SCILL in solving spurious correlations. The following
theorem shows that with a purely spurious reference model, SCILL can find spurious-free predictors.

Theorem 5.1. If G satisfies f(X) L Y|g, Vg € G, where f* : X — Y is spurious-only, i.e.
0 (Xsp)-measurable, and minimizes the prediction loss Ly, = E[Y_, P(Y = y|X)log f.(X),], the
optimal model minimizing the objective (B)) satisfies SFC.

6 Experiments

In this section, we first conduct experiments to show that SCILL outperforms existing group-IL
methods in generalizing to spurious correlation shifts. Then we empirically analyze whether the
experimental improvements are consistent with the theoretical findings.

6.1 Experimental settings

Now we describe our experimental settings, including datasets, models, and some training details.
More details are provided in the appendix.

Datasets We conduct experiments on both synthetic and real-world datasets. The synthetic dataset,
Patched-Colored MNIST (PC-MNIST), is constructed as a realization of the conditions in the Propo-
sition [4.5]to verify the proposed criteria. It is derived from MNIST, by assigning two conditionally
independent spurious features given label, namely the color and patch bias to each image. The design
of the patch bias is inspired by [5]. MNLI-HANS is a benchmark widely used in many previous
works on combating spurious correlations, such as [[7;134]. In our experiments, we follow the practice
to utilize MNLI [39] as the training data and HANS [25] as the test data.

Baselines and configurations In our experiments, we compare SCILL with two baselines, i.e. ERM
and EIIL [8]]. ERM represents the method with the traditional empirical risk minimization (ERM)
approach. EIIL is a state-of-the-art group-IL method, where groups are inferred by searching an
assignment to make the reference model maximally violates the invariant learning principle. We
experiment with four different invariance penalties: IRM [4], REx (V-REx) [15], cMMD [16; 1] and
PGI [1]. Note that cMMD and PGI target to learn group invariant predictions conditioning on the
label, different from EIC. See Appendix for more details of the four penalties.

The training configurations are presented as follows. For PC-MNIST, we adopt the classifier proposed
in [4] for Colored MNIST, which is a MLP with two hidden layers of 390 neurons. The reference



Table 1: Classification accuracy on PC-MNIST under three model selection strategies ID, Oracle,
TEV. Val columns contain the accuracy values computed on the in-distribution validation set, and
Test columns contain those on the test set. As the label noise rate is set to 0.25 on PC-MNIST, the
optimum predictor depending on invariant features achieves an accuracy around 75% on both sets.

ID Oracle TEV
Method | Penalty Val Test Val Test Val Test
ERM | - |9022+056 50.64+056 | 89.95+045 54.53 £0.60 | - -
IRM 90.21 +0.48 50.63 045 | 78.01 £045 63.63 £0.71 | 69.81 £027 50.99 +0.58
EIIL REx 90.24 +045 51.21 064 | 79.10 £043 64.04 £0.80 | 70.05 £023 51.01 +0.68
cMMD | 90.24 +£043 5136 +0.61 | 77.27 £028 65.09 £0.63 | 70.15 £025 52.70 £1.40
PGI 90.19 + 046 51.07 054 | 80.03 £ 141 64.27 £026 | 70.37 £0.14 50.64 +0.38
IRM 79.65 +£0.76  62.49 £0.55 | 71.54 £035 67.46 £0.19 | 71.54 £035 67.46 £0.19
SCILL REx 80.23 £0.83 62.13 +099 | 72.59 + 144 67.60 +£0.24 | 70.77 £050 67.33 +0.30
cMMD | 83.13 £093 59.76 £0.92 | 73.12 £047 6749 +052 | 72.38 £ 051 67.81 £0.34
PGI 80.67 £1.75 62.52 4032 | 71.73 +143 67.26 £0.14 | 71.35 £024 67.36 +0.33
SCILLuw | IRM | 90.27 £039 50.95+£047 | 90.07 £034 53.51£138 | 90.28 £039 50.85 £ 047
maj./min. 90.18 £026 50.67 +£0.15 | 80.10 £021 63.85 £058 | 90.18 £ 026 50.67 £0.15
SCILLgt IRM 82.554+028 61.12+1.17 | 7446 025 70.19 £039 | 72.30 £ 040 70.91 £ 0.06
SCILLub 84.37 £053 58.78 £041 | 79.27 £295 59.44 £ 044 | 66.07 £0.73 56.20 £ 0.57
opt \ - \ 75 75 \ 75 75 \ 75 75
Table 2: Classification accuracy on HANS.
ID Oracle TEV
Method | Penalty Val Test Val Test Val Test
ERM | - | 84.12£015 64.88 £300 | 84.12 015 64.88 +£3.00 | - -
IRM 84.01 £0.08 65.35 +093 | 83.82 +0.17 66.42 +£0.98 | 84.01 £0.08 65.35 £0.93
EIIL REx 84.10 £0.13  65.16 £0.19 | 83.91 £020 66.87 +2.92 | 84.00 £048 66.43 +1.00
cMMD | 83.56 £003 63.22 £1.76 | 83.22 £0.13 64.25 +1.63 | 83.38 £020 62.72 £2.03
PGI 84.17 £0.08 65.57 £225 | 83.78 £0.03 66.02 +£0.93 | 83.94 £0.64 6557 £225
IRM 8275 £0.17 69.11 £1.76 | 82.56 033 68.72 +1.24 | 82.67 £0.14 69.82 +1.29
SCILL REx 82.68 £028 69.73 £1.63 | 82.59 +022 71.20 +1.81 | 82.56 £033 69.75 £1.53
cMMD | 82.74 £026 69.15+139 | 82.39 +045 70.77 +1.40 | 82.61 +£0.04 70.92 +0.79
PGI 8279 £030 68.57 £054 | 81.69 £028 70.99 +048 | 82.79 £030 68.57 £0.54
EIILib IRM 83.39 £ 006 6390 +1.16 | 83.39 £ 006 63.90 +1.16 | 83.16 +022 61.33 +£0.33
SCILLuw IRM 84.15 £0.11 6430 +067 | 83.77 £0.15 6593 +0.12 | 83.84 £0.02 65.63 £1.46

model is a MLP with the same structure trained with ERM on the training set, following the setting
in EIIL on Colored MNIST. While for MNLI, we use a BERT-based classifier with the standard
setup for sentence pair classification [10]. The reference model is the same as the biased classifier
propose in [34], which is trained on top of some hand-crafted syntactic features. For each task, all
implementations of SCILL and EIIL adopt the same model configurations and pretrained reference
models. Since models are tested with OOD data, it is important to specify the model selection strategy,
as has been revealed by Gulrajani and Lopez-Paz [12] for the case of domain generalization. In our
experiments, we report results with 3 different model selection strategies, including ID, Oracle, and
TEV. ID refers to the strategy based on model performance on the in-distribution validation set as
used in [34]. Oracle refers to the selection based on data from the test data distribution, as used
in [8;112]. While TEV is a new strategy adapted from the training-domain validation method in [12]
to the inferred groups, which alleviates the dependence on the test data as ID. Details can be found in
the appendix.



Table 3: Robustness study on PC-MNIST. It shows the performance of SCILL-IRM with threshold
5,10, 15, 20 on t-statistics in the statistical split algorithm. Top 2 values are in bold. Results in Table
1 are all under threshold 10.

ID Oracle TEV
Method #G Val Test Val Test Val Test
ERM | - 9022 +056 50.64+056 | 89.95+045 54.53 £0.60 | - -
SCILL-thr-20 | 6 | 83.15+047 60.14 +1.12 | 73.37 £065 67.95 +£0.66 | 72.59 +£033 67.79 +0.57
SCILL-thr-15 | 7 | 82.84 +061 59.79 +1.00 | 73.07 £0.69 68.17 +£0.56 | 72.31 £ 032 67.87 +0.37
SCILL-thr-10 | 9 | 79.65 +£0.76 62.49 +055 | 71.54 £035 67.46 +£0.19 | 71.54 £ 035 67.46 +0.19
SCILL-thr-5 15 | 76.91 £ 060 5550 +1.78 | 66.29 +£13.1 58.81 +235 | 60.29 £997 61.89 £3.96

6.2 Experimental results

Now we demonstrate our experimental results, including performance comparison and detailed
analysis. More empirical results including the robustness analysis on the hyperparameter in SCILL
can be found in the appendix.

6.2.1 Performance comparison

Table[T]and 2] show the experimental results on PC-MNIST and MNLI-HANS, respectively. The main
observation is that all implementations of SCILL consistently outperform the counterpart of EIIL
across all model selection strategies, in terms of the performance on OOD data. Comparing different
model selection strategies, Oracle performs the best for both EIIL and SCILL. However, SCILL with
the TEV strategy has the ability to outperform EIIL with Oracle, demonstrating the superiority of
our new objective. Additionally, SCILL also gains improvements against some debiasing methods
utilizing the same reference model (See the appendix).

6.2.2 Ablation study and verification of the two criteria

Our main theoretical results in Section[d] i.e. Theorem[d.2]and [.4] reveal that the two group criteria
are necessary conditions for group-IL to survive spurious correlations. Now we discuss the empirical
verification of the significance of the two criteria.

Falsity exposure criterion. To show the significance of the falsity exposure criterion, we compare
the performance of methods under the case when the label balance criterion is satisfied. On PC-
MNIST, both SCILL and EIIL groups satisfy the label balance criteriorﬂ while EIIL groups provably
violate the falsity exposure, according to Proposition[4.5] The significant improvement of SCILL
over EIIL on Table [I] then shows the importance of the falsity exposure criterion. To exclude the
effect of the noise in the reference model in the group inference, we further implement SCILL with
the ground-truth spurious predictor, obtaining SCILLg: in Table[I] The groups then satisfy the falsity
exposure criterion. We construct the ground truth majority/minority split and experiment with IL
methods, obtaining results in the row maj./min. in Table[I} The significant performance drop of
maj./min. compared with SCILLg: verifies the importance of falsity exposure for group-IL. On MNLI,
the label in EIIL groups is unbalanced (See the appendix). Therefore we attach the instance reweight
step as in SCILL to EIIL, obtaining EIILib which satisfies the label balance criterion. As shown in
Table[2] EIILb fails to achieve improved performance, which verifies the necessity of falsity exposure.

Label balance criterion. To verify the necessity of the label balance criterion, we investigate
the cases when the falsity exposure is satisfied. As the SCILLgt on PC-MNIST satisfies the falsity
exposure, we construct such cases by disturbing the label balancing weights in SCILL. We multiply
the estimated label proportion of class 0 by 0.5 to get the unbalanced SCILLub. As shown in Table|[T}
under Oracle selection, the test accuracy of SCILLub drops approximately 15% compared with
SCILLgt, thus verifying the impact of label balance. More results can be found in the appendix.

3The ratio of label 0 and label 1 on group 0 and group 1 in EIIL is 1:1.03 and 1:1.04, respectively.



We further show the importance of the instance reweight step in SCILL, which is designed following
the label balance criterion. For this, we remove the instance reweight step in SCILL, obtaining
SCILLuw. The experimental results in Table[I]and 2] show that SCILLuw performs worse than SCILL,
demonstrating the importance of the instance reweight step in SCILL.

6.2.3 Robusteness analysis

As shown in Section the statistical-split algorithm contains a hyper-parameter thr. So We study
the robustness of SCILL w.r.t. thr by experiments on PC-MNIST with thr set as 5,10, 15, 20 in
SCILL-IRM. From the results shown in Table the models are robust with different thr = 10, 15, 20,
though the model with thr = 5 is worse than others. More results can be found in the Appendix.

7 Discussions

The main limitation of the paper is our assumptions on the causal structure. In fact, our conclusions
can be generalized to more complex structures, e.g. those in [35] (See the appendix). The most
central assumption is the conditional independence between X;,,,, and X, given Y, which is adopted
in many existing works on solving spurious correlations [35; [7; 40; 30]. It would be an important
direction to find causal structures on which the assumption is not satisfied while group invariant
learning can still be effective.

In this paper, the algorithm SCIIL is proposed as a possible but not necessarily optimal solution
to meet the two criteria for group-IL. As this paper focuses on analyzing group invariant learning,
comparing SCILL with other algorithms besides group-IL is beyond the scope of this paper. It is
noteworthy that the objective function of SCIIL exhibits similarities to those utilized in two recent
methods. [24; 30]. Both methods incorporate a risk term reweighted by estimations of spurious
correlations and a feature invariance penalty. However, these methods are limited to scenarios when
spurious features can be explicitly defined [30]], and are also discrete as assumed in [24]. Additionally,
their feature invariance penalty differs from those employed in IL. Compared to some other methods
that utilize a reference model [[7; 225 34} [26; (18, [40], the first term of the SCIIL algorithm is in
similar form as it also involves reweighting samples based on the outputs of the reference model.
However, the IL penalty in SCIIL serves as an additional regularization term. An extended discussion
is provided in the appendix.

Besides the setting of group invariant learning, the two criteria may also bring benefits to the study of
domain generalization. Furthermore, our empirical results show SCILL can achieve good performance
with other kinds of invariances besides that in invariant learning, e.g. the invariance of the distribution
of model outputs conditioned on the label. Discussing the effect of the two group criteria on other
kinds of group invariance is a potential research direction.

8 Conclusion

This paper is concerned with when group invariant learning (group-IL) can survive spurious correla-
tions. We first formulate the setting of group-IL and necessary assumptions. Then we theoretically
analyze the necessary conditions for group-IL in learning spurious-free predictors, and obtain two
group criteria, i.e. falsity exposure and label balance. Considering the limitations of previous group-IL
methods, we propose a new method SCILL to satisfy the two criteria. Furthermore, we theoretically
prove that SCILL has the ability to learn a spurious-free predictor. Finally, we conduct extensive
experiments on both synthetic and real data to evaluate the proposed new method. Experimental
results show that SCILL significantly outperforms existing SOTA group-IL methods, owing to its
ability to satisfy the two criteria. The empirical studies validate our theoretical findings.

9 Acknowledgement

This work was supported by National Key R&D Program of China No. 2021YFF1201600,
Vanke Special Fund for Public Health and Health Discipline Development, Tsinghua University
(N0O.20221080053), and Beijing Academy of Artificial Intelligence (BAAI). The authors would like
to thank Keyue Qiu and Yuan Li for providing useful feedback on the draft.

10



References

[1] Faruk Ahmed, Yoshua Bengio, Harm van Seijen, and Aaron Courville. Systematic generalisation
with group invariant predictions. In International Conference on Learning Representations,

2021.

[2] Kartik Ahuja, Ethan Caballero, Dinghuai Zhang, Jean-Christophe Gagnon-Audet, Yoshua
Bengio, loannis Mitliagkas, and Irina Rish. Invariance principle meets information bottleneck
for out-of-distribution generalization. Advances in Neural Information Processing Systems, 34:
3438-3450, 2021.

[3] Kartik Ahuja, Jun Wang, Amit Dhurandhar, Karthikeyan Shanmugam, and Kush R Varshney.
Empirical or invariant risk minimization? a sample complexity perspective. In International
Conference on Learning Representations, 2021.

[4] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk mini-
mization. arXiv preprint arXiv:1907.02893, 2019.

[5] Jun-Hyun Bae, Inchul Choi, and Minho Lee. BLOOD: Bi-level learning framework
for out-of-distribution generalization, 2022. URL https://openreview.net/forum?id=
CmO8egNmr13.

[6] Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in terra incognita. In Proceedings
of the European conference on computer vision (ECCV), pages 456-473, 2018.

[7] Christopher Clark, Mark Yatskar, and Luke Zettlemoyer. Don’t take the easy way out: Ensemble
based methods for avoiding known dataset biases. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-1IJCNLP), pages 4060-4073, 2019.

[8] Elliot Creager, Jorn-Henrik Jacobsen, and Richard Zemel. Environment inference for invariant
learning. In International Conference on Machine Learning, 2021.

[9] Dengxin Dai and Luc Van Gool. Dark model adaptation: Semantic image segmentation from
daytime to nighttime. In 2018 21st International Conference on Intelligent Transportation
Systems (ITSC), pages 3819-3824. IEEE, 2018.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pages 4171-4186, 2019.

[11] Robert Geirhos, Jorn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel,
Matthias Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. Nature
Machine Intelligence, 2(11):665-673, 2020.

[12] Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. In International
Conference on Learning Representations, 2021.

[13] Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel Bowman, and
Noah A Smith. Annotation artifacts in natural language inference data. In Proceedings of
the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 107-112, 2018.

[14] Guido W Imbens and Donald B Rubin. Causal inference in statistics, social, and biomedical
sciences. Cambridge University Press, 2015.

[15] David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai
Zhang, Remi Le Priol, and Aaron Courville. Out-of-distribution generalization via risk extrap-
olation (rex). In International Conference on Machine Learning, pages 5815-5826. PMLR,
2021.

[16] YaLi, Xinmei Tian, Mingming Gong, Yajing Liu, Tongliang Liu, Kun Zhang, and Dacheng Tao.
Deep domain generalization via conditional invariant adversarial networks. In Proceedings of
the European Conference on Computer Vision (ECCV), pages 624-639, 2018.

11


https://openreview.net/forum?id=Cm08egNmrl3
https://openreview.net/forum?id=Cm08egNmrl3

[17] Yong Lin, Shengyu Zhu, and Peng Cui. Zin: When and how to learn invariance by environment
inference? arXiv preprint arXiv:2203.05818, 2022.

[18] EvanZ Liu, Behzad Haghgoo, Annie S Chen, Aditi Raghunathan, Pang Wei Koh, Shiori Sagawa,
Percy Liang, and Chelsea Finn. Just train twice: Improving group robustness without training
group information. In International Conference on Machine Learning, pages 6781-6792.
PMLR, 2021.

[19] Jiashuo Liu, Zheyuan Hu, Peng Cui, Bo Li, and Zheyan Shen. Heterogeneous risk minimization.
In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pages
6804-6814. PMLR, 18-24 Jul 2021.

[20] Tianyu Liu, Zheng Xin, Baobao Chang, and Zhifang Sui. Hyponli: Exploring the artificial
patterns of hypothesis-only bias in natural language inference. In Proceedings of The 12th
Language Resources and Evaluation Conference, pages 6852—-6860, 2020.

[21] Chaochao Lu, Yuhuai Wu, José Miguel Herndndez-Lobato, and Bernhard Scholkopf. Invariant
causal representation learning for out-of-distribution generalization. In International Conference
on Learning Representations, 2022.

[22] Rabeeh Karimi Mahabadi, Yonatan Belinkov, and James Henderson. End-to-end bias mitigation
by modelling biases in corpora. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 8706-8716, 2020.

[23] Divyat Mahajan, Shruti Tople, and Amit Sharma. Domain generalization using causal matching.
In International Conference on Machine Learning, pages 7313-7324. PMLR, 2021.

[24] Maggie Makar, Ben Packer, Dan Moldovan, Davis Blalock, Yoni Halpern, and Alexander
D’ Amour. Causally motivated shortcut removal using auxiliary labels. In International Confer-
ence on Artificial Intelligence and Statistics, pages 739-766. PMLR, 2022.

[25] Tom McCoy, Ellie Pavlick, and Tal Linzen. Right for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages 3428-3448, 2019.

[26] Junhyun Nam, Hyuntak Cha, Sung-Soo Ahn, Jacho Lee, and Jinwoo Shin. Learning from
failure: De-biasing classifier from biased classifier. Advances in Neural Information Processing
Systems, 33, 2020.

[27] Judea Pearl. Causality. Cambridge university press, 2009.

[28] Jonas Peters, Peter Bithlmann, and Nicolai Meinshausen. Causal inference by using invariant
prediction: identification and confidence intervals. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 78(5):947-1012, 2016.

[29] Adam Poliak, Jason Naradowsky, Aparajita Haldar, Rachel Rudinger, and Benjamin Van Durme.
Hypothesis only baselines in natural language inference. In Proceedings of the Seventh Joint
Conference on Lexical and Computational Semantics, pages 180-191, 2018.

[30] Aahlad Puli, Lily H Zhang, Eric K Oermann, and Rajesh Ranganath. Predictive modeling in the
presence of nuisance-induced spurious correlations. arXiv preprint arXiv:2107.00520, 2021.

[31] Elan Rosenfeld, Pradeep Kumar Ravikumar, and Andrej Risteski. The risks of invariant risk
minimization. In International Conference on Learning Representations, 2020.

[32] Sahil Singla and Soheil Feizi. Salient imagenet: How to discover spurious features in deep
learning? In International Conference on Learning Representations, 2022.

[33] Damien Teney, Ehsan Abbasnejad, and Anton van den Hengel. Unshuffling data for improved
generalization in visual question answering. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 1417-1427, 2021.

12



[34] Prasetya Ajie Utama, Nafise Sadat Moosavi, and Iryna Gurevych. Mind the trade-off: Debiasing
nlu models without degrading the in-distribution performance. arXiv preprint arXiv:2005.00315,
2020.

[35] Victor Veitch, Alexander D’ Amour, Steve Yadlowsky, and Jacob Eisenstein. Counterfactual
invariance to spurious correlations in text classification. Advances in Neural Information
Processing Systems, 34, 2021.

[36] Georg Volk, Stefan Miiller, Alexander Von Bernuth, Dennis Hospach, and Oliver Bringmann.
Towards robust cnn-based object detection through augmentation with synthetic rain variations.
In 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pages 285-292. IEEE,
2019.

[37] Yoav Wald, Amir Feder, Daniel Greenfeld, and Uri Shalit. On calibration and out-of-domain
generalization. Advances in Neural Information Processing Systems, 34, 2021.

[38] Olivia Wiles, Sven Gowal, Florian Stimberg, Sylvestre Alvise-Rebulffi, Ira Ktena, Taylan Cemgil,
et al. A fine-grained analysis on distribution shift. arXiv preprint arXiv:2110.11328, 2021.

[39] Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus
for sentence understanding through inference. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 1112-1122, 2018.

[40] Ruibin Xiong, Yimeng Chen, Liang Pang, Xueqi Cheng, Zhi-Ming Ma, and Yanyan Lan.
Uncertainty calibration for ensemble-based debiasing methods. Advances in Neural Information
Processing Systems, 34, 2021.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section[7]
(c) Did you discuss any potential negative societal impacts of your work?
(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See SectionE]
(b) Did you include complete proofs of all theoretical results? [Yes] In the appendix.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [Yes] In the
supplemental material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See the appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUgs, internal cluster, or cloud provider)?

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [IN/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

13



(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A |
5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A |

14



	Introduction
	Related works
	Formalization of group invariant learning
	Two group criteria
	Falsity exposure criterion
	Label balance criterion
	Analysis of existing group invariant learning methods

	SCILL: a new method
	Group inference with statistical split
	Training with reweighted loss

	Experiments
	Experimental settings
	Experimental results
	Performance comparison
	Ablation study and verification of the two criteria
	Robusteness analysis


	Discussions
	Conclusion
	Acknowledgement

