
A Appendix

A.1 Proof: analytical form of spline derivatives

Theorem 1. . The derivative of B-spline curve can be analytically evaluated as:

ẏ(t) = Σr+k−1
s=0 Ṅs,k(t)θs, (19)

where

Ṅs,k(t) =
k

τs+k − τs
Ns,k−1(t)−

k

τs+k+1 − τs+1
Ns+1,k−1(t). (20)

Proof. We will prove by the induction. For the base case k = 1, we have

Ṅs,1(t) =

{
1

τs+1−τs
t ∈ [τs, τs+1]

− 1
τs+2−τs+1

t ∈ [τs+1, τs+2]
=

1

τs+1 − τs
Ns,0(t)−

1

τs+2 − τs+1
Ns+1,0(t). (21)

Let’s suppose that the formula holds for k up to n. We will prove that this formula also holds for
k = n+ 1. By the definition in Eq. 4 and the chain rule, we can get that:

Ṅs,n+1(t) =
t− τs

τs+n+1 − τs
Ṅs,n(t) +

Ns,n(t)

τs+n+1 − τs
+

τs+n+2 − t

τs+n+2 − τs+1
Ṅs+1,n(t)−

Ns+1,n(t)

τs+n+2 − τs+1

=
t− τs

τs+n+1 − τs

(
n

τs+n − τs
Ns,n−1(t)−

n

τs+n+1 − τs+1
Ns+1,n−1(t)

)
+

τs+n+2 − t

τs+n+2 − τs+1

(
n

τs+n+1 − τs+1
Ns+1,n−1(t)−

n

τs+n+2 − τs+2
Ns+2,n−1(t)

)
+

1

τs+n+1 − τs
Ns,n(t)−

1

τs+n+2 − τs+1
Ns+1,n(t)

=
n+ 1

τs+n+1 − τs
Ns,n(t)−

n+ 1

τs+n+2 − τs+1
Ns+1,n(t).

(22)

A.2 Spline representation

In this section, we give error bounds for spline representation. For simplicity, we consider 1D scenario
and assume the target function u : [0, 1] → R is periodic and defined on the unit interval Ω = [0, 1].
Consider a set of uniform knots Γ : 0 = τ0 ≤ τ1 ≤ · · · ≤ τr+k = 1 with . The space of kth degree
{Ns,k}r+k−1

s=0 splines is

Sk(Ω,Γ) = {p|p(t) is a polynomial of degree k in each (τi, τi+1)} ∩ Ck−1(Ω).

Spline interpolation seeks û ∈ Sk(Ω,Γ) that satisfies u(τi) = û(τi) ∀ 0 ≤ r + k.

Theorem 2 (Spline interpolation error bounds [49, 50]). Assume that u is periodic, for odd degree
spline interpolation k, we have

∥u− û∥∞ = ∆τk+1
(
Ck+1∥u(k+1)∥∞ +O(ω(u(k+1),∆τ))

)
,

∥u(l) − û(l)∥∞ = ∆τk+1−l
(
Dk+1−l∥u(k+1)∥∞ +O(ω(u(k+1),∆τ))

)
∀1 ≤ l ≤ k − 1.

(23)

Here Ck+1 and Dk+1−l are constant parameters, which are independent of ∆τ and u, and
ω(u(k+1),∆τ) = sup|x−y|≤∆τ |u(k+1)(x)− u(k+1)(y)|.

In the present work, we focus on using spline for smoothing noisy data. It is essentially a nonparame-
teric estimation of function u from noisy data {ti, ũi}ni=1,

ũi = u(ti) + ηi with ηi ∼ N (0, δ2η).
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We further assume that {ti} are uniformly sampled from Ω. The unregularized smoothing process
estimates spline basis coefficients

θ̂ = (NT
mNm)−1NT

m · Ũ

through minimizing ∥Ũ−Nm · θ∥. Here Ũ =
[
ũ1, ũ2, · · · , ũn

]T
and Nm is the spline basis matrix

evaluated at these measurement locations. The optimal θopt satisfies û(t) = N(t) · θopt, where û is
the spline interpolation of u, and N(t) = [N0,k(t), N1,k(t), · · · , Nr+k−1,k(t)]

T denotes spline basis
function vector. Following [51], we have spline fitting error bounds, as following.
Theorem 3 (Spline fitting error bounds). Assume that u is periodic and the number of data n is
sufficient large, for odd degree spline interpolation k, we have

∥Eθ̂ − θopt∥2≤ C1∆τk+1 ∥Covθ̂∥2≤ C2

δ2η
n
,

where C1 and C2 are constant and independent of n.

Proof. Let us denote

U = [u(t1), u(t2), · · · , u(tn)]T Û = [û(t1), û(t2), · · · , û(tn)]T

η = [η1, η2, · · · , ηn]T e = U− Û.

We have
θ̂ − θopt = (NT

mNm)−1NT
m · Ũ− (NT

mNm)−1NT
mNmθopt

= (NT
mNm)−1NT

m · (U+ η − Û)

= (NT
mNm)−1NT

m · (e+ η).

(24)

We will first prove that

∥NT
mNm∥2 = O(n) ∥(NT

mNm)−1∥2 = O(
1

n
). (25)

For any θ, 1
nθ

TNT
mNmθ is the Monte Carlo approximation of

∫ (
N(t)T · θ

)2
dt, and hence

1

n
θTNT

mNmθ =

∫
(N(t)Tθ)2dt+O(

1√
n
). (26)

Bringing the following property of B-splines [52]

M1θ
Tθ ≤

∫
(N(t)Tθ)2dt ≤ M2θ

Tθ ∃M1,M2 > 0

into Eq. (26) leads to Eq. (25). Then we prove that

∥NT
me∥2 = O(n∆τk+1). (27)

Since
∑

s Ns,k(t) = 1 and ∥e∥∞ = O(∆τk+1), we have

∥NT
me∥2 ≤ ∥NT

me∥1 = O(n∆τk+1).

Finally, combining Eq. (24), Eq. (25) and Eq. (27) leads to

∥Eθ̂ − θopt∥2= ∥(NT
mNm)−1NT

m · e∥2≤ ∥(NT
mNm)−1∥2∥NT

m · e∥2≤ C1∆τk+1

∥Covθ̂∥2= σ2
η∥(NT

mNm)−1∥2≤ C2

δ2η
n

In our sparse Bayesian regression, in stead of solving the aforementioned minimization problem, we
have additional regularization terms.

A.3 Algorithms

In this section, we present detailed algorithms used in the present work, which include Bayesian Alter-
native Direction Optimization (ADO) Learning 1, Sequential Threshold Sparse Bayesian Learning 2,
and Ensemble Kalman Filter 3.
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Algorithm 1: Bayesian Alternative Direction Optimization (ADO) Learning

Input :Library Φ, spline basis N, time derivative of spline basis matrix Ṅc, negative log form of equation
Eq. 11 L

Output :Mean estimation: θSWA, WSWA, BSWA, PSWA

Samples from posterior distributions: θ̊, W̊, B̊, P̊
Pretrain:
for i = 1 : TPretrain do

SDG optimization with the fixed library
{θi+1,W

′
i+1,Bi+1,P

′
i+1} = argminL

Update library
Wi+1,Pi+1 = STSparseBayesian(Φ, U̇i+1 = Ṅcθi+1,W

′
i+1,P

′
i+1)

if L(θi+1,Wi+1,Bi+1,Pi+1) < L⋆ then
L⋆ = L(θi+1,Wi+1,Bi+1,Pi+1)
θ⋆,W⋆,B⋆,P⋆ = θi+1,Wi+1,Bi+1,Pi+1

else
break

end
Stochastic Weight Averaging-Gaussian (SWAG) for posterior approximation:
θSWA,WSWA,BSWA,PSWA = θ⋆,W⋆,B⋆,P⋆

With a constant learning rate for i = 1 : TSWAG do
SGD update θi,Wi,Bi,Pi

θSWA,WSWA,BSWA,PSWA = iθSWA+θi
i+1

, iW SWA+W i
i+1

, iBSWA+Bi
i+1

, iP SWA+P i
i+1

end
Compute low-rank square root of empirical covariance matrices Λθ,ΛW ,ΛB ,ΛP from
{θi − θSWA}, {W i −W SWA}, {Bi −BSWA}, {P i − P SWA}

Sampling:
θ̊ = θSWA +Λθz̊θ W̊ = W SWA +ΛW z̊W B̊ = BSWA +ΛB z̊B P̊ = P SWA +ΛP z̊P

where z̊∗ are the random samples from N (0, I).

Algorithm 2: Sequential Threshold Sparse Bayesian Learning

Input :Spline trainable parameter θ, library Φ(θ), approximated derivative U̇, library weight W, and
process error matrix P

Output :Best solution library Φ⋆,W⋆, P⋆

Initialize :Threshold ϵ, number of library terms pold, and Flag = True
while Flag is True do

while not converged do
1. Compute the relevance variable ηi = qi

2 − si as defined in [19]
2. Update library Φ⋆, weight W⋆, and process error matrix P⋆, as shown in [19]

end
for j = 1 : pold do

W⋆(j) = 0 If |W⋆(j)| ≤ ϵ
end
Find the nonzero entries in W⋆, record the index as I, update Φ = Φ(:, I) and pnew = length of I;
if pnew = pold then

Flag = False
end
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Algorithm 3: Ensemble Kalman Filter
Input :ensemble number J , sampled weights {Wj}Jj=1, discovered dynamical model M(• ; W),

process noise covariance P, observation model h, observation Ũ, observation noise covariance B
Output :Analysis ensemble trajectories Uj

a(t)

Forecast :Uj
f (ti+1) = M(Uj

a(ti);W
j) + ϵj2, ϵj2 ∼ (0,P)

Uf (ti+1) =
1
J

∑J
j=1 U

j
f (ti+1)

Analysis :Uj
h(ti+1) = h(Uj

f (ti+1)) Uh(ti+1) =
1
J

∑J
j=1 U

j
h(ti+1)

Cfh(ti+1) =
1

J−1
ΣJ

j=1(U
i
f (ti+1)−Uf (ti+1))(U

i
h(ti+1)−Uh(ti+1))

T

Chh(ti+1) =
1

J−1
ΣJ

j=1(U
i
h(ti+1)−Uh(ti+1))(U

i
h(ti+1)−Uh(ti+1))

T +B

K(ti+1) = Cfh
(
Chh

)−1

Uj
a(ti+1) = Uj

f (ti+1) +K(ti+1)

(
Ũ(ti+1)−Uj

h(ti+1)− ϵj1

)
, ϵj1 ∼ (0,B)

A.4 Training Details

Additional training hyper parameters used in Sec. 4 is shown in the Tab. 2.

Table 2: Training Details

Case Van der Pol Lorenz 96 Advection Burgers’

ADO Iter 5 5 1 5
ADO Epoch 20K 50K 20K 20K
Post Epoch 1K 65K 2K 0.5K
SWAG Epoch 1.5K 80K 0.5K 0.5K
LR 1× 10−2 1× 10−2 1× 10−2 1× 10−2

SWAG LR 1× 10−3 1× 10−3 1× 10−3 1× 10−3

A.5 Additional Result: ODE

We list additional discovery and UQ results in this section. Fig. 5 shows 4 distributions of the
coefficients for Van der Pol system in red box and Lorenz 96 system in blue box. Fig. 4 shows
additional UQ result from the identified L96 systems without incorporating the data assimilation
process. The truth trajectory is marked by red. The measurement is marked by green dots and
the ensemble trajectories are marked by blue. Although the system has been identified with high
accuracy, as shown in Tab. 3, the predicted ensembles of the state variables still become chaotic after
several seconds. It is inevitable since the chaotic nature of the underlying system, which means any
small perturbation in any parameters would significantly influence the future trajectories. Fortunately,
the predicted covariance matrix of the Bayesian framework makes it easy to incorporate the data
assimilation with the identified systems. With the identified distribution of system coefficients,
the data assimilation can be used to predict the future states with reduced uncertainty, given noisy
measurement data in the past. Fig. 6 shows additional UQ result for all the 6 state variables for
Lorenz 96 system, incorporating EnKF algorithms.
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Figure 4: Additional discovery results for ODE systems; the red box shows results coefficients
distribution for the Van der Pol system, and the blue box shows the result for Lorenz 96 system.

x 1 x 2 x 3

x 4 x 5 x 6

t t t

Figure 5: Additional UQ results for ODE systems; the blue box shows the all the states prediction
for Lorenz 96 system without ensemble Kalman filter.

x 1
x 2

x 6

x 4
x 5

x 6

t t

Figure 6: Additional UQ results for ODE systems; the blue box shows the all the states prediction
for Lorenz 96 system with ensemble Kalman filter.

A.6 Additional Result: PDE

In this section, we attached the qualitative result for PDE discovery and the uncertainty quantification.
The contour plot and the cross section result are shown in Fig 7 (for advection equation and Burgers
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equation) and Fig. 8 (for Burgers equation with source). The analytical form of the mentioned PDEs
are listed in Tab. 5. Probability distribution for the PDE coefficient are shown in Fig. 9. Additional
UQ prediction result for advection and Burgers’ equation are shown in and Fig. 10.

t = 1 t = 1.8 x = 1

x x tt

t x x t

t = 5 t = 9.2 x = 0

ux
x u

Figure 7: The discovery results for PDE systems; the red box shows results for the advection system,
and the blue box shows the result for the Burgers’ system. The layout inside each box follows the
rules below. Leftmost sub-fig: true contour plot; Middle two sub-figs: the spatial results at different
time t; Rightmost sub-figs: the temporal result at a fixed point x.

t = 5 t = 9.6

x = − 4.8 x = 4.8
x x

t tt

x

Figure 8: Additional UQ results for PDE; the black box shows the cross section UQ results for
Burgers’ equation with source.

Figure 9: Additional discovery results for PDE systems; the red box shows results coefficients
distribution for the advection equation, and the blue box shows the result for Burgers’ equation.

20



x = 0.16

x

t = 1

x

t = 1.8

x

t = 0.2
t

x = 1

t

x = 1.8

t

t = 5 t = 9.2t = 1

x x x

t t t

x = 0 x = − 7.5 x = 7.4

Figure 10: Additional UQ results PDE; the red box shows the cross section UQ results for Advection
equation. The blue box shows the cross section UQ results for Burgers’ equation.
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A.7 Additional Discovery result

In this section, we list the full table that includes all the experiments made for current work, as
attached in Tab. 3.

Table 3: ODE and PDE discovery comparison

Name rmse(0%) rmse(1%) rmse (large8) MP MR
9 Training Cost10

Van der Pol Oscillator

BSL(Ours) 0.2 2.82 18.04 1 1 ∼ 133(+3)s
PINN-SR Fail11 Fail Fail 0.214 0.75 ∼ 1213s
SINDy 1.0 1.93 Fail 0.267 1.0 ∼ 10s
RVM 1.0 2.54 27.46 1 1 ∼ 10s

Lorenz 96

BSL(Ours) 0.269 1.47 13.0 1 1 ∼ 1654(+438)s
PINN-SR Fail Fail Fail 0.5 0.22 ∼ 10788s
SINDy 0.4 0.64 Fail 0.75 1 ∼ 10s
RVM 0.4 0.6 49.7 1 1 ∼ 25s

Advection Equation

BSL(Ours) 0.26 1 1.9 1 1 ∼ 946(+233)s
PINN-SR 5.9 4.5 30.4 1 1 ∼ 650s
SINDy 2.3 8.2 38.9 1 1 ∼ 10s
RVM 0.77 6.76 Fail 0.2 1 ∼ 4s

Burgers’ Equation

BSL(Ours) 3.62 4.13 6.38 1 1 ∼ 117(+74)s
PINN-SR 10.2 3.3 10.3 1 1 ∼ 512s
SINDy 0.826 Fail Fail 1 0.5 ∼ 10s
RVM 0.754 Fail Fail 0.1429 0.5 ∼ 4s

Name rmse(0%) rmse(0.1%) rmse (large) MP MR Training Cost

Burgers’ with Source

BSL(Ours) 11 12.4 13.4 1 1 ∼ 396(+340)s
PINN-SR 10.5 15 34.6 1 1 ∼ 600s
SINDy 26.2 Fail Fail 1 0.33 ∼ 10s
RVM 27.6 Fail Fail 0.5 0.67 ∼ 10s

Heat Equation

BSL(Ours) 19 19 38.9 1 1 ∼ 71(+8)s
PINN-SR Fail Fail Fail 0 0 ∼ 285s
SINDy 1.9 17 Fail 0.25 1 ∼ 10s
RVM 2.8 6 Fail 0 0 ∼ 6s

Poisson Equation

BSL(Ours) 1.18× 10−2 0.133 16.7 1 1 ∼ 92(+9)s
PINN-SR Fail Fail Fail 0 0 ∼ 3737s
SINDy 1.15 87 962 1 1 ∼ 10s
RVM 1.15 232 968 1 1 ∼ 10s

8Large noise for different cases: Van der Pol: 5%, Lorenz 96: 10%, Advection: 20%, Burgers: 10%, Burgers’
with source: 20%, Heat: 15%, Poisson: 5%

9MP,MR are only reported for the largest noise cases
10All cases are running on a Nvidia 2070 Ti GPU card
11Fail means failure in discovery of the parsimonious ODE/PDE forms.
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A.8 Analytical forms of the discovered system

Table 4: Analytical forms of ODE
Name ϵ (large)

Vander Pol Oscillator

True dx
dt = y, dydt = −x − 0.5x2y + 0.5y

BSL(Ours) dx
dt = 1.0096(±0.024)y, dydt = −0.9858(±0.037)x − 0.4801(±0.114)x2y + 0.4889(±0.111)y

PINN-SR dx
dt = 1.3079 − 0.1151x + 0.9982y + 0.1939x2 − 0.4101xy + 0.8559y2 − 0.3577x3

+0.6764x2y − 0.1207xy2 + 0.6261y3,
dy
dt = −0.6718x + 1.6035y + 1.6339y2 + 0.4803y3

SINDy dx
dt = 0.1197 + 0.169x + 0.9975y − 0.0292x2 + 0.0232xy − 0.0274y2

−0.0393x3 + 0.0208x2y − 0.0463xy2,
dy
dt = −1.0909x + 0.149y + 0.0294x3 − 0.4x2y − 0.0356xy2 + 0.0762y3

RVM dx
dt = 0.9957(±0.073)y, dydt = −0.9943(±0.0597)x − 0.4777(±0.0809)x2y + 0.4714(±0.1204)y

Lorenz 96

True dX1
dt = (X2 − X5)X6 − X1 + 8, dX2

dt = (X3 − X6)X1 − X2 + 8,
dX3
dt = (X4 − X1)X2 − X3 + 8, dX4

dt = (X5 − X2)X3 − X4 + 8,
dX5
dt = (X6 − X3)X4 − X5 + 8, dX6

dt = (X1 − X4)X5 − X6 + 8

BSL(Ours) dX1
dt = 1.0033(±2.37 × 10−4)X2X6 − 0.9926(±2.03 × 10−4)X5X6,

−0.9991(±9.04 × 10−4)X1 + 7.9773(±2.08 × 10−2),
dX2
dt = 0.9963(±5.54 × 10−5)X1X3 − 0.9942(±2.47 × 10−4)X1X6

−1.0054(±2.31 × 10−4)X2 + 7.8719(±7.05 × 10−4),
dX3
dt = 1.0106(±2.19 × 10−4)X2X4 − 1.0029(±2.03 × 10−4)X1X2

−0.9979(±5.3 × 10−4)X3 + 7.9938(±1.48 × 10−2),
dX4
dt = 1.0067(±1.01 × 10−4)X3X5 − 1.0103(±9.09 × 10−5)X2X3

−0.9926(±2.36 × 10−4)X4 + 8.055(±2.41 × 10−3),
dX5
dt = 0.9953 ± (4.39 × 10−4)X4X6 − 0.9922 ± (3.88 × 10−4)X3X4

−1.0072 ± (4.1 × 10−4)X5 + 7.8538(±2.1 × 10−3),
dX6
dt = 1.0095(±2.71 × 10−4)X1X5 − 0.9967(±2.83 × 10−4)X4X5

−0.9772(±2.46 × 10−4)X6 + 7.9964(±4.15 × 10−2)

PINN-SR N/A

SINDy dX1
dt = 8.0985 − 0.9423X1 − 0.1007X4 − 0.1659X6 + 0.9582X2X6 − 0.944X5X6

dX2
dt = 7.9372 − 0.1268X1 − 0.9607X2 + 0.9636X1X3 − 0.9558X1X6

dX3
dt = 8.1523 − 0.0983X1 − 0.1652X2 − 0.9952X3 − 0.9541X1X2 + 0.9651X2X4

dX4
dt = 7.4958 − 0.9754X4 + 0.1515X5 − 0.973X2X3 + 0.9206X3X5,

dX5
dt = 7.8556 − 0.1146X4 − 0.9457X5 − 0.9559X3X4 + 1.0023X4X6
dX6
dt = 7.6026 + 0.0934X2 − 0.927X6 + 0.9711X1X5 − 0.9754X4X5

RVM dX1
dt = 0.9613(±1.21)X2X6 − 0.962(±1.27)X5X6,

−0.8983(±2.67)X1 + 7.518(±5.88),
dX2
dt = 0.9578(±1.31)X1X3 − 0.9693(±1.24)X1X6

−0.9217(±2.8)X2 + 7.6442(±6.1575),
dX3
dt = 0.9535(±1.48)X2X4 − 0.9803(±1.38)X1X2

−0.9468(±2.96)X3 + 7.5323(±6.56),
dX4
dt = 0.9365(±1.24)X3X5 − 0.9748(±1.15)X2X3

−0.9114(±2.59)X4 + 7.67(±5.49),
dX5
dt = 0.9981 ± (1.26)X4X6 − 0.9667 ± (1.2)X3X4

−0.9216 ± (2.75)X5 + 7.6146(±5.96),
dX6
dt = 0.9677(±1.42)X1X5 − 0.9757(±1.38)X4X5

−0.8986(±2.86)X6 + 7.6657(±6.57)
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Table 5: Analytical forms of unsteady PDE
Name ϵ (large)

Advection Equation

True ut = −ux

BSL(Ours) ut = −0.9988(±0.024)ux

PINN-SR ut = −0.997ux

SINDy ut = −0.9961ux

RVM ut = −0.5148(±0.106)ux − 0.9797(±0.384)uux

−0.018(±0.208)u2ux − 0.075(±0.148)u2uxxx + 0.049(±0.111)u3uxxx

Burgers’ Equation

True ut = −uux + 0.5uxx

BSL(Ours) ut = −0.9929(±0.086)uux + 0.4993(±0.005)uxx

PINN-SR ut = −1.0103uux + 0.5051uxx

SINDy ut = −0.8179uux

RVM −0.0809(±0.041)ux − 1.6684(±0.2618)uux + 4.1835(±0.571)u2ux

−3.9068(±0.391)u3ux + 0.1916(±0.064)uuxx

−1.0314(±0.197)u2uxx + 1.5504(0.156)u3uxx

Burgers’ Equation with Source

True ut = −uux + 0.1uxx + sin(x)sin(t)
BSL(Ours) −0.9882(±0.246)uux + 0.105(±0.022)uxx + 0.9859(±0.005)sin(x)sin(t)
PINN-SR ut = −0.9576uux + 0.1168uxx + 1.0179sin(x)sin(t)

SINDy ut = 0.8052sin(x)sin(t)
RVM −0.0234(±0.145)uux + 0.8318(±0.142)sin(x)sin(t)

−0.0789(±0.105)sin(x) + 0.3558(±0.156)sin(x)cos(t)

Table 6: Analytical forms of steady PDE
Name ϵ (large)

Heat Equation

True uyy = −uxx

BSL(Ours) uyy = −0.9611(±0.059)uxx

PINN-SR uyy = 0.5544ux

SINDy uyy = −0.069uxx + 13.8988uux − 19.493ux + 0.2468uuxx

RVM uyy = −7.5861(±202.6)ux

Poisson Equation

True uyy = −uxx − sin(x)sin(y)
BSL(Ours) uyy = −0.9788(±8.75× 10−4)uxx − 0.9897(±4.63× 10−4)sin(x)sin(y)
PINN-SR uyy = 0.13611752uux + 0.29748484uuxxx

SINDy uyy = 0.2316uxx − 0.4221sin(x)sin(y)
RVM uyy = 0.2284(±0.007)uxx − 0.3954(±0.01)sin(x)sin(y)

A.9 Implementation detail for the spline

In the current work, we apply direct tensor product to extend spline for solving spatial-temporal field
and the relevant statistics are attached in Tab. 7, where the numerber of control points (trainable
weights) θ in 1-d is marked by red and the total number of control points for the 2-d scenario is
listed in the last column. We only store the non-zero elements for two-dimensional basis to leverage
the sparsity (local support) of the spline. However, we must claim that it is not an optimal way to
extend spline for higher spatial dimensions. In that case, a spline kernel can be defined and the
tensor-product is only processed in the subdomain, as shown in [43].
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Table 7: Direct tensor-product spline for PDE
basis x basis t(y) basis(x, t(y)) sparsity trainable params

Advection Equation

50× 54 50× 54 62500 0.0086 2916

Burgers’ Equation

128× 13 101× 19 92872 0.058 247

Burgers’ Equation with Source

201× 103 101× 103 251415 0.0012 10609

Heat Equation

51×11 51× 11 41209 0.1309 121

Poisson

101× 53 101× 53 162409 0.0057 2809

A.10 Relevant Terminologies

Table 8: Terminologies
Name Symbol Explanation

Control points θ Trainable weight θ for spline basis.

Knots τs Location of control points.

Measurement points Sparse spatio-temporal points with labels.

Collocation points Dense spatio-temporal points without labels.

Nm Spline basis evaluated at measurement points.

Nc Spline basis evaluated at collocation points.

Library candidates Φ A collection of polynomial terms that
the system identification algorithm can choose parsimonious terms from it.

e.g., {x, y, x2y, ...} (for ODE) or {u, uux, uxx...} for (PDE).

ADO iteration Alternating direction optimization to update the trainable parameters
including control points θ, weight of library candidates W and covariance matrices.

Aleatoric Uncertainty Due to intrinsic randomness by nature, which is irreducible.

Epistemic Uncertainty Because of a lack of knowledge, which can be reduced by adding more information.

A.11 Real world application: predator-prey system

In this section, we would test our proposed BSL model on one real-world case, predator-prey system.
The real data set is obtained online and it depicts the population of hares and lynx from 1900 to 1920
from Hudson Bay Company. The data is presented in Tab. 11: The reference governing equation by
mathematical analysis is:

dx

dt
= 0.4807x− 0.0248xy (28)

dy

dt
= −0.9272y + 0.0276xy (29)

We test the 4 methods on this data set and the result can be found in Tab 9 .We have made assumptions
about constructing the libraries. We assume the predator (lynx) only feeds on the prey (hares).
Meantime, the prey (hares) only has one predator (lynx). Therefore, the change rate of these two
species can only depend on themselves (x,y) and some higher order correlations between them
(xy, x2y, xy2). The discovered forms of the 4 methods are listed in Tab. 10. Finally, the UQ results
are shown in Fig 11. In short, only the proposed method work on the real sparse and noisy dataset.
And the UQ prediction covers more measurement points than the reference model Eq. 28, which
helps to better explain the data set.
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Table 9: ODE discovery comparison

Name rmse (large) MP MR Training Cost

Predator-prey

BSL(Ours) 30.4 1 1 ∼ 2278(+6)s
PINN-SR Fail 0.5 0.25 ∼ 2988s
SINDy Fail 0.6 0.75 ∼ 10s
RVM Fail 0.8 1 ∼ 10s

Table 10: Analytical forms of ODE

Name ϵ (large)

Predator-prey (Lotka-Volterra)

True dx
dt = 0.4807x − 0.0248xy, dydt = −0.9272y + 0.0276xy

BSL(Ours) dx
dt = −0.5124(±0.028)x − 0.0266(±8.72 × 10−4)xy
dy
dt = −0.9258(±0.065)y + 0.0279(±1.47 × 10−3)xy

PINN-SR dx
dt = −13.9238y
dy
dt = −0.1144y

SINDy dx
dt = 0.5813x − 0.0261xy,
dy
dt = 0.2549x − 0.2702y

RVM dx
dt = 0.5732(±0.6488)x − 0.2386(±0.4643)y − 0.0253(±0.1432)xy,

dy
dt = −0.8018(±0.9459)y + 0.0226(±0.1481)xy

Table 11: Lynx-Hares population

Year Hares(×1000) Lynx(×1000)

1900 30 4

1901 47.2 6.1

1902 70.2 9.8

1903 77.4 35.2

1904 36.3 59.4

1905 20.6 41.7

1906 18.1 19

1907 21.4 13

1908 22 8.3

1909 25.4 9.1

1910 27.1 7.4

1911 40.3 8

1912 57 12.3

1913 76.6 19.5

1914 52.3 45.7

1915 19.5 51.1

1916 11.2 29.7

1917 7.6 15.8

1918 14.6 9.7

1919 16.2 10.1

1920 24.7 8.6
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Figure 11: UQ results for predator-prey system; left sub-fig shows the result for state x,the hares
population; the right sub-fig shows the result for state y, the lynx population. The green dot is the
sparse and biased measurement data. The red line is the reference model and the blue curves are the
ensemble predictions from our proposed model.

A.12 Experiment on different smoothing algorithms

This section we will test the effect of different smoothing algorithms and its impact to the SINDy
result. These methods include smoothing based polynomial interpolation, convolutional smoother,
smoothing with Tikhonov regularization and smoothing with spline fitting. We performed comparison
of SINDy with these smoothing methods on a representative ODE system (Van der Pol system)
and PDE system (Poisson equation) studied in this work. As shown in the Table 12 and Table 13
below, when the data noise is above 5%, although data is preprocessed using smoothing and uniform
resampling, none of these method work. Basically, the SINDy still failed to discover the correct
model forms with different smoothing schemes, and the identified systems are different from the true.
In contrast, our proposed approach is very robust and superior to handling corrupted data, thanks to
the spline learning in Bayesian settings.

Table 12: ODE and PDE discovery comparison

Name rmse(ϵ = 5%) MP MR Training Cost

Van der Pol Oscillator

BSL(Ours) 18.04 1 1 ∼ 133(+3)s
SINDy(No smoother) Fail 0.33 1 ∼ 10s
SINDy(Poly) Fail 0.6 0.75 ∼ 10s
SINDy(Conv) Fail 0.4 1 ∼ 10s
SINDy(Tikhonov) Fail 0.21 1 ∼ 10s
SINDy(Spline) Fail 0.25 1 ∼ 10s

Poisson Equation

BSL(Ours) 16.7 1 1 ∼ 92(+9)s
SINDy(No smoother) Fail 0.5 1 ∼ 10s
SINDy(Poly) 962 1 1 ∼ 10s
SINDy(Conv) Fail 0.66 1 ∼ 10s
SINDy(Tikhonov) Fail 0.5 1 ∼ 10s
SINDy(Spline) Fail 0.5 1 ∼ 10s
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Table 13: Smoothing algorithm effects
Name Analytical form

Van der Pol Oscillator

True dx
dt

= y
dy
dt

= −x− 0.5x2y + 0.5y

SINDy(No smoother) dx
dt

= 0.0277− 0.217x+ 1.4y − 0.025x2

+0.0542x3 − 0.1285x2y + 0.1039xy2 − 0.0896y3,
dy
dt

= −0.9835x+ 0.3462y − 0.4675x2y + 0.0325y3

SINDy(Poly) dx
dt

= 0.1197 + 0.169x+ 0.9975y − 0.0292x2

+0.0232xy − 0.0274y2 − 0.0393x3 + 0.0208x2y − 0.0463xy2,
dy
dt

= −1.0909x+ 0.149y + 0.0294x3 − 0.4x2y − 0.0356xy2 + 0.0762y3

SINDy(Conv) dx
dt

= 0.1518 + 0.9978y − 0.0486x2 + 0.0274xy − 0.0327y2,
dy
dt

= −1.1154x− 0.2143y + 0.0348x3 − 0.4374x2y + 0.0613y3

SINDy(Tikhonov) dx
dt

= −0.2572 + 0.1486x+ 1.1299y + 0.0982x2 − 0.0721xy,
+0.0549y2 − 0.0478x2y − 0.0816xy2 − 0.0542y3

dy
dt

= 0.2338− 1.3282x+ 0.1603y − 0.0718x2

+0.058xy − 0.0564y2 + 0.1069x3 − 0.0842x2y + 0.1373xy2 − 0.0415y3

SINDy(Spline) dx
dt

= 0.1916 + 1.5304y − 0.0614x2 + 0.0215xy
−0.0325y2 − 0.155x2y + 0.0796xy2 − 0.1168y3

dy
dt

= −0.35− 1.0127x+ 0.6756y + 0.0695x2

+0.0741y2 − 0.5493x2y + 0.0523xy2 − 0.0412y3

Poisson equation

True uyy = −uxx − sin(x)sin(y)

SINDy(No smoother) uyy = 0.5635uxx + 1.683uux + 0.088uuxx − 0.17sin(x)sin(y)

SINDy(Poly) uyy = 0.2316uxx − 0.4221sin(x)sin(y)

SINDy(Conv) uyy = 0.47uxx − 0.2649sin(x)sin(y) + 0.073sin(x)cos(y)

SINDy(Tikhonov) uyy = −0.17uxx − 0.087uux − 0.458sin(x)sin(y) + 0.02sin(x)cos(y)

SINDy(Spline) uyy = 0.1562uxx + 0.1751uux − 0.3951sin(x)sin(y)− 0.0911sin(x)cos(y)
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