
Figure 5: Example of two BlockStacks data set images. Each instance consists of a single red block
varying in position within the block stack. On the left the red block is at height 3 (using a zero index)
and on the right it is at height 1.

A Societal Impact Statement

This work does not have a negative societal impact, specifically it does not include any of the
following: involvement of human subjects, sensitive data, harmful insights, methodologies and
applications. The results, data sets and methodologies are objectively non-discriminatory, unbiased
and fair. This work does not breach any privacy or security guidelines or laws, nor any other legal
restrictions.

The proposed definition of coherent concepts and corresponding analysis provides more depth in
the assessment of deep learning methods, which are typically otherwise opaque, and this can have
a positive societal impact. Currently, we cannot provide interpretable descriptions regarding how

a standard deep learning method produces its inferences, making it difficult to fully trust a model
in critical applications. An important failure case is that biases are not easy to uncover from a
trained deep learning model. The benefit of learning a coherent concept is that inferences uphold
logical consistency, which can be formally expressed and tested. This can provide more trust in
the model as practitioners can have confidence that the model should not obtain inputs that lead to
incoherent inferences, wherein errors are certain. Further, if the logic does not include biases, the
inferences of a coherent set of relation-decoders should not be biased. A caveat to these points is
that unless the relation-decoder functional form allows us to analytically make comments/assertions
about the model’s performances for arbitrary regions of latent space, as with DC (see D.1), it
is intractable to fully examine model coherence, as it requires a full extrapolation/interpolation
evaluation. Nonetheless, a practical evaluation of coherence is an important step forward.

B BlockStacks dataset description

The BlockStacks data set consists of 12,000 RGB images (3⇥200⇥200 pixels but resized in code
to 3⇥ 128⇥ 128) of individual block stacks, of varying height (between 1-10 blocks), block colors
(uniformly sampled from options: {gray, blue, green, brown, purple, cyan, yellow}) and position
(uniformly sampled from x, y range (-3,-3) to (3,3)), but with the requirement that each instance
consists of a single red block at a random height (see Figure 5 for example images). These were
rendered using the CLEVR rendering agent with the help of code from [2]. The dataset is divided
into 9000:1500:1500 train, validation and test splits.
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Figure 6: Depiction of a set of DC relation-decoders for binary relations isGreater, isLess, isEqual,
isSuccessor and isPredecessor. Each DC relation-decoder (for each relation) shown here has a
one-hot mask, ur, that is in this example the same across relations, which ensures only the zeroth
dimensions of the embedding arguments are compared, giving zi,0 and zj,0.

C Explanation of the �-VAE

The VAE is derived by introducing an approximate posterior q↵(Z|X), from which a lower bound
(commonly referred to as the Evidence LOwer Bound (ELBO)) on the true marginal log p✓(X) can
be obtained by using Jensen’s inequality [21]. The VAE maximises the log-probability by maximising
this lower bound, given by:

L
ELBO
�-VAE = Eq↵(Z|X)[log p✓(X|Z)]� �DKL(q↵(Z|X)kp✓(Z)), (15)

where q↵(Z|X) is typically modelled as a neural-network encoder with parameters ↵. Similarly
p✓(X|Z) is often modelled as a neural-network decoder with parameters ✓ and is calculated as a
Monte Carlo estimation. A reparameterization trick is used to enable differentiation through an
otherwise undifferentiable sampling from q↵(Z|X) (see [21]). In the �-VAE [17, 6], an additional
� scalar hyperparameter was added as it was found to influence disentanglement through stronger
distribution matching pressure with respect to the prior p✓(Z), where this prior is typically set to an
isotropic zero-mean Gaussian N (0, I)). When � = 1 we obtain the standard VAE objective [21].

D Model Descriptions

In this section we firstly present an in-depth analysis of the key innovations presented by DC which
provides insight into how it can learn a coherent notion of ordinality. We then provide model details
for each of the compared relation-decoders in the main results and the backbone �-VAE architecture
that we employ for each data set.

D.1 Dynamic Comparator Analysis

Figure 6 depicts how DC is able to learn the isGreater, isLess, isEqual, isSuccessor and isPrede-
cessor family of binary ordinal relations, assuming each corresponding relation-decoder has learned
a common one-hot mask on the zeroth dimension i.e. uG = uE = . . . = uP = [1, 0, . . . , 0], such
that activations only depend on the zi,0 � zi,1 difference. An important capability of DC is its ability
to dynamically select via ar an appropriate functional mode, either �†r or �‡r, depending on the type
of relation it needs to model. As shown by Figure 6, this allows isEqual to exhibit its reflexive,
symmetric and transitive characteristics, whilst isGreater and isLess both carry transitivity but are
asymmetric and irreflexive. Furthermore, the use of a subtraction between zi and zj (which, via mask
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u, ends up only being a subtraction between their zeroth dimensions) leads to a relative comparison,
not an absolute comparison, which generalises to arbitrary zi and zj sampled from anywhere in Z .

Note that there is no built in parameter sharing, meaning each relation-decoder (for each individual
relation r) is trained independently and has its own set of ar,ur, ⌘r,0, ⌘r,1, b†r and b‡r parameters.
However, our experiments show that DC reliably obtains settings such that e.g. uG = uE, or
aG = aL = [0, 1], or b‡G = �b‡L and so on. DC is thus able to discover the interdependencies
between families of relations. By learning to loosely ‘tie’ together parameters in this way, whilst
still being expressive enough to model each type of relation, DC can facilitate a data-driven binding
between relation-decoder outputs. This helps ensure consistent generalisation across a latent subspace,
as defined by the common/overlapped ur masks.

D.2 Relation-Decoder implementations

TransR [25]:
�TransR
r (zi, zj) = khr + r � trk22

with,
hr = Mrzi and tr = Mrzj .

where for zi, zj 2 Rdz vectors, Mr 2 Rdz⇥dz and r 2 Rdz . As we want to obtain a (0, 1) output,
we modify TransR through �TransR+

r = �(c� �TransR
r ), where � is a sigmoid function and c is a scalar

that ensures that at �TransR
r (zi, zj) = 0, then �TransR+

r (zi, zj) ⇡ 1. In all experiments we set c = 10.

NTN (modified version of [41] from [13, 38]):

�r(z1, . . . , zn) = �
�
u>
r [tanh(z

c>Mrz
c + Vrz

c + br)]
�

(16)

where ur 2 Rk,Mr 2 Rn·dz⇥n·dz⇥k,Vr 2 Rk⇥n·dz) and br 2 Rk. The only hyperparameter to
consider is k, which controls the NTN’s capacity - in all experiments, we set this to 1. If k > 1,
zc>Mrzc produces a k-dimension vector by applying the bilinear operation to each of the k Mr

slices. Here zc 2 Rn·dz is a concatenation of the inputs z1, . . . , zn, which was introduced in [13, 38].
In contrast, the original NTN (see [41]) is only applicable to binary relations and does not include the
outer sigmoid.

HolE [30]:
�HolE
r (zi, zj) = �(r>(zi ? zj))

where r 2 Rdz and ? : Rdz ⇥ Rdz ! Rdz denotes the circular correlation operator and is given by,

[zi ? zj ]k =
d�1X

m=0

zi,mzj,(k+m) mod d

NN: a simple four-layer neural-network with layer sizes lin = 2dz, l1 = 2dz and l2 = dz , with ReLU
activations [28]. The final output layer, lout, is a single value passed through a sigmoid function, to
bound the output within (0, 1).

D.3 �-VAE configuration

The model configurations used for both MNIST and BlockStacks data sets are given in Table 2.

D.4 Ljoint configuration

In the source domain, we vary � values between {1, 4, 8, 12} and fix � = 103. In the target domain,
we fix � to 10�4 and � = 10�2 and normalise the LELBO

�-VAE reconstruction term by dividing by a factor
1p

H·W ·C , for height H , width W and color channels C, and normalize the distribution matching term
by a factor 1

dz

, for latent representation size dz (set to 10 across all experiments).

To train relation-decoders over a given domain S, it is necessary to supervise estimates of
�r( enc

S (O)), O 2 S2, against corresponding ground-truth labels, �rO,S�
. However, doing so for
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Table 2: Specification of our �-VAE encoder and decoder model parameters, for both 28⇥28 (top)
and 128⇥128 (bottom) size input data. I: Input channels, O: Output channels, K: Kernel size, S:
Stride, P: Padding, A: Activation

Encoder
Input: 28⇥ 28⇥NC = 1

Layer_ID ; I ; O ; K ; S ; P ; A
Conv2d_1 ; NC ; 32 ; 4⇥ 4 ; 2 ; 1 ; ReLU
Conv2d_2 ; 32 ; 32 ; 4⇥ 4 ; 2 ; 1 ; ReLU
Conv2d_3 ; 32 ; 64 ; 3⇥ 3 ; 2 ; 1 ; ReLU
Conv2d_4 ; 64 ; 64 ; 2⇥ 2 ; 2 ; 1 ; ReLU

Layer_ID ; Num Nodes : In - Out ; A
FC_z ; 576 - 144 ; ReLU
FC_z_mu ; 144 - 10 ; None
FC_z_logvar ; 144 - 10 ; None

Decoder
Input: R10

Layer_ID ; Num Nodes : In - Out ; A
FC_z ; 10 - 144 ; ReLU
FC_z_mu ; 144 - 576 ; ReLU

Layer_ID ; I ; O ; K ; S ; P ; A
UpConv2d_1 ; 64 ; 64 ; 2⇥ 2 ; 2 ; 1 ; ReLU
UpConv2d_2 ; 64 ; 32 ; 3⇥ 3 ; 2 ; 1 ; ReLU
UpConv2d_3 ; 32 ; 32 ; 4⇥ 4 ; 2 ; 1 ; ReLU
UpConv2d_4 ; 32 ; NC ; 4⇥ 4 ; 2 ; 1 ; Sigmoid

Encoder
Input: 128⇥ 128⇥NC = 3

Layer_ID ; I ; O ; K ; S ; P ; A
Conv2d_1 ; NC ; 32 ; 4⇥ 4 ; 2 ; 1 ; ReLU
Conv2d_2 ; 32 ; 32 ; 4⇥ 4 ; 2 ; 1 ; ReLU
Conv2d_3 ; 32 ; 64 ; 4⇥ 4 ; 2 ; 1 ; ReLU
Conv2d_4 ; 32 ; 64 ; 4⇥ 4 ; 2 ; 1 ; ReLU
Conv2d_5 ; 64 ; 64 ; 4⇥ 4 ; 2 ; 1 ; ReLU

Layer_ID ; Num Nodes : In - Out ; A
FC_z ; 1024 - 256 ; ReLU
FC_z_mu ; 256 - 10 ; None
FC_z_logvar ; 256 - 10 ; None

Decoder
Input: R10

Layer_ID ; Num Nodes : In - Out ; A
FC_z ; 10 - 256 ; ReLU
FC_z_mu ; 256 - 1024 ; ReLU

Layer_ID ; I ; O ; K ; S ; P ; A
UpConv2d_1 ; 64 ; 64 ; 4⇥ 4 ; 2 ; 1 ; ReLU
UpConv2d_2 ; 64 ; 32 ; 4⇥ 4 ; 2 ; 1 ; ReLU
UpConv2d_3 ; 32 ; 32 ; 4⇥ 4 ; 2 ; 1 ; ReLU
UpConv2d_4 ; 32 ; 32 ; 4⇥ 4 ; 2 ; 1 ; ReLU
UpConv2d_5 ; 32 ; NC ; 4⇥ 4 ; 2 ; 1 ; Sigmoid

every O 2 S2 can easily become intractable and we instead only sample a subset of possible S2

tuples. Our sampling strategy involves first selecting a ratio R = |B|
|S| where B ⇢ S2 is a set of O

tuples. We then sample relation-decoder specific subsets Br where |Br| = |B|
|�| , to ensure a balanced

distribution of tuples between relation-decoders. Furthermore, we ensure that each Br contains a
balanced ratio of �rO,S�

= 1 versus �rO,S�
= 0 instances. We found that each |Br| set can be small

without jeopardising the final relation-decoder performance level, allowing us to use R = 1 for
MNIST experiments and R = 3 for BlockStacks experiments.

Finally, in all experiments we use a �-VAE trained for up to 300,000 steps, following accepted
practice from [26, 42], together with any included relation-decoders. However, to ensure computation
efficiency across experiments, we employ an early stopping procedure, where if the validation
score does not increase over 30 and 120 training epochs for MNIST and Blockstacks experiments,
respectively, we end the training early.

E Preliminaries in further detail

Logic and model-theoretic background: to support Section 2 we provide additional logic and
model theoretic background. In this paper, we assume a formal language L composed of variables,
predicates (i.e. relations), logical connectives ¬ (negation), _ (disjunction), ^ (conjunction), !
(implication), and universal quantification 8 (for all) with their conventional meaning (see [39]).
The set of relations in L form the signature, �, of the language. Relations have an associated arity,
denoted as ar(·), that defines the number of arguments they take. For example, a binary relation
r has arity ar(r) = 2. Relations are used to express knowledge over the elements of a domain S,
where S is a non-empty set. For instance, r(s1, s2) states that elements s1 and s2 are related through
the binary relation r. The meaning of a relation is defined by an interpretation IS�

which captures
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the {T, F} (true or false) values of the relation over elements of S. Together, a domain S and an
interpretation IS�

of a given signature � form a structure S� = (S, IS�
).

Note that for a fixed domain S and signature �, different interpretations yield different structures. As
stated in the main text, we construct universally quantified first-order formulae (called sentences)
using the signature � of L, whose truth-value is defined with respect to a given structure S� . To do so,
we first consider ground instances of a formula. These are given by replacing all the variables in the
formula with elements from the domain S . For example, r(s1, s2), where s1 and s2 are elements of S ,
is a ground instance of an atomic formula r(i, j) where i and j are variables in L. Given a structure
S� = (S, IS�

), a relation r, and a tuple (s1, . . . , sar(r)) 2 Sar(r), a ground instance r(s1, . . . , sar(r))
is true in the structure S� if and only if (s1, . . . , sar(r)) 2 IS�

(r). The truth value of a sentence in
a given structure S� depends on the truth value of its respective ground instances. Specifically, a
sentence is true in a structure S� if and only if all of its ground instances are true in S� . For example,
8i. r(i, i) is true in S� if and only if all of its ground instances r(sh, sh) are true in S�, for every
sh 2 S. When a sentence, ⌧ , is true in a structure, S�, we say that the structure satisfies ⌧ , denoted
as S� |= ⌧ . A set of sentences form a theory, T and any subset of the sentences in T form a partial
theory with respect to T . A theory can be seen as a way of constraining the type of interpretations
that we want to “accept" for our signature. Finally, a model of T is a structure that satisfies every
sentence in T .

F Specification for theory of ordinality

To support our claim that we can use only the isSuccessor relation as the target encoder guide due
to its logical relationship with the remaining relations, we include here the logical clauses:

8i, j, k. (isSuccessor(i, j) ^ isSuccessor(k, j) ! isEqual(i, k))
8i, j. (isSuccessor(i, j) ! isGreater(i, j))

8i, j, k. (isSuccessor(i, j) ^ isGreater(j, k) ! isGreater(i, k))
8i, j. (isSuccessor(i, j) $ isPredecessor(j, i))

8i, j. (isPredecessor(i, j) ! isLess(i, j))
8i, j, k. (isPredecessor(i, j) ^ isLess(j, k) ! isLess(i, k)).

Therefore, by knowing all of the successor relations between data instances, it should be possible to
infer the remaining relationships that they share.

For completeness, we provide the truth tables for each of the sub-theories that our consistency losses
evaluate against. We only include configurations that are valid under the constraints, indicated by
⇢ T = T , where this notation highlights the fact each incomplete set of constraints form a subset of
the overall theory T .

Firstly, the truth-table that describes constraints shared between relation truth-values is given by the
following, 8i, j:

G(i, j) E(i, j) L(i, j) S(i, j) P(i, j) ⇢ T
T F F F F T
T F F T F T
F T F F F T
F F T F F T
F F T F T T

where we use the same relation abbreviations as in the main text results.

Next, we provide each of the three consistency individual (Con-I) truth-tables. These are referred to
as being “individual” due to the fact that they describe constraints applied to the truth-state of a single
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Table 3: Characteristic properties of ordinal relations.

Relation asymmetric transitive reflexive

G Y Y N
E N Y Y
L Y Y N
S Y N N
P Y N N

relation. For transitivity, given by the rule e.g. G(i, j) ^ G(j, k) ! G(i, k), we have that 8i, j:

G(i, j) G(j, k) G(i, k) ⇢ T
F F F T
F F T T
T F F T
T F T T
F T F T
F T T T
T T T T

(17)

For asymmetry, where S(i, j) ! ¬S(j, i), we have 8i, j:

S(i, j) S(j, i) ⇢ T
F F T
T F T
F T T

(18)

.

Finally, for reflexivity, given by E(i, i) ! > (in this case describing that an object is always equal to
itself) we have 8i:

E(i, i) ⇢ T
T T

(19)

Truth-table matrices for each of the above truth-tables can be obtained by replacing T with 1 and F
with 0. The full set of individual constraints that are applicable to each relation covered in this paper
are given by Table 3.

G Expanded consistency loss derivation

In this section, we present the expanded justification for reporting � ln 1�✏̄ consistency and coherence
as a proxy for ✏-consistency/coherence as defined in Section 3. For notational clarity, in the following
we omit  S , such that �r( S(O)) is abbreviated to �r(O).

In the following, we make no assumptions about the sizes of domain S, signature � and arities of
each r 2 �. Further, we take T to be an arbitrary theory over � consisting of universally quantified
formula, and the validity of each ground instances of atomic formula with respect to T , can be
expressed by a single ground truth-table matrix, T 2 {0, 1}K0⇥K1⇥K2 , wherein each slice, Tk,:,:

gives a unique grounding of domain objects to the variables, v, required by T . For each grounding
of the K0 = |S||v| possible groundings, there are K1 = 2l unique truth-assignments to the l atomic
formulae that constitute T , giving K2 = l + 1 assignments per Tk,t,: row - one per atomic formulae
and an additional value that denote whether the particular row satisfies T . T can be obtained by
taking any truth-table from the previous section and switching true (T) for 1 and false (F) for 0, and
producing K0 copies for each assignment of domain elements to the variables. Given this truth-table
matrix, notice that a structure S� can be composed by selecting a single row of T for each grounding
(kth slice), giving a vector ckt = Tk,t,1:l. If the structure is a model of T , i.e. S� 2 MT

S , then only
rows with Tk,t,K2 = 1 are allowed. Taking t+ to be the set of rows such that Tk,t,K2 = 1 (which
is identical for each k) i.e. t+ = { t |Tk,t,K2 = 1 ^ t 2 {1, . . . ,K1}}, we can then rewrite �S̃�

T in
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terms of samples from T :

�S̃�

T =
X

S�2MT
S

Y

r2�

Y

O2Sar(r)

�r(O)�
r

O,S� (1� �r(O))1��r

O,S� (Eqn. 3)

=
X

S�2MT
S

K0Y

k=1

X

t2t+

1tS�

k

(t)
lY

m=1

f(�rm , Okm, cktm)N(�rm ,Okm,cktm,S�)
�1

(20)

with
f(�rm , Okm, cktm) = �rm(Okm)cktm (1� �rm(Okm))1�cktm . (21)

In the above, 1tS�

k

(t) is an indicator function which equals 1 if t = tS�

k and 0 otherwise, for active row

tS�

k under structure S� and grounding k. 1tS�

k

(t) has the role of only including the single summand

where t corresponds with tS�

k . N(�rm , Okm, cktm,S�) is a function that counts the number of repeat
products of term f(�rm , Okm, cktm), such that the appropriate root can be applied. We use rm to
denote the relation for atomic formula at column m and Okm its corresponding arguments under
grounding k; and we use cktm to denote the truth-assignment of the atomic formula for column m, as
designated by row t.

At this point, we are left with an expression for �S̃�

T in terms of truth-table matrix T entries, which
is more reminiscent of L(T , S̃�) as defined in Section 4. However, we must go further to expose
the relationship between �S̃�

T and L(T , S̃�) for arbitrary T expressed by T . We will now show that
the consistency loss L(T , S̃�) gives the negative log-likelihood of satisfying T given a grounding
k 2 {1, . . . ,K0}, which can be further seen as a relaxation of �S̃�

T to sum over all rows t 2 t+ and
without normalising via the N(�rm , Okm, cktm,S�)�1 exponent. With Boolean random variable BT
denoting whether T is (bT = 1) or is not (bT = 0) satisfied, the consistency loss for a soft-structure
S̃� against theory T is given by,

L(T , S̃�) = Ek⇠U [{1,...,K0}][H(p(BT |S�, k), p(BT |S̃�, k))] Eqn. 8 base
which can be expanded to,

L(T , S̃�) = �
K0X

k=1

1

K0
p(bT = 1|S�, k) ln p(bT = 1|S̃�, k) (22)

+ (1� p(bT = 1|S�, k)) ln(1� p(bT = 1|S̃�, k)).

where S� 2 MT
S . Given S� 2 MT

S , then p(bT = 1|S�, k) = 1 always holds. This means the
negative case in Eqn. 22 can be ignored, yielding the following simplified form:

L(T , S̃�) = �
K0X

k=1

1

K0
ln p(bT = 1|S̃�, k)

= �Ek⇠U [1,...,K0][ln p(bT = 1|S̃�, k)]. Eqn. 8

and so L(T , S̃�) is simply the negative log-likelihood of sampling a satisfied theory (bT = 1)
from soft-structure S̃�, for randomly sampled grounding k. Next, we show the similarities between
L(T , S̃�) and �S̃�

T by looking at the likelihood p(bT = 1|S̃�, k). First, we define �̄S̃�

T by isolating
the likelihood:

exp(�L(T , S̃�)) =
K0Y

k=1

p(bT = 1|S̃�, k)
1

K0

.
= �̄S̃�

T (23)

We then expand p(bT = 1|S̃�, k) to:

p(bT = 1|S̃�, k) =
K1X

t=1

p(bT = 1|ckt)p(ckt|S̃�, k)

=
X

t2t+

p(ckt|S̃�, k) (24)
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Table 4: Spearman rank coefficients between consistency loss and PRT accuracy. Coefficients
are calculated for each consistency loss reported in the main text, across all models, � settings
and regions of latent space. Results show a strong inverse rank correlation between interpolation
Con-A/Con-I-T/Con-I-A and PRT performance.

Spearman Rank Coefficient

Z region Con-A Con-I-T Con-I-A Con-I-R

Data-Embeddings 0.2530 -0.4451 -0.4655 0.2307
Interpolation -0.7655 -0.7479 -0.7120 -0.4233
Extrapolation -0.6005 -0.6586 -0.6140 -0.4895

where t+ is defined as before. For all other t 6= t+, p(bT = 1|ckt) = 0 and so this acts as a filter,
yielding:

�̄S̃�

T =
K0Y

k=1

X

t2t+

p(ckt|S̃�, k)
1

K0 . (25)

p(ckt|S̃�, k) is calculated by evaluating the belief of each relation-decoder against the expected
truth-assignment as defined by truth-table row ckt:

p(ckt|S̃�, k) =
lY

m=1

�rm(Okm)cktm(1� �rm(Okm))1�cktm

= f(�rm , Okm, cktm)

where rm is the relation for atomic formula associated with column m (which is the same for each k
slice and t row) and Okm is the grounding of this entry for slice k (which is the same across rows).
Putting it all back together, we finally have that:

�̄S̃�

T =
K0Y

k=1

X

t2t+

lY

m=1

f(�rm , Okm, cktm)
1

K0 , (26)

which makes the similarities between �S̃�

T and �̄S̃�

T clear and exposes their relationship. In par-
ticular, for the special case where |MT

S | = 1, the outer sum for �S̃�

T can be removed, and the
remaining differences between �S̃�

T and �̄S̃�

T are the sum over t+ rows and difference in exponent
over f(�rm , Okm, cktm). For �S̃�

T to be maximised, through p(S�|S̃�) ⇡ 1, we would find that
S̃� maximally supports only the rows associated with S� for each k grounding. Notice that �̄S̃�

T is
again bound to (0, 1) and achieves �̄S̃�

T ⇡ 1 when �S̃�

T ⇡ 1. We use the correspondence between
�S̃�

T and �̄S̃�

T to define a practical ✏-proxy consistency measure as follows. We firstly re-express
✏-consistency/coherence but for �̄S̃�

T and a different ✏̄. We then trace this back to L(T , S̃�) so a
bound in terms of the consistency loss can be reported as the overall ✏-proxy. Together this yields the
following:

✏̄ � 1� �̄S̃�

T

ln
1

1� ✏̄
� � ln(�̄S̃�

T )

� L(T , S̃�) (27)

and, via the relationship between ✏̄ and L(T , S̃�), we can use the consistency loss L(T , S̃�) as a
proxy measure for ✏-consistency/coherence.

H Spearman’s Rank Correlation Analysis

A Spearman rank correlation analysis was performed between each consistency loss (Con-A, Con-
I-T, Con-I-A, Con-I-R) and PRT performance. Coefficients are reported for each combination of
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consistency loss and region of latent space (data-embedding, interpolation and extrapolation). Note
that coefficients are not separated between � and relation-decoder choice. Overall, each coefficients
aims to characterize the PRT performance change when a relation-decoder is more or less consistent
with a given partial theory, over a particular region of latent space. The key findings are reported in
the main text and we tabulate the values in Table 4.

Unlike the popular Pearson correlation, the Spearman rank correlation can describe monotonic
curvilinear relationships between variables. A Spearman rank coefficient varies between �1 and +1,
where a coefficient ±1 indicate a perfect rank correlation. If the coefficient is negative (positive) this
means a reduction (increase) in one variable corresponds with an increase in the other.
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them? [Yes]
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to public facing (refined and minimised) code will be provided in the camera ready
version of the paper.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 6 and we provide further model details in the Supple-
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(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [Yes] We provide error bars in bar plots. However we did
not provide errors in the tabular results. These are obtained from the bar plots, so can
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is cited properly.
(b) Did you mention the license of the assets? [No]
(c) Did you include any new assets either in the supplemental material or as a URL?

[Yes] The necessary code to generate the BlockStacks data set is included in the
Supplementary. We will include the actual data set providing there is space.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [No]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [No]
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(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
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