
Batch Bayesian Optimization on Permutations
using the Acquisition Weighted Kernel

- Supplementary Material -

Changyong Oh
QUvA lab, IvI

University of Amsterdam
changyong.oh0224@gmail.com

Roberto Bondesan
Qualcomm AI Research‡‡

rbondesa@qti.qualcomm.com

Efstratios Gavves
QUvA lab, IvI

University of Amsterdam
egavves@uva.nl

Max Welling
QUvA lab, IvI

University of Amsterdam
m.welling@uva.nl

A Regret Analysis

In this section, we show that LAW with GP-UCB or EST has the vanishing simple regret with high
probability.

In Bayesian optimization (BO), the goal is to find a minimum for a given objective f

x⋆ = argmin
x∈X

f(x)

First, we introduce different types of regret. Our analysis on the vanishing simple regret of LAW only
requires batch version of all regrets below. Therefore, the proof for the vanishing simple regret can
be read without referring to sequential version of regrets below. The sequential version definitions
are used when we contrast our regret analysis with the regret analysis in existing works [DKB14,
KKSP18].

We begin with two equivalent round indexing in the batch setting, the sequential indexing, an 1-tuple
and the batch indexing, an ordered 2-tuple which are related via following mappings.

T
(B)
bat : N → N× [B] t 7→ ([(t− 1)mod B] + 1, [(t− 1) rem B] + 1)

T(B)
seq : N× [B] → N (t, b) 7→ (t− 1)×B + b

The batch indexing is primarily used and the sequential indexing is expressed via T
(B)
seq .

With two indexing, we have batch and sequential versions of regret definitions with the instantaneous
regret rt,b = f(x⋆) − f(xt,b) at a query point xt,b. In the case of a noisy objective, yt,b =
f(xt,b) + ϵt,b is a corresponding evaluation with a noise ϵt,b.
Note that we use the definition of sequential simple/cumulative regret in the context of batch BO.
Since sequential simple regret is equal to batch simple regret, we call both simple regret without
prefixes. In [CBRV13], sequential cumulative regret is termed full cumulative regret to contrast with
batch cumulative regret.

The simple regret is in accord with the goal of BO[KKSP18] while the cumulative regret is prevalent
in bandit[LS20].

‡‡Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc.

Type Batch Sequential

Instantaneous r
(B)
t = min

b=1,··· ,B
rt,b r

T
(B)
seq (t,b)

= rt,b

Simple S
(B)
T = min

t=1,··· ,T
r
(B)
t S

T
(B)
seq (T,b)

= min
T

(B)
seq (t,b′)≤T

(B)
seq (T,b)

r
T

(B)
seq (t,b′)

Cumulative R
(B)
T =

T∑
t=1

r
(B)
t R

T
(B)
seq (T,b)

=
∑

T
(B)
seq (t,b′)≤T

(B)
seq (T,b)

r
T

(B)
seq (t,b′)

Simple & Cumulative S
(B)
T ≤ 1

T R
(B)
T S

T
(B)
seq (T,b)

≤ 1

T
(B)
seq (T,b)

R
T

(B)
seq (T,b)

Between Simple S
(B)
T = S

T
(B)
seq (T,B)

Between Cumulative R
(B)
T ≤ 1

BR
T

(B)
seq (T,B)

Table 3: Types of regrets

When an algorithm exhibits that cumulative regret averaged over rounds converges to zero, then the
algorithm is called no regret. As stated in Table 3, simple regret is bounded above by cumulative
regret averaged over rounds, therefore, vanishing simple regret is often proved by showing that the
algorithm is no regret[KKSP18].

In batch BO, there are two types of query depending on the accessible information. Non-delayed
query point uses all previous query points with all corresponding evaluations, e.g. {xt,1}t∈[T] in
LAW while delayed query point uses all previous query points but some of evaluations for previous
query points are not used, e.g. {xt,b}t∈[T],b=2,··· ,B in LAW. For evaluation, instantaneous regret and
posterior variance, we can say non-delayed and delayed according to the query point with which it is
defined.

The our analysis consists of steps below

1. Bound batch cumulative regret with the sum of non-delayed instantaneous regrets, i.e, the
regrets from the first points in each batch

R
(B)
T =

T∑
t=1

r
(B)
t ≤

T∑
t=1

rt,1

2. Bound non-delayed instantaneous regrets with non-delayed posterior variance, i.e, posterior
variance conditioned on all previous query points with their evaluations.

T∑
t=1

rt,1 ≤
T∑

t=1

ηtσt−1,1(xt,1)

ηt depends on the acquisition function and the details are given in Theorem A.18.
3. Bound non-delayed posterior variance with all posterior variance (Lemma A.4)

T∑
t=1

σt−1,1(xt,1) ≤ 1 +
w+

w−

1

B

T∑
t=1

B∑
b=1

σt−1,b(xt,b)

While the regret analysis on sequential cumulative regret [DKB14, KKSP18]10 requires high proba-
bility confidence interval for rt,b for all t ∈ [T] and b ∈ [B], our analysis on batch cumulative regret
requires high probability confidence interval for rt,1 for all t ∈ [T]. More detailed discussion on the
differences between two approaches is given after the proof (see Subsection A.2).

A.1 Vanishing simple regret of LAW

In Bayesian optimization using LAW, the surrogate model is Gaussian processes with a kernel K.
At t-th round of batch Bayesian optimization with the batch size of B, we have LAW

t which defines
L-ensembles of k-DPP. LAW

t is obtained using the product of the predictive covariance function

10In [KKSP18], vanishing simple regret is proved by showing that a bound with sequential cumulative regret
averaged over rounds converges to zero.

18

of K conditioned on Dt−1 = {(xs,b, ys,b)}s∈[t−1],b∈[B] and the acquisition function at using the
evaluation data Dt−1 as follows

LAW
t (x,x′) = w(at(x)) · Lt(x,x

′) · w(at(x′)). (9)

where Lt(x,x
′) = K(x,x′ | Dt−1) is the diversity gauge and w : R → R is positive increasing,

w− = inf
x∈R

w(x) > 0 and w+ = sup
x∈R

w(x) < ∞, which we call the weight function.

The batch with B points xt,1, · · · ,xt,B are acquired by

xt,1 = argmax
x∈X

at(x) = argmax
x∈X

w(at(x)) = argmax
x∈X

logw(at(x))
2

xt,b = argmax
x∈X

log det([LAW
t (x,x)]{xi}i∈[b−1]∪{x})

= argmax
x∈X

log(Lt(x,x |{xt,i}i∈[b−1]) · w(at(x))2) (10)

where Lt(x,x |{xt,i}i∈[b−1]) is the posterior variance of the kernel Lt conditioned on {xt,i}i∈[b−1].

Note that the posterior variance of the posterior covariance function Kt conditioned on
{xt,i}i∈[b−1] is equal to the posterior variance of the prior covariance function K conditioned
on Dt−1 ∪{xt,i}i∈[b−1].

In the rest of the section, we use below simpler notation

σ2
t−1,b(x) =

{
Lt(x,x) = K(x,x | Dt−1) b = 1

Lt(x,x |{xt,i}i∈[b−1]) = K(x,x | Dt−1 ∪{xt,i}i∈[b−1]) b = 2, · · · , B (11)

µt(x) is the predictive mean conditioned on Dt−1 . (12)

Note that σ2
t−1,b is well defined for b = 2, · · · , B since the posterior variance does not depend on

output values while the predictive mean is defined only when b = 1 where evaluated output ys,b
exists for each xs,b in conditioning data.

We start with lemmas used in the regret bound analysis.
Lemma A.1. Assume a kernel such that K(·, ·) ≤ 1. For each t ∈ [T], LAW acquires a batch using
the evaluation data Dt−1, the diversity measure Lt(·, ·) = K(·, ·| Dt−1), an acquisition function
at(·) and a weight function w(·) (as defined below Eq. 9). The posterior variance defined as Eq. 11.
has the following relation

σt,1(xt+1,1) ≤
w+

w−
σt−1,b(xt,b) 1 ≤ t ≤ T, 2 ≤ b ≤ B

Proof. By the definition of xt,b

xt,b = argmax
x∈X

log(Lt(x |{xt,i}i∈[b−1]) · w(at(x))2) = argmax
x∈X

log(σ2
t−1,b(x) · w(at(x))) (13)

we have
w(at(x))σt−1,b(x) ≤ w(at(xt,b))σt−1,b(xt,b) ∀x ∈ X (14)

thus

σt−1,b(x) ≤
w(at(x))

w(at(xt,b))
σt−1,b(xt,b) ≤

w+

w−
σt−1,b(xt,b) ∀x ∈ X (15)

By the "Information never hurts" principle[KSG08], i.e. the posterior variance decreases as the
conditioning set increases, we have

σt,1(x) ≤ σt−1,b(x) ∀x ∈ X
since σt is conditioned by Dt = Dt−1 ∪{xt,i}i∈[B] while σt,b is conditioned by Dt−1 ∪{xt,i}i∈[b−1].
Combining these two inequalities, we have

σt,1(x) ≤ σt−1,b(x) ≤
w+

w−
σt−1,b(xt,b) ∀x ∈ X

which also applies when x = xt+1,1.

Q.E.D.

19

Remark A.2. LAW does not use the heuristic called the relevant region[CBRV13, KDK16], which
makes the proof simpler compared with the Lemma 6.5 in [KDK16].
Remark A.3. The Lemma 6.5 in [KDK16] claims that the inequality similar to Eq. 14 and Eq. 15
holds for sampling(DPP-SAMPLE). However, such inequality relies on fact that xt,b is the maximum
of an objective which is not guaranteed to hold for sampling(DPP-SAMPLE). The regret analysis of
DPP-SAMPLE in [KDK16] appears to need a revision. In our version, we do not make any claim in
the case of sampling.
Lemma A.4. Assume a kernel such that K(·, ·) ≤ 1. For each t ∈ [T], LAW acquires a batch using
the evaluation data Dt−1, the diversity measure Lt(·, ·) = K(·, ·| Dt−1), an acquisition function
at(·) and a weight function w(·) (as defined below Eq. 9). The posterior variance defined as Eq. 11.
has the following relation

T∑
t=1

σt−1,1(xt,1) ≤ 1 +
w+

w−

1

B

T∑
t=1

B∑
b=1

σt−1,b(xt,b). (16)

Proof. From Lemma A.1, for b = 2, · · · , B, we have

σt,1(xt+1,1) = σt(xt+1,1) ≤
w+

w−
σt−1,b(xt,b)

Summing these for b = 2, · · · , B and σt−1,1(xt,b)

σt−1,1(xt,b) + (B − 1)σt,1(xt+1,1) ≤
w+

w−

B∑
b=1

σt−1,b(xt,b)

since w− ≤ w+. Summing this with respect to t, we have

T∑
t=1

σt−1,1(xt,b) + (B − 1)

T∑
t=1

σt,1(xt+1,1) ≤
w+

w−

T∑
t=1

B∑
b=1

σt−1,b(xt,b)

The term on the left hand side can be rewritten

B

T∑
t=1

σt−1,1(xt,b) + (B − 1)(σT,1(xT+1,1)− σ0,1(x1,1)) (17)

Since (B − 1)(σ0,1(x1,1)− σT,1(xT+1,1)) ≤ Bσ0,1(x1,1)

T∑
t=1

σt−1,1(xt,b) ≤ σ0,1(x1,1) +
w+

w−

1

B

T∑
t=1

B∑
b=1

σt−1,b(xt,b)

Q.E.D.

Remark A.5. In Lemma 3 in [CBRV13] and Lemma 6.5 in [KDK16], the second term in Eq. 17
is ignored. However, σT,1(xT+1,1) − σ0,1(x1,1) can be negative, which should not be ignored.
Nevertheless, this error does not change the regret analysis in [CBRV13] because constant terms
divided by T vanishes. Our version has the additional constant 1 on the right hand side of Eq. 16.
Definition A.6. The maximum information gain γT is defined as below

γT = γ(T ;X) = max
X⊂X ,|X|=T

I(YX ; fX) = max
X⊂X ,|X|=T

H(YX)−H(YX | fX)

where Y is the observation at X and H is the differential entropy.

For Gaussian processes with the kernel K and the variance of observation noise σ2

γT = γ(T ;X ,K, σ2) = max
X⊂X ,|X|=T

1

2
log det(I + σ−2K(X,X))

We rephrase lemmas from previous works with the batch indexing for notational ease and discuss the
noteworthy points in the rephrased version compared with the original ones.

20

Lemma A.7 (Lemma 3 [SKKS09], Lemma 4 [CBRV13], Theorem 3.1 [WZJ16]). Assume a kernel
such that K(·, ·) ≤ 1. For each t ∈ [T], LAW acquires a batch using the evaluation data Dt−1,
the diversity measure Lt(·, ·) = K(·, ·| Dt−1), an acquisition function at(·) and a weight function
w(·) (as defined below Eq. 9). The posterior variance defined as Eq. 11. has the following relation

T∑
t=1

B∑
b=1

σ2
t−1,b(xt,b) ≤ C1γTB

where C1 = 2
log(1+σ−2) and γTB is the maximum information gain at TB

Proof. Following the trick used in the proof of Lemma 5.4 in [SKKS09],

σ2
t−1,b(x) = σ2σ−2σ2

t−1,b(x) ≤
1

log(1 + σ−2)
log(1 + σ−2σ2

t−1,b(x)). (18)

In LAW, xt,1 and xt,b deterministic conditioned respectively on Dt−1 = {(xs,b, ys,b)}s∈[t−1],b∈[B]

and Dt−1 ∪{xt,c}c=2,··· ,b−1 for b = 2, · · · , B. Also, xt,b does not depend on
{ys,c}T(B)

seq (s,c)<T
(B)
seq (t,b)

as long as {xs,c}T(B)
seq (s,c)≤T

(B)
seq (t,b)

. Therefore, the proof of Lemma 5.3
in [SKKS09] can be applied

T∑
t=1

B∑
b=1

σ2
t−1,b(xt,b) ≤

1

log(1 + σ−2)

T∑
t=1

B∑
b=1

log(1 + σ−2σ2
t−1,b(xt,b))

=
2

log(1 + σ−2)
I(Y{xt,b}t∈[T],b∈[B]

; f{xt,b}t∈[T],b∈[B]
) ≤ 2

log(1 + σ−2)
γTB

Remark A.8. In contrast to Lemma 5.4 in [SKKS09] which bounds the sum of square of regrets,
Lemma A.7 bounds the sum of the posterior variances. The delayed evaluation {yt,b}t∈[T],b∈[B] does
not cause any impediment in the proof.

Lemma A.9 (Lemma 6.1 [KDK16], Lemma 3.2 [WZJ16]). For ζt =
(
2 log

(π2
t

2δ

))1/2
with δ ∈ (0, 1)

and πt > 0 such that
∑∞

t=1 πt ≤ 1, an arbitrary sequence of actions x1,1, · · · ,xT,1 ∈ X

P

(⋂
t∈[T]

{
f
∣∣∣ |f(xt,1)− µt−1(xt,1)| ≤ ζt · σt−1,1(xt,1)

})
≥ 1− δ.

Remark A.10. ζt only depends on the number of batch round t and is independent with the batch size
B. Therefore, ζt in batch BO is the same as one in the sequential BO.
Lemma A.11 (Lemma 3.3 [WZJ16]). If |f(xt,1)− µt−1(xt,1)| ≤ ζtσt−1,1(xt,1)

rt,1 = f(xt,1)− f(x⋆) ≤ (νt + ζt)σt−1,1(xt,1)

where νt =
(
min
x∈X

µt−1(x)−m̂
σt−1,1(x)

)
, m̂ is the estimate of the optimum[WZJ16] and ζt =

(
2 log

(π2
t

2δ

))1/2
with δ ∈ (0, 1) and πt > 0 such that

∑∞
t=1 π

−1
t ≤ 1.

Remark A.12. In Lemma A.11, we only bound regrets in (t, 1)-th round where there is no delayed
evaluation.
Remark A.13. In contrast to the original condition

∑T
t=1 πt ≤ 1, we use

∑∞
t=1 πt ≤ 1 so that πts

are T independent as the recommendation of the choice πt =
1
6π

2t2 in [WZJ16]. When the number
of rounds T is known in advance, T dependent πt is possible, e.g, πt = T [WZJ16]. By making πt

independent with T , EST becomes anytime, i.e. not requiring that the number of rounds is known in
advance.

Lemma A.14 (Lemma 5.1 [SKKS09]). For β(B)UCB
t,1 = 2 log

(
| X |π2(T(B)

seq (t,1))
2

6δ

)
with δ ∈ (0, 1),

P

(⋂
x∈X

{
f
∣∣∣ |f(x)− µt−1(x)| ≤ (β

(B)UCB
t,1)1/2 · σt−1,1(x)

})
≥ 1− δ.

21

Remark A.15. Note that β(B)UCB
t,1 = βUCB

T
(B)
seq (t,1)

. in batch BO with the batch size of B, β is set as if

there is B times more rounds.
Lemma A.16 (Lemma 5.2 [SKKS09], Lemma 1 [CBRV13]). If |f(x) − µt−1(x)| ≤
(β

(B)UCB
t,1)1/2σt−1,1(x) for all x ∈ X , then

rt,1 = f(xt,1)− f(x⋆) ≤ 2(β
(B)UCB
t,1)1/2σt−1,1(xt,1).

Remark A.17. In Lemma A.16, we only bound regrets in (t, 1)-th round where there is no delayed
evaluation.
Theorem A.18. Assume a kernel such that K(·, ·) ≤ 1, | X | < ∞ and f : X → R is sampled from
GP(0,K). In each round t ∈ [T] of batch Bayesian optimization, LAW acquires a batch using the
evaluation data Dt−1, the diversity measure Lt(·, ·) = K(·, ·| Dt−1), an acquisition function at(·)
and a weight function w(·) (as defined below Eq. 9).

Let C1 = 36
log(1+σ−2) where σ2 is the variance of the observation noise and δ ∈ (0, 1).

For GP-UCB, define β
(B)UCB
t,1 = 2 log

(
| X |π2(T(B)

seq (t,1))
2

6δ

)
and let

η
(B)
t = 2(β

(B)UCB
t,1)1/2

For EST, define νt = min
x

(
µt−1(x)−m̂t

σt−1,1(x)

)
where m̂t is the estimate of the optimum [WZJ16], ζt =(

2 log
(π2

t

2δ

))1/2
, πt > 0 such that

∑∞
t=1 π

−1
t ≤ 1 and let

η
(B)
t = νt∗ + ζt

where t∗ = argmax
s∈[t]

νs.

Then batch cumulative regret satisfies the following bound

P

({
R

(B)
T

T
≤

η
(B)
T

T
+ ηT

w+

w−

√
C1

γTB

TB

})
≥ 1− δ.

Proof. Let η(B)
t =

{
νt∗ + ζt EST
2(β

(B)UCB
t,1)1/2 UCB

.

For the batch cumulative regret case, we use Lemma A.1.

R
(B)
T =

T∑
t=1

r
(B)
t =

T∑
t=1

min
b=1,··· ,B

rt,b (19)

≤
T∑

t=1

rt,1 (20)

≤ η
(B)
T ·

T∑
t=1

σt−1,1(xt,1) by
{

Lemma A.11 EST
Lemma A.16 UCB

≤ η
(B)
T ·

(
1 +

w+

w−

1

B

T∑
t=1

B∑
b=1

σt−1,b(xt,b)
)

by Lemma A.1

≤ η
(B)
T ·

(
1 +

w+

w−

√√√√T

B

T∑
t=1

B∑
b=1

σ2
t−1,b(xt,b)

)
by Cauchy-Schwarz

≤ η
(B)
T ·

(
1 +

w+

w−

√
T

B
C1γTB

)
by Lemma A.7

22

By Lemma A.9 for EST and Lemma A.14 for UCB, above two inequalities hold with the probability
at least 1− δ.

Remark A.19. Due to the difference of the statements in Lemma A.1, the batch cumulative regret
bound additionally has the term w+

w−
. Even with this additional term, it shows that the bound of the

batch cumulative regret of LAW enjoys the same asymptotic behavior as existing methods [CBRV13,
DKB14, KDK16].
Remark A.20. This theorem provides a rough guideline how to choose a weight function, that is,
bounded below by a positive value and bounded above, which is the condition we specify for the
weight function. Even though this shows that simple regret vanishes, this regret bound for LAW is
loose because not much specific structure of the weight function other than the bound is used. We
expect that, using other properties of the weight function along with the boundedness, the bound can
be improved.

A.2 Difference to analysis of sequential cumulative regret

In our regret analysis, we analyze batch cumulative regret. In existing works, sequential cumulative
regret is analyzed as an end goal [DKB14] and as a medium to show vanishing simple regret
in [KKSP18]. In [CBRV13],11 both batch cumulative regret and sequential cumulative regret are
analyzed.12 We discuss the differences between these two approaches and the technical details in
their proofs.

By definition, the analysis of sequential cumulative regret takes into account all instantaneous regrets
incurred while batch cumulative regret considers minimum instantaneous regrets in each batch.
Therefore, bounds on sequential cumulative regret are stronger than ones on batch cumulative regret
in this sense (as shown in Table 3 Relation between two Cumulative). However, each has its own
more appropriate scenario to use. The sequential cumulative regret is often appropriate in the situation
where the optimization objective represents the cost of evaluations. For example, in multi-armed
bandit, each instantaneous regret represents the cost of evaluation (playing arm-pulling) and the goal is
to minimize the incurred cost in finding the best bandit machine. On the other hand, batch cumulative
regret is often reasonable when the optimization objective is different to the cost of evaluations. For
example, in hyperparameter optimization, the cost of evaluations can be wall-clock time and the
objective is the cross-validation error. In this case, we want to find a good hyperparameter no matter
how bad hyperparameters are evaluated, which possibly acts as exploratory query points.

In proofs, each analysis takes a slightly different route. As argued in [DKB14], to bound all
instantaneous regret, a wider confidence bound is needed to bound instantaneous regret with the
corresponding posterior variance. While the posterior mean is not update in the batch acquisition until
all query points are evaluated, the posterior variance is updated whenever a new query point is given
no matter whether it is evaluated or not. To guarantee high probability bound for all instantaneous
regrets, an additional kernel-dependent constant is introduced and the constant is controlled with an
initialization scheme[DKB14]. In [KKSP18], the analysis relies on such kernel-dependent constant
and the initialization scheme but it is empirically shown that the algorithm performs well without the
initialization scheme. The necessity of the kernel-dependent constant suggests that the analysis of
sequential cumulative regret in [CBRV13] requires a revision.

For the purpose to show vanishing simple regret, batch cumulative regret can be used circumventing
the additional constant and the initialization scheme proposed in [DKB14]. In the analysis using
batch cumulative regret, only non-delayed regret is considered and bounded by non-delayed posterior
variance (Eq. 20). Then non-delayed posterior variance is bounded by the average of non-delayed
posterior variance and delayed posterior variances in the same batch (Lemma A.4). Therefore, the
effect of the batch size influences the bound in this posterior variance bounding step. However, in
the analysis using sequential cumulative regret[DKB14, KKSP18], both non-delayed and delayed
instantaneous regrets need to be bounded. The bound is the corresponding posterior variance
multiplied by a specially design number to handle delayed cases. In response to this, the additional
kernel-dependent constant and the initialization scheme are introduced in [DKB14].

11Sequential cumulative regret is termed full cumulative regret in [CBRV13].
12The analysis of sequential cumulative regret in [CBRV13] may need modification and not be correct, see

following paragraph for a brief explanation and for more elaborated explanation, refer to [DKB14].

23

Batch cumulative regret is enough in showing vanishing simple regret. The proof only considers
non-delayed instantaneous regrets in batches. Therefore, the analysis of batch cumulative regret
reveals how delayed query points in a batch explore effectively and help to reduce future non-delayed
instantaneous regrets. We admit that some may argue that a tighter bound is possible by taking into
account delayed evaluations with smaller instantaneous regrets. Still, this is aligned with the intuition
of many batch acquisition methods promoting diversity in batches. In practice, it is not unlikely to
observe a delayed evaluation is better than the non-delayed evaluation in the same batch.

A.3 Growth Rate of UCB/EST hyperparameter

η
(B)
t =

{
νt∗ + ζt EST
2(β

(B)UCB
t,1)1/2 UCB

where β
(B)UCB
t,1 = 2 log

(
| X |π2((t−1)B+1)2

6δ

)
, t∗ = argmax

s∈[t]

νs, νt = min
x

(
µt−1(x)−m̂t

σt−1,1(x)

)
where

m̂t is the estimate of the optimum [WZJ16], ζt =
(
2 log

(π2
t

2δ

))1/2
, πt > 0 such that

∑∞
t=1 π

−1
t ≤ 1.

For UCB, it is clear that 2(β(B)UCB
t,1)1/2 = O((log(tB))1/2).

For EST, we first look into ζt. If we choose πt = π2t2

6 as suggested in [WZJ16], then
ζt = O((log(tB))1/2). Since m̂t = Ef∼GP (µt−1(·),σ2

t−1(·))[infx
f(x)] [WZJ16], from Lemma 5.1

in [SKKS09], we have
|f(x)− µt−1(x)| ≤ τtσt−1(·) ∀x ∈ X

where τ
1/2
t = 2 log

(| X |π2t2

6δ

)
.

Then
m̂t ≥ µt−1(xlb)− τtσt−1(xlb)

with xlb = argmin
x

µt−1(x) + τtσt−1(x),

min
x

(
µt−1(x)− m̂t

σt−1,1(x)

)
≤ µt−1(xlb)− µt−1(xlb) + τtσt−1(xlb)

σt−1,1(xlb)
= τt

Since, τt is increasing, we have νt∗ ≤ τt and νt∗ = O((log(tB))1/2).

Therefore, for EST, η(B)
t = νt∗ + ζt = O((log(tB))1/2).

B Information Gain

In this section, we present results of our analysis on the information gain and the position kernel.

In Theorem. B.1 in Subsection B.1, we show that for a kernel on a finite space, the information gain
grows O(log(T)). In combination with Section A, this shows that an arbitrary kernel on a finite space
including the position kernel achieves sublinear regret. To our knowledge, the positive definiteness
of the position kernel has not been shown rigorously, [ZSBB14] used randomly generated data to
empirically check that whether the position kernel is positive definite and [ZYLW19] argued that the
exponential of a metric is positive definite, which is not true in general. Therefore, we show that the
position kernel is positive definite and further provide a lower and upper bound of the eigenvalues of
the position kernel in Subsection B.2. In Theorem B.4 in Subsection B.3, we show that by using the
properties of the position kernel, a tighter bound on the maximum information gain is achievable.

B.1 Information gain of kernels on a finite space

In this subsection, we show a bound of the information gain of kernels defined on a finite set.

Theorem B.1. K is a kernel on a finite set X (| X | < ∞), σ2 is the variance of the observation noise
and Λ = {λn}1,··· ,| X | (λn ≥ λn+1 ≥ 0) is the set of eigenvalues of the gram matrix K(X ,X).

24

The number of elements in a set A is denoted by NA, so NX is the number of elements of X and is
equal to the number of eigenvalues of K(X ,X).

Then

γ(T ;K,X , σ2) ≤ 1

2
min

{
T · log det(1 + σ−2 max

x∈X
K(x, x)), NX · log(1 + σ−2λmax · T)

}

Proof. Let us consider the eigenvalues and the eigenvectors of the gram matrix K(X ,X).

K(X ,X) = UΛUT

with Λ = diag(λ1, · · · , λNX), U = [u1, · · · , uNX] ∈ RNX×NX where λi is an eigenvalue and ui is
the corresponding eigenvector.

Since

K(x, x′) =

NX∑
i=1

λi[ui]x[ui]x′ ,

the map

ϕ(x) = [
√

λ1[u1]x, · · · ,
√
λNX [uNX]x]

T

is a NX dimensional feature map

K(x, x′) = ϕ(x)T · ϕ(x′).

For a sequence A = {a1, · · · , aNA
} of ai ∈ X = xi

NX
i=1, the gram matrix K(A,A) can be expressed

with the projection matrix PX
A ∈ {0, 1}NA×NX from X to A such that [PX

A]ij = 1 if ai = xj

K(A,A) = PX
A UΛUT (PX

A)T . (21)

Remark B.2. Note that (PX
A)T · PX

A is NX ×NX diagonal matrix and [(PX
A)T · PX

A]ii is how many
times xi appears in the sequence A.

We obtain two bounds. The first one is

log det(I + σ−2K(A,A)) ≤
∑
a∈A

log det(1 + σ−2K(a, a)) (22)

using Hadamard’s inequality.13

Adopting the proof for the information gain of the linear kernel from [SKKS09], the second one is

log det(I + σ−2K(A,A)) (23)

= log det(I + σ−2PX
A K(X,X)(PX

A)T)

= log det(I + σ−2PX
A UΛUT (PX

A)T) by Eq. 21

= log det(I + σ−2Λ
1
2UT (PX

A)TPX
A UΛ

1
2) by Weinstein-Aronszajn identity

≤
NX∑
i=1

log det(1 + σ−2λi[U
T (PX

A)TPX
A U]ii) by Hadamard’s inequality

≤
NX∑
i=1

log det(1 + σ−2λiT) by Eq. 25 (24)

13https://en.wikipedia.org/wiki/Hadamard%27s_inequality

25

https://en.wikipedia.org/wiki/Hadamard%27s_inequality

using Weinstein-Aronszajn identity14, Hadamard’s inequality15 and below

[UT (PX
A)TPX

A U]ii

=

NX∑
k=1

NX∑
l=1

([U]ki)[(P
X
A)TPX

A]kl([U]li)

=

NX∑
k=1

[(PX
A)TPX

A]kk([U]ki)
2 by Rmk. B.2

≤
NX∑
k=1

[(PX
A)TPX

A]kk︸ ︷︷ ︸
=NA=T

·
NX∑
k=1

([U]ki)
2

︸ ︷︷ ︸
=1

∑
i

aibi ≤ (
∑
i

ai)(
∑
i

bi) if ai, bi ≥ 0 (25)

where the second equality comes from the fact that (PX
A)T · PX

A is NX ×NX diagonal matrix and
the last inequality is possible because every numbers are non-negative since [(PX

A)T · PX
A]ii is how

many times xi appears in the sequence A.

Putting Eq. 22 and Eq. 23 together,

log det(I+σ−2K(A,A)) ≤ min
{
T ·log det(1+σ−2 max

x∈X
K(x, x)), NX ·log det(1+σ−2λmaxT)

}
Q.E.D.

B.2 Positive definiteness of the position kernel

In this subsection, we show that the positive definiteness of the position kernel and the bound of its
eigenvalues.

Theorem B.3. The position kernel K(·, ·|τ) defined on SN is positive definite and the eigenvalues of

the K(A,A) where A ⊂ X lie between
(

1−ρ
1+ρ

)N
and

(
1+ρ
1−ρ

)N
where ρ = exp(−τ).

Proof. We show that the kernel is positive definite on a larger set

X =

N∏
i=1

{1, · · · , N}.

Since SN ⊂ X , K(SN , SN) is a principal submatrix of K(X ,X) With Poincaré seperation theo-
rem (or Cauchy interlacing theorem), we show that the position kernel is positive definite and that
the eigenvalues of K(SN , SN) lie between the smallest eigenvalue and the largest eigenvalue of
K(X ,X).

On X , the position kernel is a product kernel of N kernels defined {1, · · · , N} as below

K(π1, π2|τ) = exp
(
− τ ·

∑
i

|π−1
1 (i)− π−1

2 (i)|
)
.

and its gram matrix on each component has following form

[ρ|i−j|]ij =

1 ρ ρ2 · · · ρN−2 ρN−1

ρ 1 ρ · · · ρN−3 ρN−2

...
...

... · · ·
...

...
ρN−1 ρN−2 ρN−3 · · · ρ 1

where ρ = exp(−τ).

14https://en.wikipedia.org/wiki/Weinstein%E2%80%93Aronszajn_identity
15https://en.wikipedia.org/wiki/Hadamard%27s_inequality

26

https://en.wikipedia.org/wiki/Weinstein%E2%80%93Aronszajn_identity
https://en.wikipedia.org/wiki/Hadamard%27s_inequality

This form of matrix is known as Kac-Murdock-Szegö (KMS) matrix [GS58, Tre99], which we
denote by KMS(ρ) (0 < ρ < 1).

Their eigenvalues λn are bounded as below [GS58, Tre99]

λn =
1− ρ2

1 + ρ2 − 2ρ cos(θn)

where
n− 1

N + 1
π < θn <

n

N + 1
π

Therefore

1− ρ

1 + ρ
<

1− ρ2

1 + ρ2 − 2ρ cos(n
N+1π)

< λn <
1− ρ2

1 + ρ2 − 2ρ cos(n−1
N+1π)

<
1 + ρ

1− ρ

We observe that the each component kernel is positive definite with above bounds on the eigenvalues.

Since

K(X ,X) =
N⊗
i=1

K({1, · · · , N}, {1, · · · , N})

where
⊗

is the Kronecker product, the lower bound and the upper bound of the eigenvalues of

K(X ,X) are
(

1−ρ
1+ρ

)N
and

(
1+ρ
1−ρ

)N
, respectively.

For A ∈ SN ∈ X , these bounds also apply to the eigenvalues of K(A,A) by Poincaré seperation
theorem (or Cauchy interlacing theorem).

Q.E.D.

B.3 Information gain of the position kernel

Theorem B.4. K(·, ·|τ) is the position kernel defined on SN , σ2
obs is the variance of the observation

noise, ρ = exp(−τ) and

Dmax =

{
N2

2 N mod 2 = 0
N2−1

2 N mod 2 = 1

Then
γT ≤ 1

2
min{A(T), NX · log(1 + σ−2

obsλmax · T)}

where

A(T) = log(1 + σ−2
obs(1 + (T − 1)ρDmax)) + (T − 1) log(1 + σ−2

obs(1− ρDmax))

which is smaller than T · log det(1 + σ−2
obs maxx∈X K(x, x)).

Proof. γT is defined as
1

2
max

A⊂X ,|A|=T
log det(I + σ−2

obsK(A,A))

By Lem. B.6 in Supp.Subsec. B.3, for i, , j = 1, · · · , T , ρDmax ≤ [K(A,A)]ij ≤ 1.

By Perron-Frobenius theorem, the largest eigenvalue of K(A,A) is bounded below by

1 + (T − 1)ρDmax

When λ
(A)
i is the i-th eigenvalue of K(A,A), with the constraint λ(A)

1 ≥ 1 + (T − 1)ρDmax ,

T∏
i=1

(1 + σ−2
obsλ

(A)
i)

27

is bounded above by

(1 + σ−2
obs(1 + (T − 1)ρDmax))

T∏
i=2

(
1 + σ−2

obs

T − (1 + (T − 1)ρDmax)

T − 1

)
(1 + σ−2

obs(1 + (T − 1)ρDmax))

T∏
i=2

(1 + σ−2
obs(1− ρDmax))

Here, we use the fact that for
∑

i xi = C, xi > 0 if there are p and q such that xp < xq, then for x′
i

defined as x′
i = xi for i ̸= p, 1 and x′

p = xp + d, x′
q = xq − d where d ≤ (xq − xp)/2∏

i

xi ≤
∏
i

x′
i.

Note that without the constraint on the lower bound of the largest eigenvalue,

T∏
i=1

(1 + σ−2
obsλ

(A)
i) ≤

(
1 + σ−2

obs

trace(K(A,A))

T

)T
where trace(K(A,A)) = T for kernels such that K(x, x) is a constant independent of x ∈ X as is
for the position kernel.

This shows that the bound in this theorem is tighter than that of Thm. B.1.

Q.E.D.

Remark B.5. specially when σ2
obs and/or ρ is large, i.e. log(1 + σ−2

obs(1 − ρDmax)) ≈ 0, we can
observe that even in the finite-time regime, the regret is almost sublinear since it is dominated by
log(1 + σ−2

obs(1 + (T − 1)ρDmax)). In this case, the theorem provide a bound which is significantly
tighter than the bound in Thm. 3.10 even in the finite-time regime. Even though both are the same in
the asymptotic regime, they may differ significantly in the finite-time regime.
Lemma B.6. For π1, π2 in SN ,

dpos(π1, π2) =
∑
i

|π−1
1 (i)− π−1

2 (i)| ≥ Dmax

where

Dmax =

{
N2

2 N mod 2 = 0
N2−1

2 N mod 2 = 1

Proof. Note that dpos is left-invariant, that is,

dpos(π1, π2) = dpos(π ◦ π1, π ◦ π2)

for π ∈ SN , and thus
dpos(π1, π2) = dpos(πid, (π1)

−1 ◦ π2)

where πid = (1, · · · , N).

By induction on N , we show that

max
π∈SN

dpos(πid, π) = dpos((1, 2, 3, · · · , N), (N,N − 1, · · · , 2, 1))

Base case(N = 2) This is trivial.

Induction Step As the induction hypothesis, assume that above is true for N = k. When N = k+1,
let us consider π = (−,−, · · · ,, a) ∈ Sk+1 an arbitrary permutation whose last element is a ̸= 1,

dpos(πid, π) =
∑

i:π−1(i)<a,i<k+1

|i− π−1(i)|+
∑

i:π−1(i)>a,i<k+1

|i− π−1(i)|+ |k + 1− a|

where a ̸= N .

28

Then ∑
i:π−1(i)<a,i<k+1

|i− π−1(i)|+
∑

i:π−1(i)>a,i<k+1

|i− π−1(i) + 1− 1|

≤
∑

i:π−1(i)<a,i<k+1

|i− π−1(i)|+
∑

i:π−1(i)>a,i<k+1

|i− (π−1(i)− 1)|+
∑

i:π−1(i)>a,i<k+1

1

≤ dpos((1, · · · , k), (k, · · · , 1)) + (k − a)

≤ dpos((1, · · · , k), (k, · · · , 1)) + k + (k mod 2)

= dpos((1, · · · , k + 1), (k + 1, · · · , 1))

where∑
i:π−1(i)<a,i<k+1

|i− π−1(i)|+
∑

i:π−1(i)>a,i<k+1

|i− (π−1(i)− 1)| ≤ dpos((1, · · · , k), (k, · · · , 1))

is from the induction hypothesis.

Therefore

max
π∈SN

dpos(πid, π) = Dmax =

{
N2

2 N mod 2 = 0
N2−1

2 N mod 2 = 1

Q.E.D.

C Resemblance to the Local Penalization

Taken from [GDHL16], the local penalization strategy selects b-th point in a batch as follows

xt,b = argmax
x∈X

{
g(at(x))

b−1∏
i=1

ϕ(x,xt,i)
}

(26)

where ϕ(x,xt,i) is a local penalizer which is non-decreasing function of Euclidean distance
∥x−xt,i ∥2 and g(·) is a positive increasing function similar to our weight function.

If we use the prior covariance function K(·, ·), which is the kernel of the GP surrogate model in place
of the posterior covariance function Kt(·, ·) as the diversity gauge of LAW

t , the greedy maximization
objective becomes

xb = argmax
x∈X

[
w(at(x))

2·(
K(x,x)−K(x, {xi}|b−1|)(K({xi}|b−1|, {xi}|b−1|) + σ2I)−1(K({xi}|b−1|,x)

)]
(27)

We call this LAW variant as LAW-prior-EST and LAW-prior-EI according to the acquisition function
each uses.

Since the closer to the conditioning data it is, the smaller the predictive variance is, the predictive
variance behaves exactly as what the local penalizer aims at. Another key difference is that, while
the local penalizer Eq. 26 is heuristically designed, LAW-prior-EST\EI use the kernel whose hy-
perparameters are fitted in the surrogate model fitting step. Therefore, the diversity measured in
LAW-prior-EST\EI is more guided by the collected evaluation data.

Additional comparison to these variants (Supp. Sec. G) reveals the contribution of the acquisition
weights and thus further confirms the benefit of using acquisition weights in the optimization
performance

D Score-based Structure Learning

In score-based structure learning, general-purpose optimization methods are utilized to optimize a
score S(G,D) of DAG G[SGG19] for a given data D. Typically, S(·, ·) is a penalized likelihood

29

score or an information theoretic criterion[DM17]. The prevalent choice of the optimization method
is a local search which relies on the efficient computation of the DAG score to afford many score
evaluations.[Chi02, KF09, SGG19]. For the efficient computation, it is critical for a score to be
decomposable[SSS19], defined as below.

S(G,D) =
∑
v∈V

s(v|PaG(v),D)

where s(·) is a score defined for a node v ∈ V . In local search with a decomposable score, changes
made by local modification of the DAG G can be reflected to the network score S(G,D) by updating
corresponding components without calculating the network score from scratch. Despite of the
computational benefit, the constraint on the decomposability of the score restricts the use of more
suitable scores, such as, scores with non-factorized priors[CCD15] or sophisticated information
criteria[GR19].

E Normalized Maximum Likelihood

E.1 Model Selection with Minimum Description Length

In minimum description length (MDL) principle[GG07], a distribution called a universal distribution
is associated with each model class, for example, p̄G(·) is associated with the MG , BNs with a
given DAG G. For a given data D, model selection can be performed by comparing the universal
distribution relative to a model class

p̄G1
(D) VS p̄G2

(D)

E.2 Normalized Maximum Likelihood

Normalized Maximum Likelihood (NML) is regarded as the most fundamental universal
distribution[GR19]. For the discrete BNs with a DAG G with the data D, NML is defined as

p̄G(D) =
pBN (D |G, θ̂ML(G,D))∑

| D |=| D′ | pBN (D′ | G, θ̂ML(G,D′))

where θ̂ML(G,D) is the maximum likelihood estimator of the parameters of the BN with the DAG G
on the data D. The summation over all possible data with the same cardinality is the computational bot-
tleneck. The log of the denominator REGNML(G, N) = log(

∑
| D′ |=N pBN (D′ | G, θ̂ML(G,D′)))

is called NML regret.16

E.3 NML regret estimation

Even though it is strongly principled, NML computation is restricted to certain classes of models,
e.g, multinomial distribution[KM07], naive Bayes[MM07], which prevents its use in score-based
structure learning. In Bayesian networks, efficient approximations were proposed and shown to
perform better in model selection[RSKM08, SLAJR18].

Even though REGNML(G, N) cannot be exactly computed, the summation can be estimated using
Monte carlo with proper scaling when BN is discrete.

log
(∑

| D |=| D′ |

pBN (D′ | G, θ̂ML(G,D′))
)

≈ log
(∑

| D |=| D′ | 1

| S |

)
+ log

(
LSED′∈S log(pBN (D′ | G, θ̂ML(G,D′)))

)
where LSE is the logsumexp whose implementation increases the numerical stability significantly17.

16Originally, it is called regret but not to confuse with bandit regret, we prefix it with NML.
17https://pytorch.org/docs/stable/generated/torch.logsumexp.html

30

https://pytorch.org/docs/stable/generated/torch.logsumexp.html

In our scaled MC estimate of REGNML(·, ·), we observed that smaller samples tend to marginally
underestimate the value. However, the estimation seems quickly saturated with respect to the sample
size. We observed that a MC-estimate of NML regret using | S | = 10, 000 is a good compromise
between the stability of the estimation and the time needed for the evaluation. With 10,000 samples,
the estimation is stable and the difference made by using more samples is marginal to the difference
made by the choice of different DAGs. On machines with Intel(R) Xeon(R) CPU E5-2630 v3
2.40GHz, the evaluation time of the objectives (Tab. 2) ranges from one minute to four minutes.

F Additional Information on Experiments

F.1 Submodular Maximization

A set function g : 2Ω → R, where 2Ω is the power set of Ω, is submodular when it has the diminishing
returns property, that is, for all P ⊂ Q ⊂ Ω and p ∈ Ω \Q

g(P ∪ {p})− g(P) ≥ g(Q ∪ {p})− g(Q)

As a combinatorial version of convexity [Lov83], submodularity has been playing a critical role in
combinatorial optimization [Fuj05].

One important property of the submodular function is that when it is positive (g(·) ≥ 0) and monotone
(P ⊂ Q =⇒ g(P) ≤ g(Q)), its maximization can be performed greedily with an approximation
guarantee [NWF78] as given below. In the maximization of a positive monotone submodular function
with the cardinality constraints, g(P ∗) = max|P |=M g(P), the solution P ∗

greedy = {p∗
1, · · · ,p∗

M}
from the greedy strategy which sequentially solves p∗

m = argmaxp∈Ω g({p∗
1, · · · ,p∗

m−1,p}) has
the following approximation guarantee

(1− e−1)g(P ∗) ≤ g(P ∗
greedy) ≤ g(P ∗) (28)

In practice, this greedy method often provides almost optimum solutions [SKD15]. Moreover,
it is possible to relax the conditions (positivity, monotonicity, and even submodularity) [FMV11,
BBKT17, Sak20].

F.2 DPP-SAMPLE-EST implementation

In [KDK16], DPP-MAX-EST and DPP-SAMPLE-EST are compared on continuous spaces using
the median of multiple runs, and the median of DPP-SAMPLE-EST outperforms the median of
DPP-MAX-EST. On the permutation spaces of our experiments, DPP-SAMPLE-EST performs worse
than DPP-MAX-EST in terms of the mean of multiple runs.

We attribute this to the sample size used in sampling, rather than the use of a different performance
measure. Due to the large size of permutation spaces, it is infeasible to collect many samples as
suggested in [AGR16], which is O(S log(S/ϵ)) where S is the size of the permutation space and ϵ is
the desired approximation level.

As suggested in [AGR16], we first use DPP-MAX-EST to pick the initial point of sampling and
then we perform 100 MCMC sampling. Therefore, MCMC includes the maximization routine in its
initialization. And we conjectured that not many sampling steps are necessary because it already
starts from the most likely point expecting that being perturbed from the most likely point, it is
still likely but retains reasonable diversity. However, from the results we have, it appears that more
sampling steps are necessary. Since the sufficient condition given in [AGR16] requires an infeasibly
huge number on permutation space and such huge number can make the batch acquisition time not
negligible compared with evaluation time, LAW focuses on the maximization of the k-DPP density.

F.3 Combinatorial optimization problems on permutations

We consider three types of combinatorial optimization on permutations

Quadratic Assignment Problems [KB57] Given N facilities P and N locations L, a distance
d(·, ·) is given for each pair of locations and a weight k(·, ·) is given for each pair of facilities, for
example, the cost of delivery between facilities. Then the goal is to find an assignment represented by
a permutation π∗ minimizing f(π) =

∑
a,b∈P k(a, b) · d(π(a), π(b)).

31

Data source (https://www.opt.math.tugraz.at/qaplib/inst.html): char12a[CB89],
nug22[NVR68], esc32a[EW90]

Flowshop Scheduling Problems [Wik20] There are N machines and M jobs. Each job requires
N operations to complete. The n-th operation of the job must be executed on the m-th machine.
Each machine can process at most one operation at a time. Each operation in each job has its own
execution specified. Even though jobs can be executed in any order, operations in each job should
obey the given order. The problem is to find an optimal order of jobs to minimize execution time. For
a formal description, please refer to [Ree95].

Data source (http://people.brunel.ac.uk/~mastjjb/jeb/orlib/flowshopinfo.
html):car5[Car78], hel2[Hel60], reC19[Ree95]

Traveling Salesman Problems For given cities, a salesman visits each city exactly once while min-
imizing a given cost incurred in travelling. TSP is the most widely known example of combinatorial
optimization on permutations.

Data source (http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/)

G Experiment Results

In this section, we provide the additional experimental results which we cannot present in the main
text due to the page limit. Following results are presented from the next page

• Comparison with other LAW variants as combinatorial versions of the local
penalization[GDHL16] (Subsec. 5.2.1)

• Figures of the structure learning experiments (Sec. 5.3)

32

https://www.opt.math.tugraz.at/qaplib/inst.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/flowshopinfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/flowshopinfo.html
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

G.1 Quadratic Assignment Problems

Method Mean±Std.Err. #Eval
BUCB +18104.80± 955.15 530
DPP-MAX-EST +14731.60± 633.79 530
DPP-SAMPLE-EST +19969.60± 718.90 530
MACE-EST +14126.13± 596.29 530
MACE-UCB +13440.13± 347.78 530
q-EI +12769.20± 457.11 530
q-EST +11790.13± 497.59 530
LAW-EI +11914.40± 345.21 530
LAW-EST +12067.07± 237.50 530
LAW-prior-EI +11875.67± 771.34 530
LAW-prior-EST +11842.53± 301.49 530

Method Mean±Std.Err. #Eval
DPP-MAX-EST +3899.60± 23.04 530
DPP-SAMPLE-EST +4446.13± 22.45 530
MACE-EST +4085.87± 19.65 530
MACE-UCB +4030.80± 26.37 530
q-EI +3653.07± 10.06 530
q-EST +3690.00± 15.16 530
LAW-EI +3724.00± 12.71 530
LAW-EST +3730.93± 9.03 530
LAW-prior-EI +3777.47± 7.90 530
LAW-prior-EST +3695.47± 11.49 530

Method Mean±Std.Err. #Eval
DPP-MAX-EST +276.53± 3.87 510
DPP-SAMPLE-EST +319.60± 3.78 510
MACE-EST +285.60± 3.13 830
MACE-UCB +250.27± 3.51 830
q-EI +172.67± 3.23 830
q-EST +171.20± 1.84 830
LAW-EI +192.53± 5.26 830
LAW-EST +191.73± 2.89 830
LAW-prior-EI +216.13± 5.30 830
LAW-prior-EST +188.93± 1.91 830

33

G.2 Flow-shop Scheduling Problems

Method Mean±Std.Err. #Eval
BUCB +7887.20± 32.37 275
DPP-MAX-EST +7795.67± 11.11 530
DPP-SAMPLE-EST +7972.73± 25.60 530
MACE-EST +7791.27± 9.34 530
MACE-UCB +7775.87± 9.73 530
q-EI +7782.67± 10.76 530
q-EST +7781.94± 9.25 530
LAW-EI +7793.53± 7.89 530
LAW-EST +7779.87± 7.29 530
LAW-prior-EI +7774.93± 9.97 530
LAW-prior-EST +7751.94± 7.80 530

Method Mean±Std.Err. #Eval
DPP-MAX-EST +142.47± 0.48 530
DPP-SAMPLE-EST +151.73± 0.58 530
MACE-EST +142.53± 0.45 530
MACE-UCB +143.13± 0.42 530
q-EI +141.20± 0.66 530
q-EST +141.00± 0.49 530
LAW-EI +141.20± 0.45 530
LAW-EST +140.67± 0.31 530
LAW-prior-EI +142.73± 0.49 530
LAW-prior-EST +140.33± 0.35 530

Method Mean±Std.Err. #Eval
DPP-MAX-EST +2262.13± 7.66 810
DPP-SAMPLE-EST +2409.87± 6.09 830
MACE-EST +2282.40± 5.86 830
MACE-UCB +2252.00± 5.79 830
q-EI +2231.07± 8.39 830
q-EST +2241.87± 12.06 830
LAW-EI +2211.20± 4.47 830
LAW-EST +2202.00± 4.17 830
LAW-prior-EI +2243.60± 6.56 830
LAW-prior-EST +2215.27± 7.20 830

34

G.3 Traveling Salesman Problems

Method Mean±Std.Err. #Eval
BUCB +4184.20± 132.13 405
DPP-MAX-EST +3786.00± 73.76 530
DPP-SAMPLE-EST +4602.93± 52.15 530
MACE-EST +3575.53± 25.04 530
MACE-UCB +3582.93± 20.93 530
q-EI +3426.53± 39.93 530
q-EST +3526.80± 75.02 530
LAW-EI +3465.87± 25.69 530
LAW-EST +3369.27± 7.20 530
LAW-prior-EI +3445.53± 51.35 530
LAW-prior-EST +3367.40± 10.66 530

Method Mean±Std.Err. #Eval
DPP-MAX-EST +2726.93± 50.37 530
DPP-SAMPLE-EST +3652.87± 29.48 530
MACE-EST +2939.67± 49.04 530
MACE-UCB +2697.93± 50.18 530
q-EI +2065.13± 36.48 530
q-EST +2059.73± 47.93 530
LAW-EI +2486.87± 47.36 530
LAW-EST +2038.40± 36.28 530
LAW-prior-EI +2491.27± 46.49 530
LAW-prior-EST +2250.00± 56.72 530

Method Mean±Std.Err. #Eval
DPP-MAX-EST +39539.47± 486.85 130
DPP-SAMPLE-EST +40893.30± 265.03 170
MACE-EST +32710.55± 212.19 830
MACE-UCB +25772.51± 370.62 820
q-EI +20472.44± 502.39 830
q-EST +21199.09± 619.65 830
LAW-EI +26864.42± 589.32 680
LAW-EST +19846.04± 484.86 830
LAW-prior-EI +32670.35± 614.68 190
LAW-prior-EST +32072.59± 544.12 190

35

G.4 Structure Learning

C = 76100

Method #Eval Mean±Std.Err.
GA 620 (C + 53.46)± 4.99
GA 1240 (C + 31.90)± 5.86
q-EI 620 (C + 55.98)± 10.11
q-EST 620 (C + 70.67)± 16.31
LAW-EST 620 (C + 29.58)± 6.36

C = 124000

Method #Eval Mean±Std.Err.
GA 620 (C + 1387.12)± 79.26
GA 1240 (C + 1368.07)± 92.26
q-EI 620 (C + 864.85)± 0.16
q-EST 620 (C + 928.83)± 32.97
LAW-EST 620 (C + 866.64)± 0.39

C = 135000

Method #Eval Mean±Std.Err.
GA 620 (C + 5330.60)± 406.92
GA 1240 (C + 4814.04)± 418.49
q-EI 620 (C + 2433.23)± 357.18
q-EST 620 (C + 3215.75)± 556.36
LAW-EST 620 (C + 2033.95)± 174.04

C = 117000

Method #Eval Mean±Std.Err.
GA 620 (C + 5825.19)± 570.55
GA 1240 (C + 5114.97)± 449.93
q-EI 620 (C + 2969.00)± 581.67
q-EST 620 (C + 2739.77)± 554.12
LAW-EST 620 (C + 1409.27)± 227.57

36

	Regret Analysis
	Vanishing simple regret of LAW
	Difference to analysis of sequential cumulative regret
	Growth Rate of UCB/EST hyperparameter

	Information Gain
	Information gain of kernels on a finite space
	Positive definiteness of the position kernel
	Information gain of the position kernel

	Resemblance to the Local Penalization
	Score-based Structure Learning
	Normalized Maximum Likelihood
	Model Selection with Minimum Description Length
	Normalized Maximum Likelihood
	NML regret estimation

	Additional Information on Experiments
	Submodular Maximization
	DPP-SAMPLE-EST implementation
	Combinatorial optimization problems on permutations

	Experiment Results
	Quadratic Assignment Problems
	Flow-shop Scheduling Problems
	Traveling Salesman Problems
	Structure Learning

