
Non-deep Networks

Ankit Goyal1,2 Alexey Bochkovskiy2,3 Jia Deng1 Vladlen Koltun2,3

1Princeton University 2Intel Labs 3Apple

Abstract

Latency is of utmost importance in safety-critical systems. In neural networks,
lowest theoretical latency is dependent on the depth of the network. This begs the
question – is it possible to build high-performing “non-deep" neural networks?
We show that it is. To do so, we use parallel subnetworks instead of stacking one
layer after another. This helps effectively reduce depth while maintaining high
performance. By utilizing parallel substructures, we show, for the first time, that a
network with a depth of just 12 can achieve top-1 accuracy over 80% on ImageNet,
96% on CIFAR10, and 81% on CIFAR100. We also show that a network with a
low-depth (12) backbone can achieve an AP of 48% on MS-COCO. We analyze
the scaling rules for our design and show how to increase performance without
changing the network’s depth. Finally, we provide a proof of concept for how
non-deep networks could be used to build low-latency recognition systems.

1 Introduction

Latency, which is the time taken to process a request, can be of utmost importance in safety-critical
systems that require real-time predictions. Consider an autonomous car driving at high speed. In
order to ensure safety, the car must be able to react within a very small time window. Since deep
neural networks (DNNs) are the workhorse behind a lot of intelligent systems, considering the latency
of DNNs is critical. Depending upon the use case, latency could take precedence over other factors
like the number of parameters, memory use, and number of calculations.

In a DNN, the lowest achievable latency is d
f , where d is depth of the network and f is the processor

frequency. Although, this limit is hard to achieve on a general-purpose processor like GPU, for
practical applications, one can build custom chips to get closer to the theoretical latency. This limit
for latency can also be considered for future hardware with large FLOPs or bandwidth. In such a case,
the latency could only be improved by reducing depth or increasing frequency. On the frequency
front, the scope of improvement is limited as the current process of lithography is approaching the
size of the silicon crystal lattice (Sec. 3.5). Therefore, it is worthwhile to ask if one can achieve high
performance with “non-deep” neural networks.

Large depth is accepted as an essential component for high-performing networks because depth
increases its representational ability and helps learn increasingly abstract features (He et al., 2016a).
In contrast, biological neural networks are expected to be much shallower given how quickly humans
can perceive objects and scenes Renninger & Malik (2004). This disconnect between artificial
and biological neural networks, further enhances the scientific value in the question of whether it is
possible to design high-performing “non-deep" neural networks.

In this work, we show that, it is indeed possible to build high-performing non-deep networks. We refer
to our architecture as ParNet (Parallel Networks). We show, for the first time, that a classification
network with a depth of just 12 can achieve accuracy greater than 80% on ImageNet, 96% on
CIFAR10, and 81% on CIFAR100. We also show that a detection network with a low-depth (12)
backbone can achieve an AP of 48% on MS-COCO. Note that the number of parameters in ParNet is
comparable to state-of-the-art models, as illustrated in Figure 1.
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Figure 1: Top-1 accuracy on ImageNet vs. depth (in log scale) of various models. ParNet performs
competitively to deep state-of-the-art neural networks while having much lower depth. Performance
of prior models is as reported in the literature. Size of the circle is proportional to the number of
parameters. Models are evaluated using a single 224×224 crop, except for ViTB-16 and ViTB-
32 (Dosovitskiy et al., 2021), which fine-tunes at 384×384 and PReLU-net (He et al., 2015), which
evaluates at 256×256. Models are trained for 90 to 120 epochs, except for parameter-efficient models
such as MNASNet (Tan et al., 2019), MobileNet (Sandler et al., 2018), and EfficientNet (Tan & Le,
2019), which are trained for more than 300 epochs. For fairness, we exclude results with longer
training, higher resolution, or multi-crop testing.

Prior works have studied the problem of building high-performing networks with small depth. One
classical work is Wide Residual Networks by Zagoruyko & Komodakis (2016) which shows that
scaling the number of channels could be an effective way to increase performance while limiting
depth. We take inspiration from these exciting works and push the frontiers further. To the best of our
knowledge, we are the first ones to show such high performance in the range of depth 10. (Figure 1).

To build ParNet, we adopt and combine techniques from the literature. One choice is the use of
parallel branches, where instead of arranging layers sequentially, we arrange layers parallelly. We
also find that VGG-style blocks are more suitable for reducing depth as compared to ResNet-style
blocks. To train such block we use “structural reparametrization" from RepVGG Ding et al. (2021).
Further, we create a variation of Squeeze-and-Excitation called Skip-Squeeze-and-Excitation that
allows increasing the receptive field of a network while not increasing depth.

We also study the scaling rules for ParNet. Specifically, we show that ParNet can be effectively
scaled by increasing width, resolution, and number of branches, all while keeping depth constant.
We observe that the performance of ParNet does not saturate and increases as we increase compu-
tational throughput. This suggests that by increasing compute further, one can achieve even higher
performance while maintaining small depth (∼10) and low latency.

To summarize, our contributions are three-fold. First, we show for the first time, that a neural
network with a depth of only 12 can achieve high performance on competitive benchmarks (80.7%
on ImageNet, 96% on CIFAR10, 81% on CIFAR100). Second, we show how different architecture
choices like parallel branches, VGG-style blocks and Skip-Squeeze-and-Excitation could be used to
reduce depth while maintaining high-performance. Third, we study the scaling rules for ParNet and
demonstrate effective scaling with constant low depth.

2 Related Work

Analyzing importance of depth. There exists a rich literature analyzing the importance of depth
in neural networks. The classic work of Cybenko et al. showed that a single-layer neural network
with sigmoid activations can approximate any function with arbitrarily small error (Cybenko, 1989).
However, one needs to use a network with sufficiently large width, which can drastically increase the
parameter count. Subsequent works have shown that, to approximate a function, a deep network with
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Figure 2: Schematic representation of ParNet and the ParNet block. ParNet has depth 12 and is
composed of parallel substructures. The width of each block in (a) is proportional to the number of
output channels in ParNet-M and the height reflects output resolution. The ParNet block consists of
three parallel branches: 1×1 convolution, 3×3 convolution and Skip-Squeeze-and-Excitation (SSE).
Once the training is done, the 1×1 and 3×3 convolutions can be fused together for faster inference.
The SSE branch increases receptive field while not affecting depth.

non-linearity needs exponentially fewer parameters than its shallow counterpart (Liang & Srikant,
2017). This is often cited as one of the major advantages of large depth.

Several works have also empirically analyzed the importance of depth and came to the conclusion that
under a fixed parameter budget, deeper networks perform better than their shallow counterparts (Eigen
et al., 2013; Urban et al., 2017). However, in such analysis, prior works have only studied shallow
networks with a linear, sequential structure, and it is unclear whether the conclusion still holds with
alternative designs. In this work, we show that, contrary to conventional wisdom, a shallow network
can perform surprisingly well, and the key is to have parallel substructures.

Scaling DNNs. There have been many exciting works that have studied the problem of scaling neural
networks. Tan & Le (2019) showed that increasing depth, width, and resolution leads to effective
scaling of convolutional networks. We also study scaling rules but focus on the low-depth regime.
We find that one can increase the number of branches, width, and resolution to effectively scale
ParNet while keeping depth constant and low. Zagoruyko & Komodakis (2016) showed that shallower
networks with a large width can achieve similar performance to deeper ResNets. We also scale our
networks by increasing their width. However, we consider networks that are much shallower – a
depth of just 12 compared to 50 considered for ImageNet by Zagoruyko & Komodakis (2016) – and
introduce parallel substructures.

Shallow networks. Shallow networks have attracted attention in theoretical machine learning. With
infinite width, a single-layer neural network behaves like a Gaussian Process, and one can understand
the training procedure in terms of kernel methods (Jacot et al., 2018). However, such models do
not perform competitively when compared to state-of-the-art networks (Li et al., 2019). We provide
empirical proof that non-deep networks can be competitive with their deep counterparts.

Multi-stream networks. Multi-stream neural networks have been used in a variety of computer
vision tasks such as segmentation (Chen et al., 2016, 2017), detection (Lin et al., 2017), and video
classification (Wu et al., 2016). The HRNet architecture maintains multi-resolution streams through-
out the forward pass (Wang et al., 2020); these streams are fused together at regular intervals to
exchange information. We also use streams with different resolutions, but our network is much
shallower (12 vs. 38 for the smallest HRNet for classification) and the streams are fused only once, at
the very end, making parallelization easier.

3 Method

In this section, we develop and analyze ParNet, a network architecture that is much less deep but still
achieves high performance on competitive benchmarks. ParNet consists of parallel substructures that
process features at different resolutions. We refer to these parallel substructures as streams. Features
from different streams are fused at a later stage in the network, and these fused features are used for
the downstream task. Figure 2a provides a schematic representation of ParNet.
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3.1 ParNet Block

In ParNet, we utilize VGG-style blocks (Simonyan & Zisserman, 2015). To see whether non-deep
networks can achieve high performance, we empirically find that VGG-style blocks are more suitable
than ResNet-style blocks (Table 8). In general, training VGG-style networks is more difficult than
their ResNet counterparts (He et al., 2016a). But recent work shows that it is easier to train networks
with such blocks if one uses a “structural reparameterization" technique (Ding et al., 2021). During
training, one uses multiple branches over the 3×3 convolution blocks. Once trained, the multiple
branches can be fused into one 3×3 convolution. Hence, one ends up with a plain network consisting
of only 3×3 block and non-linearity. This reparameterization or fusion of blocks helps reduce latency
during inference.

We borrow our initial block design from Rep-VGG (Ding et al., 2021) and modify it to make it
more suitable for our non-deep architecture. One challenge with a non-deep network with only
3×3 convolutions is that the receptive field is rather limited. To address this, we build a Skip-
Squeeze-Excitation (SSE) layer which is based on the Squeeze-and-Excitation (SE) design (Hu
et al., 2018). Vanilla Squeeze-and-Excitation is not suitable for our purpose as it increases the depth
of the network. Hence we use a Skip-Squeeze-Excitation design which is applied alongside the
skip connection and uses a single fully-connected layer. We find that this design helps increase
performance (Table 7). Figure 2b provides a schematic representation of our modified Rep-VGG
block with the Skip-Squeeze-Excitation module. We refer to this block as the RepVGG-SSE.

We also tried different activation functions for the ParNet block. We found that SiLU (Ramachandran
et al., 2017) provided modest gains over ReLU and hence we used it in our network.

3.2 Downsampling and Fusion Block

Apart from the RepVGG-SSE block, whose input and output have the same size, ParNet also contains
Downsampling and Fusion blocks. The Downsampling block reduces resolution and increases
width to enable multi-scale processing, while the Fusion block combines information from multiple
resolutions.

In the Downsampling block, there is no skip connection; instead, we add a single-layered SE module
parallel to the convolution layer. Additionally, we add 2D average pooling in the 1×1 convolution
branch. The Fusion block is similar to the Downsampling block but contains an extra concatenation
layer. Because of concatenation, the input to the Fusion block has twice as many channels as a
Downsampling block. Hence, to reduce the parameter count, we use convolution with group 2. Please
refer to Figure A1 in the appendix for a schematic representation of the Downsampling and Fusion
blocks.

3.3 Network Architecture

Figure 2a shows a schematic representation of the ParNet model that is used for the ImageNet dataset.
The initial layers consist of a sequence of Downsampling blocks. The outputs of Downsampling
blocks 2, 3, and 4 are fed respectively to streams 1, 2, and 3. We empirically find 3 to be the optimal
number of streams for a given parameter budget (Table 10). Each stream consists of a series of
RepVGG-SSE blocks that process the features at different resolutions. The features from different
streams are then fused by Fusion blocks using concatenation. Finally, the output is passed to a
Downsampling block at depth 11. Similar to RepVGG (Ding et al., 2021), we use a larger width
for the last downsampling layer. Table A1 in the appendix provides a complete specification of the
scaled ParNet models that are used in ImageNet experiments.

In CIFAR the images are of lower resolution, and the network architecture is slightly different from
the one for ImageNet. First, we replace the Downsampling blocks at depths 1 and 2 with RepVGG-
SSE blocks. To reduce the number of parameters in the last layer, we replace the last Downsampling
block, which has a large width, with a narrower 1×1 convolution layer. Also, we reduce the number
of parameters by removing one block from each stream and adding a block at depth 3.
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Table 1: Depth vs. performance on ImageNet.
We test on images with 224×224 resolution. We
rerun ResNets (He et al., 2016a) in our training
regime for fairness, thus boosting their accuracy.
Our ParNet models perform competitively with
ResNets while having a low constant depth.

Model Depth Top-1 Top-5
(in M) Acc. Acc.

ResNet 18 69.57 89.24
ResNet 34 73.27 91.26
ResNet-Bottleneck 50 75.99 92.98
ResNet-Bottleneck 101 77.56 93.79

ResNet (ours) 18 70.15 89.55
ResNet (ours) 34 74.12 91.89
ResNet-Bottleneck (ours) 50 77.53 93.87
ResNet-Bottleneck (ours) 101 79.63 94.68

ParNet-S 12 75.19 92.29
ParNet-M 12 76.60 93.02
ParNet-L 12 77.66 93.6
ParNet-XL 12 78.55 94.13

Table 2: Speed and performance of ParNet,
ResNet and RepVGG. ParNet is distributed across
3 GPUs. ParNet distributed on 3 GPUs is faster
than similar-performing ResNets on single GPU.
RepVGG is the fastest as it only consists of 3 X 3
convolution and ReLU.

Model Depth Top-1 Speed # Param Flops
Acc. (samples/s) (in M) (in B)

ResNet34 34 74.12 306 21.8 7.3
ResNet50 50 77.53 222 25.6 8.2
RepVGG-b1g4 29 77.59 376 36.1 14.6
RepVGG-b2g4 29 79.38 300 55.8 22.7
ParNet-S 12 75.19 280 19.2 9.7
ParNet-M 12 76.60 265 35.6 17.2
ParNet-L 12 77.66 249 54.9 26.7
ParNet-XL 12 78.55 230 85.0 41.5

Table 3: Fusing features and parallelizing the sub-
structures across GPUs improves the speed of
ParNet. Speed was measured on a GeForce RTX
3090 with Pytorch 1.8.1 and CUDA 11.1.

Model Top-1 Speed Latency
Acc. (samples/sec) (ms)

ParNet-L (Unfused) 77.66 112 8.95
ParNet-L (Fused, Single GPU) 77.66 154 6.50
ParNet-L (Multi-GPU) 77.66 249 4.01

3.4 Scaling ParNet

With neural networks, it is observed that one can achieve higher accuracy by scaling up network size.
Prior works (Tan & Le, 2019) have scaled width, resolution, and depth. Since our objective is to
evaluate whether high performance can be achieved with small depth, we keep the depth constant and
instead scale up ParNet by increasing width, resolution, and the number of streams.

For CIFAR10 and CIFAR100, we increase the width of the network while keeping the resolution
at 32 and the number of streams at 3. For ImageNet, we conduct experiments by varying all three
dimensions (Figure 3).

3.5 Practical Advantages of Parallel Architectures

The current process of 5 nm lithography is approaching the 0.5 nm size of the silicon crystal lattice,
and there is limited room to further increase processor frequency. This means that faster inference of
neural networks must come from parallelization of computation.

The growth in the performance of single monolithic GPUs is also slowing down (Arunkumar et al.,
2017). The maximum die size achievable with conventional photolithography is expected to plateau
at ∼800mm2 (Arunkumar et al., 2017). On the whole, a plateau is expected not only in processor
frequency but also in the die size and the number of transistors per processor.

To solve this problem, there are suggestions for partitioning a GPU into separate basic modules that
lie in one package. These basic modules are easier to manufacture than a single monolithic GPU on a
large die. Large dies have a large number of manufacturing faults, resulting in low yields (Kannan
et al., 2015). Recent work has proposed a Multi-Chip-Module GPU (MCM-GPU) on an interposer,
which is faster than the largest implementable monolithic GPU. Replacing large dies with medium-
size dies is expected to result in lower silicon costs, significantly higher silicon yields, and cost
advantages (Arunkumar et al., 2017).

Even if several chips are combined into a single package and are located on one interposer, the
data transfer rate between them will be less than the data transfer rate inside one chip, because
the lithography size of the chip is smaller than the lithography size of the interposer. Such chip
designs thus favor partitioned algorithms with parallel branches that exchange limited data and can
be executed independently for as long as possible. All these factors make non-deep parallel structures
advantageous in achieving fast inference, especially with tomorrow’s hardware.
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Table 4: Non-deep networks can be used as back-
bones for fast and accurate object detection sys-
tems. Speed is measured on a single RTX 3090
using Pytorch 1.8.1 and CUDA 11.1.

Model Backbone MS-COCO Latency
Depth AP (in ms)

YOLOv4-CSP (official, low res.) 64 46.2 21.0
YOLOv4-CSP (official, high res.) 64 47.6 21.2
YOLOv4-CSP (retrain) 64 47.6 20.0
ParNet-XL (Ours) 12 47.5 18.7
ParNet-XL-CSP (Ours) 12 48.0 16.4

Table 5: A network with depth 12 can get 80.72%
top-1 accuracy on ImageNet. We show how var-
ious strategies can be used to boost the perfor-
mance of ParNet.

Model Top-1 Acc. Top-5 Acc.

ParNet-XL 78.55 94.13
+ Longer Training 78.97 94.51
+ Train & Test Res. 320 80.32 94.95
+ 10-crop testing 80.72 95.38

4 Results

Experiments on ImageNet. ImageNet (Deng et al., 2009) is a large-scale image classification dataset
with high-resolution images. We evaluate on the ILSVRC2012 (Russakovsky et al., 2015) dataset,
which consists of 1.28M training images and 50K validation images with 1000 classes. We train our
models for 120 epochs using the SGD optimizer, a step scheduler with a warmup for first 5 epochs, a
learning rate decay of 0.1 at every 30th epoch, an initial learning rate of 0.8, and a batch size of 2048
(256 per GPU). If the network does not fit in memory, we decrease the batch size and the learning
rate proportionally, for example, a decrease to a learning rate of 0.4 and a batch size of 1024. Unless
otherwise specified, the network is trained at 224×224 resolution. We train our networks with the
cross-entropy loss with smoothed labels (Szegedy et al., 2016). We use cropping, flipping, color-jitter,
and rand-augment (Cubuk et al., 2020) data augmentations.

In Table 1, we show the performance of ParNet on ImageNet. We find that one can achieve surprisingly
high performance with a depth of just 12. For a fair comparison with ResNets, we retrain them with
our training protocol and data augmentation, which improves the performance of ResNets over the
official number. Notably, we find that ParNet-S outperform ResNet34 by over 1 percentage point with
a lower parameter count (19M vs. 22M). ParNet also achieves comparable performance to ResNet
with the bottleneck design, while having 4 to 8 times less depth. For example, ParNet-L performs as
well as ResNet50 and gets a top-1 accuracy of 77.66 as compared to 77.53 achieved by ResNet50.
Similarly, ParNet-XL performs comparably to ResNet101 and gets a top-5 accuracy of 94.13, in
comparison to 94.68 achieved by ResNet101, while being 8 times shallower.

In Table 2, we compare speed and accuracy. We evaluate the speed of the models where samples
are coming one at a time like in robotics and autonomous driving. Hence, the batch size in all
evaluations is 1. We find that ParNet performs favourably to ResNet when comparing accuracy and
speed, however with more parameters and flops. Note that in this comparison, ParNet is distributed
across 3 GPUs while ResNet is executed on a single GPU. We find RepVGG to be the fastest. This is
because of the excellent linear design consisting only of optimized layer like 3X3 convolution and
ReLU. Note that although current hardware favour RepVGG style networks, fundamentally, ParNet
could be made faster with custom processor design which is an exciting avenue for future research.
The parallel sub-structures of ParNet are distributed across GPUs (more details below).

In Table 3, we test speed for three variants of ParNet: unfused, fused, and multi-GPU. The unfused
variant consists of 3×3 and 1×1 branches in the RepVGG-SSE block. In the fused variant, we use
the structural-reparametrization trick to merge the 3×3 and 1×1 branches into a single 3×3 branch
(Section 3.1). For both fused and unfused versions, we use a single GPU for inference, while for
the multi-GPU version, we use 3 GPUs. For the multi-GPU version, each stream is launched on a
separate GPU. When all layers in a stream are processed, the results from two adjacent streams are
concatenated on one of the GPUs and processed further. For transferring data across GPUs we use
the NCCL backend in Pytorch. We find that ParNet can be effectively parallelized across GPUs for
fast inference. This is achieved in spite of the communication overhead. With specialized hardware
for reducing communication latency, even faster speeds could be achieved.

Boosting Performance. Table 5 demonstrates additional ways of increasing the performance
of ParNet, such as using higher-resolution images, a longer training regime (200 epochs, cosine
annealing), and 10-crop testing. This study is useful in assessing the accuracy that can be achieved
by non-deep models on large-scale datasets like ImageNet. By employing various strategies we can
boost the performance of ParNet-XL from 78.55 to 80.72. Notably, we reach a top-5 accuracy of
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Table 6: Performance of various architectures on CIFAR10 and CIFAR100. Similar-sized models
are grouped together. ParNet performs competitively with deep state-of-the-art architectures while
having a much smaller depth. Best performance is bolded. The second and third best performing
model in each model size block are underlined.

Architecture Depth Params CIFAR10 CIFAR100
(in Millions) Error Error

ResNet110 (official) 110 1.7 6.61 –
ResNet110 (reported in Huang et al. (2016)) 110 1.7 6.41 27.22
ResNet (Stochastic Depth) (Huang et al., 2016) 110 1.7 5.23 24.58
ResNet (pre-act) (He et al., 2016b) 164 1.7 5.46 24.33
DenseNet (Huang et al., 2017) 40 1.0 5.24 24.42
DenseNet (Bottleneck+Compression) (Huang et al., 2017) 100 0.8 4.51 22.27
ParNet (Ours) 12 1.3 5.0 24.62
ResNet (Stochastic Depth) (Huang et al., 2016) 1202 10.2 4.91 –
ResNet (pre-act) (He et al., 2016b) 1001 10.2 4.62 22.71
WideResNet (Zagoruyko & Komodakis, 2016) 40 8.9 4.53 21.18
WideResNet (Zagoruyko & Komodakis, 2016) 16 11.0 4.27 20.43
WideResNet (SE) (Hu et al., 2018) 32 12.0 3.88 19.14
FractalNet (Compressed) (Larsson et al., 2017) 41 22.9 5.21 21.49
DenseNet (Huang et al., 2017) 100 7.0 4.10 20.20
DenseNet (Bottleneck+Compression) (Huang et al., 2017) 250 15.3 3.62 17.60
ParNet (Ours) 12 15.5 3.90 20.02
WideResNet (Zagoruyko & Komodakis, 2016) 28 36.5 4.00 19.25
WideResNet (Dropout in Res-Block) (Zagoruyko & Komodakis, 2016) 28 36.5 3.89 18.85
FractalNet (Larsson et al., 2017) 21 36.8 5.11 22.85
FractalNet (Dropout+Drop-path) (Larsson et al., 2017) 21 36.8 4.59 23.36
DenseNet (Huang et al., 2017) 100 27.2 3.74 19.25
DenseNet (Bottleneck+Compression) (Huang et al., 2017) 190 25.6 3.46 17.18
ParNet (Ours) 12 35 3.88 18.65

95.38, which is higher than the oft-cited human performance level on ImageNet (Russakovsky et al.,
2015). Although this does not mean that machine vision has surpassed human vision, it provides a
sense of how well ParNet performs. To the best of our knowledge, this is the first instance of such
“human-level” performance achieved by a network with a depth of just 12.

Experiments on MS-COCO. MS-COCO (Lin et al., 2014) is an object detection dataset which
contains images of everyday scenes with common objects. We evaluate on the COCO-2017 dataset,
which consists of 118K training images and 5K validation images with 80 classes.

To test whether a non-deep network such as ParNet can work for object detection, we replace
the backbone of state-of-the-art single stage detectors with ParNet. Specifically, we replace the
CSPDarknet53s backbone from YOLOv4-CSP (Wang et al., 2021a) with ParNet-XL, which is much
shallower (64 vs. 12). We use the head and reduced neck from the YOLOR-D6 model, and train and
test these models using the official YOLOR code (Wang et al., 2021b). We also retrain YOLOv4-
CSP (Wang et al., 2021a) with our protocol (same neck, same head, same training setup) for fair
comparison and it improves performance over the official model. Additionally, for fair comparison,
we test the ParNet-XL-CSP model by applying the CSP (Wang et al., 2021a) approach to ParNet-
XL. We find that ParNet-XL and ParNet-XL-CSP are faster than the baseline even at higher image
resolution. We thus use higher image resolution for ParNet-XL and ParNet-XL-CSP.

In Table 4 we find that even on a single GPU, ParNet achieves higher speed than strong baselines.
This demonstrates how non-deep networks could be used to make fast object detection systems.

Experiments on CIFAR. The CIFAR datasets consist of colored natural images with 32×32 pixels.
CIFAR-10 consists of images drawn from 10 and CIFAR-100 from 100 classes. The training and
test sets contain 50,000 and 10,000 images respectively. We adopt a standard data augmentation
scheme (mirroring/shifting) that is widely used for these two datasets (He et al., 2016a; Zagoruyko
& Komodakis, 2016; Huang et al., 2017). We train for 400 epochs with a batch size of 128. The
initial learning rate is 0.1 and is decreased by a factor of 5 at 30%, 60%, and 80% of the epochs as
in (Zagoruyko & Komodakis, 2016). Similar to prior works (Zagoruyko & Komodakis, 2016; Huang
et al., 2016), we use a weight decay of 0.0003 and set dropout in the convolution layer at 0.2 and
dropout in the final fully-connected layer at 0.2 for all our networks on both datasets. We train each
network on 4 GPUs (a batch size of 32 per GPU) and report the final test set accuracy.
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Figure 3: Performance of ParNet increases as we increase the number of streams, input resolution,
and width of convolution, while keeping depth fixed. The left plot shows that under a fixed parameter
count, the most effective way to scale ParNet is to use 3 branches and high resolution. The right
plot shows the impact on performance by changing only one of the aforementioned factors. We do
not observe saturation in performance, indicating that ParNets could be scaled further to increase
performance while maintaining low depth.

Table 7: Ablation of various choices for Par-
Net. Data augmentation, SiLU activation,
and Skip-Squeeze-Excitation (SSE) improve
performance.

Model Params Top-1 Top-5
(in M) Acc. Acc.

Baseline 32.4 75.02 92.15
+ Data Augmentation 32.4 75.12 92.00
+ SSE 35.6 76.55 93.01
+ SiLU 35.6 76.60 93.07

Table 8: ParNet outperforms non-deep ResNet variants.
At depth 12, VGG-style blocks outperform ResNet
blocks, and three branches outperform a single branch.

Name Block Branch Depth Params Top-1
(in M) Acc.

ResNet12-Wide ResNet 1 12 39.0 73.52
ResNet14-Wide-BN ResNet-BN 1 14 39.0 72.06
ResNet12-Wide-BN ResNet-SSE 1 12 39.0 73.91
ParNet-M-OneStream RepVGG-SSE 1 12 36.0 75.83
ParNet-M RepVGG-SSE 3 12 35.9 76.6

Table 6 summarizes the performance of various networks on CIFAR10 and CIFAR100. We find that
ParNet performs competitively with state-of-the-art deep networks like ResNets and DenseNets while
using a much lower depth and a comparable number of parameters. ParNet outperforms ResNets that
are 10 times deeper on CIFAR10 (5.0 vs. 5.23) while using a lower number of parameters (1.3M vs.
1.7M). Similarly, ParNet outperforms ResNets that are 100 times deeper on CIFAR10 (3.90 vs. 4.62)
and CIFAR100 (20.02 vs. 22.71) while using 50% more parameters (15.5M vs. 10.2M).

ParNet performs as well as vanilla DenseNet models (Huang et al., 2017) with comparable parameter
counts while using 3-8 times less depth. For example, on CIFAR100, ParNet (depth 12) achieves an
error of 18.65 with 35M parameters and DenseNet (depth 100) achieves an error of 19.25 with 27.2M
parameters. ParNet also performs on par or better than Wide ResNets (Zagoruyko & Komodakis,
2016) while having 2.5 times less depth. The best performance on the CIFAR dataset under a given
parameter count is achieved by DenseNets with the bottleneck and reduced width (compression)
design, although with an order of magnitude larger depth than ParNet.

Overall, it is surprising that a mere depth-12 network could achieve an accuracy of 96.12% on
CIFAR10 and 81.35% on CIFAR100. This further indicates that non-deep networks can work as well
as deeper networks like ResNets.

Ablation Studies. To test if we can trivially reduce the depth of ResNets and make them wide, we test
three ResNet variants: ResNet12-Wide, ResNet14-Wide-BN, and ResNet12-Wide-SSE. ResNet12-
Wide uses the basic ResNet block and has depth 12, while ResNet14-Wide-BN uses the bottleneck
ResNet block and has depth 14. Note that with the bottleneck ResNet block, one cannot achieve a
depth lower than 14 while keeping the original ResNet structure as there has to be 1 initial convolution
layer, 4 downsampling blocks (3 × 4 = 12 depth), and 1 fully-connected layer. We find that ResNet12-
Wide outperforms ResNet14-Wide-BN with the same parameter count. We additionally add SSE
block and SiLU activation to ResNet12-Wide to create ResNet12-Wide-SSE to further control for
confounding factors. We find that ParNet-M outperforms all the ResNet variants which have depth
12 by 2.7 percentage points, suggesting that trivially reducing depth and increasing width is not as
effective as our approach. We show that the model with three branches performs better than a model
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Table 9: ParNet outperforms ensemble of single-stream ParNets across different parameter budgets.

ParNet-M Single Stream ParNet-L Ensemble ParNet-XL Ensemble
(2 Single Streams) (3 Single Streams)

# Param 35.9 36 55 72 85.3 108
ImageNet Top-1 76.60 75.83 77.66 77.20 78.55 77.68

Table 10: Performance vs. number of streams. For a fixed parameter budget, 3 streams is optimal.

# of Branches (Res. 224) # of Branches (Res. 320)

1 2 3 4 1 2 3 4

ImageNet Top-1 75.83 76.1 76.75 76.34 76.91 77.12 77.56 77.46

Table 11: Accuracy vs latency trade-off with changing depth. For ParNet, we find depth 12 to perform
better then other depths when considering both the latency and accuracy

Size - M Size - L Size - XL

Depth Latency ImageNet Latency ImageNet Latency ImageNet
(in ms) Top-1 (in ms) Top-1 (in ms) Top-1

9 3.1 73.9 3.2 75.1 3.7 76.1
12 3.8 76.6 4.0 77.7 4.4 78.6
15 4.8 77.0 4.9 78.4 5.4 79.4

with a single branch. We also show that with everything else being equal, using VGG-style blocks
leads to better performance than the corresponding ResNet architecture. Architectural choices in
ParNet like parallel substructures and VGG-style blocks are crucial for high performance at lower
depths.

Table 7 reports ablation studies over various design choices for our network architecture and training
protocol. We show that each of the three decisions (rand-augment data augmentation, SiLU activation,
SSE block) leads to higher performance. Using all three leads to the best performance.

In Table 10, we evaluate networks with the same total number of parameters but with different
numbers of branches: 1, 2, 3, and 4. We show that for a fixed number of parameters, a network with 3
branches has the highest accuracy and is optimal in both cases, with a network resolution of 224x224
and 320x320.

Ensemble of single-stream ParNets vs (multi-branch) ParNet. Another approach to network
parallelization is the creation of ensembles consisting of multiple networks. Therefore, we compare
ParNet to ensembles of single-stream ParNets. In Table 9, we find that ParNet outperforms ensembles
while using fewer parameters.

Scaling ParNet. Neural networks can be scaled by increasing resolution, width, and depth (Tan &
Le, 2019). Since we are interested in exploring the performance limits of constant-depth networks,
we scale ParNet by varying resolution, width, and the number of streams. Figure 3 shows that each
of these factors increases the accuracy of the network. Also, we find that increasing the number of
streams is more cost-effective than increasing the number of channels in terms of accuracy versus
parameter count. Further, we find that the most effective way to scale ParNet is to increase all three
factors simultaneously. Because of computation constraints, we could not increase the number of
streams beyond 3, but this is not a hard limitation. Based on these charts, we see no saturation in
performance while scaling ParNets. This indicates that by increasing compute, one could achieve
even higher performance with ParNet while maintaining low depth.

Optimizing depth for latency and accuracy. In Table 11 we show results with ParNet variants with
depth 9, 12 and 15. Note that networks with size M have 128, 256 and 512 channels; size L have 160,
320 and 640 channels; size XL have 200, 400 and 800 channels in the three branches (Fig. 1). We
find that decreasing the depth of ParNet from 12 to 9 reduces latency but also reduces performance.
ParNet-XL with depth 9 and ParNet-M with depth 12 have similar latency (3.7 vs 3.8 ms) but slightly
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worse performance (76.1 vs 76.6). Similarly, increasing the depth of ParNet from 12 to 15 increases
performance but also increases latency. ParNet-M with depth 15 is both slower and less accurate
than ParNet-L with depth 12. Overall, we find that the depth of 12 to be better for ParNet when
considering both the latency and accuracy.

5 Discussion and Limitations

We have provided the first empirical proof that non-deep networks can perform competitively with
their deep counterparts in large-scale visual recognition benchmarks. We showed how various
architectural choices can be used to create non-deep networks that perform surprisingly well. We also
demonstrated ways to scale up and improve the performance of such networks without increasing
depth.

One limitation our work is that currently non-deep networks are not a replacement for their deep
counterparts low-compute settings requiring small number of parameter and flops. Another limitation
of ParNet is that although it has lower depth than RepVGG, it is not faster than RepVGG on GPUs.
This is because: first, RepVGG consists of consists of optimized layers like 3X3 convolution and
ReLU; and second, time in spent on multi-GPU communication in ParNet. Note that although current
hardware favour RepVGG style networks, fundamentally, ParNet could be made faster with custom
processor design which is an exciting avenue for future research.

In summary, our work shows that there exist alternative designs where highly accurate neural networks
need not be deep. Such designs can better meet the requirements of future multi-chip processors. We
hope that our work can facilitate the development of neural networks that are both highly accurate
and extremely fast.
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A Appendix

layer name layer depth output size Small Medium Large Extra large

Downsampling 1 W/2 × H/2

 1×1, 64
3×3, 64
stride 2

×1

 1×1, 64
3×3, 64
stride 2

×1

 1×1, 64
3×3, 64
stride 2

×1

 1×1, 64
3×3, 64
stride 2

×1

Downsampling 2 W/4 × H/4

 1×1, 96
3×3, 96
stride 2

×1

 1×1, 128
3×3, 128
stride 2

×1

 1×1, 160
3×3, 160
stride 2

×1

 1×1, 200
3×3, 200
stride 2

×1

Downsampling 3 W/8 × H/8

 1×1, 192
3×3, 192
stride 2

×1

 1×1, 256
3×3, 256
stride 2

×1

 1×1, 320
3×3, 320
stride 2

×1

 1×1, 400
3×3, 400
stride 2

×1

Downsampling 4 W/16 × H/16

 1×1, 384
3×3, 384
stride 2

×1

 1×1, 512
3×3, 512
stride 2

×1

 1×1, 640
3×3, 640
stride 2

×1

 1×1, 800
3×3, 800
stride 2

×1

Stream1 3-6 W/4 × H/4

 1×1, 96
3×3, 96

SSE

×4

 1×1, 128
3×3, 128

SSE

×4

 1×1, 160
3×3, 160

SSE

×4

 1×1, 200
3×3, 200

SSE

×4

Stream1-Downsampling 8 W/8 × H/8

 1×1, 192
3×3, 192
stride 2

×1

 1×1, 256
3×3, 256
stride 2

×1

 1×1, 320
3×3, 320
stride 2

×1

 1×1, 400
3×3, 400
stride 2

×1

Stream2 4-8 W/8 × H/8

 1×1, 192
3×3, 192

SSE

×5

 1×1, 256
3×3, 256

SSE

×5

 1×1, 320
3×3, 320

SSE

×5

 1×1, 400
3×3, 400

SSE

×5

Stream2-Fusion 9 W/16 × H/16

 1×1, 384
3×3, 384
stride 2

×1

 1×1, 512
3×3, 512
stride 2

×1

 1×1, 640
3×3, 640
stride 2

×1

 1×1, 800
3×3, 800
stride 2

×1

Stream3 5-9 W/16 × H/16

 1×1, 384
3×3, 384

SSE

×5

 1×1, 512
3×3, 512

SSE

×5

 1×1, 640
3×3, 640

SSE

×5

 1×1, 800
3×3, 800

SSE

×5

Stream3-Fusion 10 W/16 × H/16

 1×1, 384
3×3, 384

SSE

×1

 1×1, 512
3×3, 512

SSE

×1

 1×1, 640
3×3, 640

SSE

×1

 1×1, 800
3×3, 800

SSE

×1

Downsampling 11 W/32 × H/32

 1×1, 1280
3×3, 1280

stride 2

×1

 1×1, 2048
3×3, 2048

stride 2

×1

 1×1, 2560
3×3, 2560

stride 2

×1

 1×1, 3200
3×3, 3200

stride 2

×1

Final 12 1×1 average pool, 1000-d fc, softmax

Table A1: Specification of ParNet models used for ImageNet classification: ParNet-S, ParNet-M,
ParNet-L, and ParNet-XL.

1x1 conv, 

groups=2

Batch norm

SiLU

3x3 conv, s=2,

groups=2

Batch norm

+

X

Avg pool 2x2 Global avg pool

1x1 conv, 

groups=2

Sigmoid

Batch norm Batch norm

Concatenation

Shuffle

1x1 conv

Batch norm

SiLU

3x3 conv, s=2

Batch norm

+

X

Avg pool 2x2 Global avg pool

1x1 conv
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Figure A1: Schematic representation of the Fusion (left) and Downsampling (right) blocks used in
ParNet.
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