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Abstract

We study the loss surface of DNNs with L2 regularization. We show that the
loss in terms of the parameters can be reformulated into a loss in terms of
the layerwise activations Zℓ of the training set. This reformulation reveals the
dynamics behind feature learning: each hidden representations Zℓ are optimal
w.r.t. to an attraction/repulsion problem and interpolate between the input and
output representations, keeping as little information from the input as necessary
to construct the activation of the next layer. For positively homogeneous non-
linearities, the loss can be further reformulated in terms of the covariances of the
hidden representations, which takes the form of a partially convex optimization
over a convex cone.
This second reformulation allows us to prove a sparsity result for homogeneous
DNNs: any local minimum of the L2-regularized loss can be achieved with at
most N(N + 1) neurons in each hidden layer (where N is the size of the training
set). We show that this bound is tight by giving an example of a local minimum
that requires N2/4 hidden neurons. But we also observe numerically that in more
traditional settings much less than N2 neurons are required to reach the minima.

1 Introduction

It is generally believed that the success of deep learning hinges on the ability of deep neural networks
(DNNs) to learn features that are well suited to the task they are trained on. There is however little
understanding of what these features are and how they are selected by the network.

On the other hand, recent results [12] have shown that it is possible to train DNNs without feature
learning. This suggests the existence of two regimes of DNNs, a kernel regime (also called lazy or
NTK regime) without feature learning and an active regime where features are learned. The presence
or absence of feature learning can depend on multiple factors, such as the initialization/parametrization
of DNNs [3, 25, 17, 13], very large depths [10] or large learning rate [16, 5].

In this paper, we focus on the impact of L2 regularization on feature learning in DNNs. This analysis
is further motivated by recent results [8, 9, 4] which show that the implicit bias of gradient descent
on losses such as the cross entropy (which decay exponentially towards infinity) is essentially the
same as the bias induced by L2 regularization in DNNs.
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Generally, the bias induced by the addition of L2-regularization on the parameters θ of a model fθ
can be described by the representation cost R(f) = minθ:fθ=f ∥θ∥2, since minθ C(fθ) + λ ∥θ∥2 =
minf C(f) + λR(f).

In deep linear networks, the addition of L2 regularization on the parameters corresponds to the
addition of an Lp-Schatten norm regularization to the represented matrix, with p = 2/L where L is
the depth of the network [9, 6]. This implies a sparsity effect that increases with depth L.

In non-linear networks the sparsity effect of L2-regularization has been described for shallow networks
(L = 2) in [1, 20, 23] or for shallow non-linear networks with added linear layers [19]. Though it
seems natural that this effect should become stronger for deeper networks, to our knowledge little
theoretical work has been done in this area.

1.1 Contributions

In this paper, we study the minima of the loss of L2 regularized fully-connected DNNs of depth L.
We propose two reformulations of the loss:

1. The first reformulation expresses the loss in terms of the representations Z1, . . . , ZL (the
layer pre-activations of every input in the training set) of every layer of the network. This
reformulation has the advantage of being local - the optimal choice of a layer Zℓ only depends
on its neighboring layers Zℓ−1 and Zℓ+1. The optimal choice of representation Zℓ is at
the balance between an attractive force (determined by the previous layer) and a repulsive
force (coming from the next layer). It illustrates how the representations Z1, . . . , ZL−1

interpolates between the input layer Z0 and output layer ZL.

2. The second reformulation expresses the loss in terms of the covariances of the representation
before applying the non-linearity Kℓ = ZT

ℓ Zℓ and after the non-linearity Kσ
ℓ = (Zσ

ℓ )
T
Zσ
ℓ .

For positively homogeneous non-linearities and when the number of neurons nℓ in
every hidden layer ℓ is larger or equal to N(N + 1) for N the number of datapoints,
this reformulation is an optimization of a (partially convex) loss over the covariances
(K1,K

σ
1 ), . . . , (KL−1,K

σ
L−1) and the outputs ZL, restricted to a (translated) convex cone.

This reformulation does not depend on the number of neurons nℓ in the hidden layers (as
long as nℓ ≥ N(N + 1)).

The second reformulation implies that for positively homogeneous non-linearities such as the ReLU,
as the number of neurons in the hidden layers nℓ increase, the global minimum of the L2-regularized
loss goes down until reaching a plateau (i.e. adding neurons does not lead to an improvement in the
loss). This illustrates the sparsity effect of L2-regularization, where the optimum reached on a very
large network is equivalent to a much smaller network.

The start of the plateau hence gives a measure of sparsity of the global minimum. We show that the
minimal number of neurons nℓ to reach this plateau is determined by a notion of rank Rankσ (Kℓ,K

σ
ℓ )

of the covariance pairs. We show that Rankσ (Kℓ,K
σ
ℓ ) ≤ N(N + 1), i.e. the plateau must start

before N(N + 1) and that the scaling of this upper bound is tight by giving an example dataset
such that at the optimum Rankσ (Kℓ,K

σ
ℓ ) ≥ N2/4. We also present other datasets where the start

of the plateau is either constant or grows linearly with the number of datapoints. We also observe
empirically that the plateau can start at much smaller widths for real data such as MNIST and the
teacher/student setting.

2 Setup

We consider fully-connected deep neural networks with L+ 1 layers, numbered from 0 (the input
layer) to L (the output layer), with nonlinear activation function σ : R → R (e.g. the ReLU
σ(x) = max{0, x})). Each layer ℓ contains nℓ neurons and we denote n = (n1, . . . , nL) the widths
of the network. Given an input dataset {x1, . . . , xN} ⊂ Rn0 of size N , we consider the data matrix
X = (x0, . . . , xn) ∈ Rn0×N , and encode the activations and preactivations of the whole data set
by considering the pre-activations Zℓ(X;W) ∈ Rnℓ×N and activations Zσ

ℓ (X;W) ∈ R(nℓ+1)×N
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given by:

Zσ
0 (X;W) =

(
X

β1T
N

)
Zℓ(X;W) = WℓZ

σ
ℓ−1(X;W)

Zσ
ℓ (X;W) =

(
σ (Zℓ)
β1T

N

)
,

where W = (Wℓ)ℓ=1,...,L is the collection of nℓ × (nℓ−1 + 1)-dim weight matrices Wℓ, σ (Zℓ) is
obtained by applying elementwise the nonlinearity σ to the matrix Zℓ, and the scalar β ∈ R represents
the amount of bias (i.e. when β = 0 there is no bias, when β = 1 this definition is equivalent to the
traditional definition of bias). The output of the network is the pre-activation of the L-th layer ZL.

We often drop the dependence on the weights W and on the dataset X and simply write Zℓ and Zσ
ℓ .

We denote fW : Rn0 → RnL the network function, which maps an input x to the pre-activation at
the last layer.

2.1 L2-Regularized Loss and Representation Cost

Given a general cost functional C : RnL×N → R, the L2-regularized loss of DNNs of widths n is

Lλ,n(W) = C(ZL(X;W)) + λ ∥W∥2 ,

where ∥W∥ is the L2-norm of W understood as a vector. Note that ∥W∥2 =
∑L

ℓ=1 ∥Wℓ∥2F where
∥·∥F denotes the Frobenius norm. From now on, we often omit to specify the widths n and simply
write Lλ.

The additional regularization cost should bias the network toward low norm solutions. This bias on
the parameters leads to a bias in function space, which is described by the so-called representation
cost Rn(f) defined on functions f : Rn0 → RnL :

Rn(f) = min
W:fW=f

∥W∥2 ,

where the minimum is taken over all choices of parameters W of a width n network, with fixed β
bias amount, such that the network function fW equals f . By convention, if no such parameters exist
then Rn(f) = +∞.

Similarly, given an input-output pair X ∈ Rn0×N , Y ∈ RnL×N , the representation cost Rn(X,Y )
is:

Rn(X,Y ) = min
W:ZL(X,W)=Y

∥W∥2 ,

with again the convention that if there exists no weight W such that ZL(X,W) = Y , then
Rn(X,Y ) = +∞. The representation cost Rn naturally describes the bias induced by the L2-
regularized loss of DNNs since:

min
W

C(ZL(X;W)) + λ ∥W∥2 = min
Y

C(Y ) + λRn(Y,X).

3 Two Reformulations of the Regularized Loss: Hidden Representation and
Covariance Optimization

We now provide two reformulations of the L2-regularized loss Lλ(W) and representation cost
Rn(X,Y ), which both put emphasis on the hidden representations Zℓ and how they are progressively
modified throughout the neural network. The first reformulation holds for general non-linearities
while the second only applies to networks with homogeneous nonlinearities.

3.1 Feature optimization : attraction/repulsion

The key observation is that the weights Wℓ can be decomposed as follows:

Wℓ = Zℓ

(
Zσ
ℓ−1

)+
+ W̃ℓ,
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(a) Inputs (ℓ = 1). (b) Neurons (ℓ = 1). (c) Inputs (ℓ = 2). (d) Neurons (ℓ = 2).

Figure 1: Attraction/Repulsion: Visualization of the hidden representation Z1 and Z2 of a L = 3
ReLU DNN at the end of training (i.e. after T = 20k steps of gradient descent on the original loss
Lλ) on 3 digits (7,8 and 9) of MNIST [15] along with the attraction force in green and repulsion force
in red (both forces are approximated with Tikhonov regularization). For both layers, we plot in (a)
and (c) the PCA of the N = 42 lines (each corresponding to a datapoint) and in (b) and (d) the PCA
the n1 = n2 = 50 columns (each corresponding to a neuron in the layer ℓ = 1 or ℓ = 2). We observe
a clustering of the inputs according to their digit, and of the neurons along 3 rays in grey dashed lines.

where the residual matrix W̃ℓ is orthogonal to Zσ
ℓ−1, i.e. W̃ℓZ

σ
ℓ−1 = 0, and (·)+ is the Moore-Penrose

pseudo-inverse. This stems from the fact that Wℓ = WℓPImZσ
ℓ−1

+ W̃ℓ where W̃ℓ := WℓP(ImZσ
ℓ−1)

⊥ ,
and PImZσ

ℓ−1
, resp. P(ImZσ

ℓ−1)
⊥ , is the orthogonal projection on ImZσ

ℓ−1, resp. on the orthogonal

complement of ImZσ
ℓ−1; one concludes using the facts that PImZσ

ℓ−1
= Zσ

ℓ−1

(
Zσ
ℓ−1

)+
and Zℓ =

WℓZ
σ
ℓ−1 .

Note that the matrix W̃ℓ does not affect either the hidden representations Zℓ nor the output ZL.
Besides, the Frobenius norm of Wℓ can be rewritten as ||Wℓ||2F = ||Zℓ

(
Zσ
ℓ−1

)+ ||2F + ||W̃ℓ||2F . When
minimizing the L2-regularized cost, it is therefore always optimal to consider null residual matrices
W̃ℓ = 0, resulting in a reformulation of the cost which only depends on the pre-activations Zℓ:

Proposition 1. The infimum of Lλ(W) = C(ZL(X;W))+λ ∥W∥2 , over the parameters W ∈ RP

is equal to the infimum of

Lr
λ(Z1, . . . , ZL) = C(ZL) + λ

L∑
ℓ=1

∥∥∥Zℓ

(
Zσ
ℓ−1

)+∥∥∥2
F

over the set Z of hidden representations Z = (Zℓ)ℓ=1,...,L such that Zℓ ∈ Rnℓ×N , ImZT
ℓ+1 ⊂

Im (Zσ
ℓ )

T , with the notations Zσ
0 =

(
X

β1T
N

)
and Zσ

ℓ =

(
σ (Zℓ)
β1T

N

)
.

Furthermore, if W is a local minimizer of Lλ then (Z1(X;W), . . . , ZL(X;W)) is a local minimizer
of Lr

λ. Conversely, keeping the same notations, if (Zℓ)ℓ=1,...,L is a local minimizer of Lr
λ, then

W = (Zℓ(Z
σ
ℓ−1)

+)ℓ=1,...,L is a local minimizer of Lλ.

Note that one can also reformulate the representation cost:

Rn(X,Y ) = min
Z∈Z,ZL=Y

L∑
ℓ=1

∥∥∥Zℓ

(
Zσ
ℓ−1

)+∥∥∥2
F
.

The representation in terms of the output and hidden representations have several interesting properties,
especially when it comes to minimization:

1. The optimization becomes local in the sense that all terms and constraints depend either only

on the output cost C(ZL) or on two neighboring terms (e.g.
∥∥∥Zℓ

(
Zσ
ℓ−1

)+∥∥∥2
F

). As a result,

the (projected) gradient of the loss Lr
λ(Z1, ..., ZL) w.r.t. to Zℓ only depends on Zℓ−1, Zℓ

and Zℓ+1. This is in contrast to the optimization of Lλ(W), where the gradient of C(ZL)
with respect to Wℓ depends on all parameters W1, . . . ,WL.

4



2. The value
∥∥∥Zℓ

(
Zσ
ℓ−1

)+∥∥∥2
F

represents a ’multiplicative distance’ between Zℓ and Zσ
ℓ−1

(in contrast to the ’additive distance’
∥∥Zℓ − Zσ

ℓ−1

∥∥2
F

); the representation Zℓ therefore
interpolates multiplicatively between Zℓ−1 and Zℓ+1. This is most obvious for linear
networks (i.e. σ = id and β = 0): in this case, one can check that at any global
minimizer, the covariances of the hidden layers equal ZT

ℓ Zℓ = XT (X−TZT
LZLX

−1)
ℓ
LX ,

interpolating between the input covariance XTX and output covariance ZT
LZL.

3. A lot of work has been done to propose biologically plausible training methods for DNNs
[2, 11], in contrast to backpropagation which is not local. A line of work [21, 18, 22], propose
a biologically plausible optimization technique which minimizes a cost which closely

resembles our first reformulation, with the multiplicative distances
∥∥∥Zℓ

(
Zσ
ℓ−1

)+∥∥∥2
F

replaced

by additive ones
∥∥Zℓ − Zσ

ℓ−1

∥∥2
F

. Due to this change, there is no direct correspondence
between the networks trained with this biologically plausible technique and those trained
with backpropagation. If one could extend this training technique to work with multiplicative
distances one could guarantee such a direct correspondence.

4. The optimization leads to an attraction-repulsion algorithm. If we optimize only on the
term Zℓ and fix all other representations, the only two terms that depend on Zℓ are∥∥∥Zℓ

(
Zσ
ℓ−1

)+∥∥∥2
F

and
∥∥∥Zℓ+1 (Z

σ
ℓ )

+
∥∥∥2
F

. The former term is attractive as it pushes the
representations Zℓ towards the origin (and hence pushes the representations at depth ℓ
of every input towards each other), especially along directions where Zσ

ℓ−1 is small. The
latter term is repulsive as it pushes the representations Zσ

ℓ away from the origin, especially
along directions where Zℓ+1 is large.

5. This attraction-repulsion process is similar to the Information Bottleneck theory [24]: the
repulsive term ensure that Zℓ keeps enough information about the inputs to reconstruct Zℓ+1,
while the attractive term pushes Zℓ to keep as little information as possible.

The attraction and repulsion forces of of the ℓ-th layer are the derivative ∂Zℓ

∥∥∥Zℓ

(
Zσ
ℓ−1

)+∥∥∥2
F

and

∂Zℓ

∥∥∥Zℓ+1 (Z
σ
ℓ )

+
∥∥∥2
F

which are both nℓ ×N matrices. One can visualize these forces either column
by column (each column corresponding to a datapoint i = 1, . . . , N ) or line by line (each line
corresponding to a neuron k = 1, . . . , nℓ). These two visualizations of the forces are presented in
Figure 1 for the two hidden layers of a depth L = 3 network, projected to the 2 largest principal
components of the columns resp. lines of Zℓ. Figures 1a and 1c illustrate how the inputs corresponding
to different classes are pushed away from each other, leading to a clustering effect. Figures 1b and
1d show that the neurons naturally align along rays starting from the origin. This happens for
homogeneous non-linearities, such as the ReLU in this example, because if two neurons k, k′ have
proportional activations, i.e. Zℓ,k = αZℓ,k for some α ∈ R, then their attractive and repulsive forces
will also be proportional with the same scaling α. As a result, the neuron k is stable, i.e. the attraction
and repulsion cancel each other, if and only if the neuron k′ is stable.

This phenomenon can be interpreted as a form of sparsity: a group of aligned neurons can be replaced
by a single neuron without changing the resulting function ZL. Can we guarantee a degree of sparsity
in the hidden representations? Can we bound the number of aligned groups in a neuron? In the next
section, we introduce a further reformulation of the loss which allows us to partially answer these
questions.

3.2 Covariance learning : partial convex optimization for positively homogeneous
nonlinearities

The loss of the first reformulation Lr
λ depends on the hidden representations Zℓ and Zσ

ℓ only through

the covariances Kℓ = ZT
ℓ Zℓ and Kσ

ℓ = (Zσ
ℓ )

T
Zσ
ℓ , since

∥∥∥Zℓ

(
Zσ
ℓ−1

)+∥∥∥2
F

= Tr
[
Kℓ

(
Kσ

ℓ−1

)+]
.

Hence, we provide a second reformulation expressed in terms of the tuple of covariance pairs K =
((K1,K

σ
1 ), . . . , (KL−1,K

σ
L−1)) and the outputs ZL. Using the notations Kσ

0 = XTX + β21N×N

5



and KL = ZT
LZL, we define:

Lk
λ(K, ZL) = C(ZL) + λ

L∑
ℓ=1

Tr
[
Kℓ

(
Kσ

ℓ−1

)+]
.

It remains to identify the set Kn(X) of covariances K and outputs ZL which can be represented by
a width n network with inputs X . For positively homogeneous nonlinearities of degree 1 such as
the ReLU (i.e. when σ(λx) = λσ(x) for any positive λ), the set Kn(X) can be expressed using the
notion of conical hulls.
Definition 2. The conical hull of Ω ⊂ Rd is the set cone (Ω) :={∑k

i=1 αiωi : k ≥ 0, αi ≥ 0, ωi ∈ Ω
}

and its m-conical hull for m ≥ 1 is the set

conem (Ω) := {
∑m

i=1 αiωi : αi ≥ 0, ωi ∈ Ω}.

Note that by Caratheodory’s theorem for conical hulls, conem (Ω) = cone (Ω) for any m ≥ d.
We now proceed to the description of the set Kn(X) and obtain the second formulation of the L2

regularized loss and of the representation loss Rn in terms of covariances:
Proposition 3. For positively homogeneous non-linearities σ, the infimum of Lλ(W) =

C(ZL(X;W)) + λ ∥W∥2 , over the parameters W ∈ RP is equal to the infimum over Kn(X)
of

Lk
λ(K, ZL) = C(ZL) + λ

L∑
ℓ=1

Tr
[
Kℓ

(
Kσ

ℓ−1

)+]
.

The set Kn(X) is the set of covariances K = ((K1,K
σ
1 ), . . . , (KL−1,K

σ
L−1)) and outputs ZL such

that for all hidden layer ℓ = 1, . . . , L− 1:

• the pair (Kℓ,K
σ
ℓ ) belongs to the (translated) nℓ-conical hull

Snℓ
= conenℓ

({(
xxT , σ(x)σ(x)T

)
: x ∈ RN

})
+ (0, β21N×N ),

• ImKℓ ⊂ ImKσ
ℓ−1, with the notation Kσ

0 = XTX + β21N×N , and ImZL ⊂ ImKσ
L−1.

Note that one can also reformulate the representation cost:

Rn(X,Y ) = min
K:(K,Y )∈Kn(X)

L∑
ℓ=1

Tr
[
Kℓ

(
Kσ

ℓ−1

)+]
.

Remark 4. In contrast to the first loss Lr
λ whose local minima were in correspondence with the local

minima of the original loss Lλ, the second loss Lk
λ can in some cases have strictly less critical points

and local minima. Indeed, since the map W 7→ (K, ZL) is continuous, if (K(W), ZL(W)) is a
local minimum, then so is W. However, the converse is not true: we provide a counterexample in the
Appendix, i.e. a set of weights W of a depth L = 2 network which is a local minimum of Lλ and
such that the corresponding (K, ZL) is not a local minimum of Lk

λ.

Since the dimension of the space of pairs of symmetric N×N matrices is N(N+1), if nℓ ≥ N(N+1)
then, by the Caratheodory’s theorem for conical hulls,

Snℓ
= S := cone

({(
xxT , σ(x)σ(x)T

)
: x ∈ SN−1

})
+ (0, β21N×N ).

Hence, as soon as nℓ ≥ N(N + 1) for all hidden layers, the set Kn(X) does not depend on the list
of widths n. We denote

K(X) =
{
(K, ZL) | ∀ℓ = 1, . . . , L− 1, (Kℓ,K

σ
ℓ ) ∈ S, ImKℓ ⊂ ImKσ

ℓ−1, ImZL ⊂ ImKσ
L−1

}
this width-independent set. The following proposition shows that for sufficiently wide networks with
a positively homogeneous nonlinearity, training a deep DNN with L2 regularization is equivalent to a
partially convex optimization over a translated convex cone.
Proposition 5. The set K(X) is a translated convex cone: after the suitable translation, it is equal
to its conical hull. The cost Lk

λ (K, ZL) is partially convex w.r.t. to the outputs ZL and the pairs
(Kℓ,K

σ
ℓ ), i.e. it is convex if one fixes the other parameters and let only (Kℓ,K

σ
ℓ ), or ZL, vary.
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3.3 Direct optimization of the reformulations

It is natural at this point to wonder whether one could optimize directly over the representations
Z (using the first reformulation) or over the covariances K and output ZL (using the second
reformulation), and whether this would have an advantage over the traditional optimization of
the weights.

For the first reformulation, one can simply use the projected gradient descent with updates given by

Zt+1 = PZ (Zt − η∇Lr
λ(Z))

for any projection PZ to the constraint space Z . For example, a projection is obtained by mapping
Zℓ to ZℓPImZσ

ℓ−1
sequentially from ℓ = 1 to ℓ = L. Note however that the loss explodes as the

constraints become unsatisfied so that for gradient flow, there is no need for the projections. This
suggests that these projections might also be unnecessary as long as the learning rate is small enough.
For more details, see Appendix B.1.

For the second reformulation, there is no obvious way to compute a projection to the constraint space
K: the cone S is spanned by an infinite amount of points and we do not have an explicit formula for
the dual cone S∗. Frank-Wolfe optimization can be used to overcome the need for computing the
projections.

However, these direct optimizations of the reformulations lead to issues of computational complexity
and stability. First, the computation of the gradients ∇Lr

λ(Z) and ∇Lk
λ(K, ZL) requires solving a

linear equation of dimension N , which is very costly, in contrast to the traditional optimization of the
weights W for which the gradient can be computed very efficiently. Second, if Zσ

ℓ is not full-rank,
the computation of its pseudo-inverse (Zσ

ℓ )
+ and the projection PImZσ

ℓ
are very unstable. Therefore,

if we only have finite-precision knowledge of Zℓ, we cannot reliably compute (Zσ
ℓ )

+ nor PImZσ
ℓ

.

Although it could be possible to solve these problems (e.g. using the Tikhonov regularization for the
unstability problem) and to develop efficient algorithms to optimize both reformulations efficiently,
we decided in this paper to focus on the theoretical implications of these reformulations.

4 Sparsity of the Regularized Optimum for Homogeneous DNNs

In this section, we assume that the non-linearity is positively homogenous. Under this assumption,
the second reformulation of the loss (and of the representation cost) holds and implies the existence
of a sparsity phenomenon.

First observe that as the widths n increase, both the global minimizer of the loss minW Lλ(W) and
the representation cost Rn(X,Y ) diminish. We denote by Lλ,n the L2-regularized loss of DNNs
with widths n. Recall that the depth L is fixed.
Proposition 6. If n ≤ n′ (in the sense that nℓ ≤ n′

ℓ for all ℓ and n0 = n′
0 and nL = n′

L), then

min
W∈RPn

Lλ,n(W) ≥ min
W∈RP

n′
Lλ,n′(W)

and for any X ∈ Rn0×N and Y ∈ RnL×N , Rn(X,Y ) ≥ Rn′(X,Y ).

Proof. Let us assume that the parameters W∗ are optimal for a width n network, the parameters
can be mapped to parameters of a wider network by adding ‘dead’ neurons (i.e. neurons with zero
incoming and outcoming weights) without changing the network function fW∗ nor the norm of the
parameters ∥W∥.

For DNNs with positively homogeneous nonlinearities, a direct consequence of our reformulation
through the hidden covariances is that both the global minimum of the loss Lλ and the representation
cost Rn(X,Y ) plateau for any widths n such that nℓ ≥ N(N + 1).
Proposition 7. For any positively homogeneous nonlinearity σ, any widths n and n′ such that
n0 = n′

0, nL = n′
L and for all ℓ = 1, . . . , L− 1, nℓ, n

′
ℓ ≥ N(N + 1), for all λ > 0, we have:

min
W∈RPn

Lλ,n(W) = min
W∈RP

n′
Lλ,n′(W).

Under the same conditions Rn(X,Y ) = Rn′(X,Y ) for any X ∈ Rn0×N and Y ∈ RnL×N ,.
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Figure 2: Loss plateau: Plots of the train loss (full lines) and test loss (dashed lines) as a function
of the width for depth L = 3 DNNs for different datasets: (left) cross-entropy loss for a subset of
MNIST (N = 1000) and two values of λ; (right) MSE with λ = 10−6 on N = 1000 Gaussian inputs
and outputs evaluated on a fixed teacher network of depth L = 3 and width 10( (right). For the right
plot we took (the minimum is taken over 3 independent trials, represented by the small blue dots). In
both settings, the plateau appears to start around 10, much earlier than N2 = 106. The regularization
term is included in the training loss but not the test, leading to a smaller test loss on the right.

Proof. This follows directly from the second reformulation and the fact that by Caratheodory’s
theorem for conical hulls, Sn = S if n ≥ N(N + 1) (see discussion after Remark 4).

We can therefore define a width-independent representation cost R(X,Y ) (which still depends on
the fixed depth L) equal to the representation cost Rn(X,Y ) of any sufficiently wide network.

4.1 Rank of the Hidden Representations

Now that we have revealed the plateau phenomenon, a natural question that we investigate in
this section is when does this plateau begin. In order to do so, we introduce the notion of rank
Rankσ(K,Kσ) of a pair of Gram matrices (K,Kσ) ∈ S which is the minimal number k such that

K =

k∑
i=1

ziz
T
i and Kσ =

k∑
i=1

σ (zi)σ (zi)
T
+ β21N×N (4.1)

for some z1, . . . , zk ∈ RN . This notion of rank describes exactly the minimal number of neurons
required to recover a set of covariances K:

Proposition 8. Let (K, ZL) ∈ K(X), then there are parameters W of a width n network with
covariances and outputs K if and only if nℓ ≥ Rankσ (Kℓ,K

σ
ℓ ) for all ℓ = 1, . . . , L− 1.

We can now describe the plateau R = {n : minW∈RPn Lλ,n(W) = minm minW∈RPm Lλ,m(W)},
i.e. the set of widths n such that the minimum minW∈RPn Lλ,n(W) is optimal over all possible
widths:

Corollary 9. Let Kmin be the set of covariances sequences (K, ZL) which are global minima of
the second reformulation. We have that n ∈ R if and only if there is a (K, ZL) ∈ Kmin such that
nℓ ≥ Rankσ (Kℓ,K

σ
ℓ ).

Hence, the investigation of Rankσ(·, ·) is crucial to understand where the plateau begins;
unfortunately, it can be difficult to compute. However, from its definition and the Caratheodory’s
theorem for conical hulls (see our discussion after Remark 4), we have the following natural bounds:

Lemma 10. For any pair (K,Kσ) ∈ S, we have Rank (K) ≤ Rankσ(K,Kσ) ≤ N(N + 1).

We show in the next section that the order of magnitude of the upper bound is tight. More specifically,
we construct a dataset for which any global optimum satisfies Rankσ(K1,K

σ
1 ) ≥ N2

/4. This implies
that, in this example, the plateau transition occurs when the number of hidden neurons is of order
O(N2). Note however that, in our numerical experiments (see Figure 2), the rank of the global
optimum can be much smaller for more traditional dataset such as MNIST.
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Remark 11. The start of the plateau measures a notion of sparsity of the learned network, since
the networks learned in the plateau are equivalent to a network at the start of the plateau, i.e. large
networks are equivalent in terms of their covariances and outputs (K, ZL) to a (potentially much)
smaller network.

Even though the set of pairs (Kℓ,K
σ
ℓ ) in the cone S that are not full rank has measure zero, the

optimal representations (Kℓ,K
σ
ℓ ) always lie on the border of the cone S (since the derivative of

the cost Lk
λ w.r.t. (Kℓ,K

σ
ℓ ) never vanishes) where the rank is lower. More precisely, the rank is

determined by the dimension of the smallest face that contains the optimum (e.g. the pairs (Kℓ,K
σ
ℓ )

on the edges of S have rank at most 2 for example, while those on the vertices are rank 1).

We can identify different degrees of sparsity depending on how the rank of the hidden representations
scales with the number of datapoints N : if the rank is o(N) the covariances Kℓ,K

σ
ℓ are low-rank

(in the traditional linear sense) and for shallow networks the effective number of parameters (i.e.
the number of parameters at the start of the plateau) is o(N2), if the rank is o(

√
N) then for deep

networks the effective number of parameters o(N). This could explain why very large networks with
‘too many parameters’ are able to generalize, since their effective number of parameters is of the
order of the number datapoints. Very large networks can therefore be trained safely knowing that
thanks to L2-regularization, the network is able to recognize what is the ’right’ width of the network.

4.2 Tightness of the Upper-Bound

In this section, we construct a pair of input and output datasets X and Y , both in RN×N , such that
for any optimal parameters W of a ReLU network of depth L = 2 with no bias (β = 0), the rank of
the hidden representation Rankσ (K1,K

σ
1 ) is greater than N2

/4.

Note that one can write the decomposition (4.1) as K = CTC and Kσ = BTB where C =
(z1, . . . , zk) and B = ReLU(C) is obtained by applying elementwise the ReLU to C. Key to our
construction is the fact that B is then a matrix with non-negative entries: the matrix Kσ is completely
positive and Rankσ (K,Kσ) can be studied using the CP-rank of K:
Definition 12. A N ×N matrix A is completely positive if A = BTB for a k ×N matrix B with
non-negative entries. The CP-rank Rankcp (A) of a completely positive matrix A is the minimal
integer k such A = BTB for a k ×N matrix B with non-negative entries.

When σ is the ReLU, the kernel Kσ
ℓ is completely positive for all hidden layers ℓ, and thus

max (Rank (Kℓ) ,Rankcp (K
σ
ℓ )) ≤ Rankσ(K,Kσ).

In order to obtain the tightness of the upper bound, we proceed in two steps: first, we construct a
completely positive matrix A with high CP-rank, and then construct inputs X and outputs Y such
that the optimal hidden covariance K1 = Kσ

1 for a depth L = 2 network equals the matrix A.

As shown in [7], bi-partite graphs can be used to construct matrices with high CP-rank. We refine this
by showing that graphs on N vertices without cliques of 3 or more vertices lead to N ×N matrices
with CP-rank equal to the number of edges, and as a corollary, we construct a completely positive
matrix with CP-rank equal to N2

/4.
Proposition 13. Given a graph G with N vertices and k edges, consider the k ×N matrix E with
entries Eev = 1 if the vertex v is an endpoint of the edge e and Eev = 0 otherwise. The matrix
A = ETE is completely positive and if the graph G contains no cliques of 3 or more vertices then
Rankcp (A) = k.

Hence, to obtain a completely positive matrix of high CP-rank, it remains to find a graph with no
cliques and as many edges as possible. For even N , we consider the complete bipartite graph, i.e.
the graph with two groups of size N/2 and with edges between any two vertices iff they belong to
different groups. For this graph, the matrix BN = ETE takes the form of a block matrix:

BN =

(
N
2 IN

2
1N

2 ×N
2

1N
2 ×N

2

N
2 IN

2

)
where 1N

2
is the N/2×N/2 matrix with all ones entries. Since this bipartite graph has no cliques

and N2
/4 edges, from the previous proposition, we obtain Rankcp (BN ) = N2

4 .
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The following proposition shows how for any completely positive matrix (with CP-rank k) there is a
dataset such that a shallow ReLU network will have a hidden representation pair (K1,K

σ
1 )of rank k:

Proposition 14. Consider a width-n shallow network (L = 2) with ReLU activation, no bias β = 0,

n0 = N , n1 ≥ N(N + 1), input dataset XN = IN , and any output dataset YN such that
(
Y T
N YN

) 1
2

is a completely positive matrix with CP-rank k.

At any global minimum of Rn(XN , YN ), we have Rankσ (K1,K
σ
1 ) = k. Furthermore for λ small

enough, at any global minimum of LMSE
λ,n (W) = 1

N ∥Y (XN ;W)− YN∥2F + λ ∥W∥2 , we have
Rankσ (K1,K

σ
1 ) ≥ k.

By Proposition 14, with the outputs YN = BN , the rank of the hidden representations (and the start
the plateau) is larger or equal to N2

4 . This shows that the order N2 of the bound of Lemma 10 is
tight when it comes to data-agnostic bounds. However under certain assumptions on the data one can
guarantee a much earlier plateau.

For example, if we instead apply Proposition 14 to a task closer to classification, where the columns
of the outputs YN ∈ RnL×N are one-hot vectors, then (Y T

N YN )
1
2 is (up to permutations of the

columns/lines) a block diagonal matrix with nL constant positive blocks, which is completely positive
with CP-rank equal to the number of classes nL. This is in line with our empirical experiments in
Figure 2 where we observe in MNIST a plateau starting roughly at a width of 10, which is the number
of classes.

Another example where the structure of the data leads to an earlier plateau is when the input and
output dimensions are both 1, in which case we can guarantee that the start of the plateau grows at
most linearly with the number of datapoints N :

Proposition 15. Consider shallow networks (L = 2) with scalar inputs and outputs (n0 = n2 = 1), a
ReLU nonlinearity, and a dataset X,Y ∈ R1×N . Both the representation cost Rn(X,Y ) and global
minimum minW Lλ,n(W) for any λ > 0 are independent of the width n1 as long as n1 ≥ 4N .

More generally, we propose to view the start of the plateau as an indicator of how well a certain task
is adapted to a DNN architecture. An early plateau suggests that the network is able to solve the
task optimally with very few neurons, in contrast to a late plateau. The fact that the optimal network
requires few neurons (and hence few parameters) can be used to guarantee good generalization.

4.3 Conclusion

We have given two reformulations of the loss of L2-regularized DNNs. The first works for a general
non-linearity and shows how the hidden representations of the inputs Z1, . . . , ZL−1 are learned
to interpolate between the input and output representations, as a balance between attraction and
repulsion forces for every layer. The second reformulation for homogeneous non-linearities allows
us to analyze a sparsity effect of L2-regularized DNNs, where the learned networks are equivalent
to another network with much fewer neurons. This effect can be visualized by the appearance of
a plateau in the minimal loss as the number of neurons grows, the earlier the plateau, the sparser
the solution, since an early plateau means that very few neurons were required to obtain the same
loss as a network with an infinite number of neurons. We show that this plateau cannot start later
than N(N + 1), and then show that the order of this bound is tight by constructing a toy dataset for
which the plateau starts at N2

/4, however, we observe that on more traditional datasets, the start of
the plateau can be much earlier.
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