A Proof of results from Section 3

A.1 Proof of Lemma 2

Proof. First we prove result in the case that ||di|| < ~2rk. By (6b) the statement ||di| < ~ork
implies 6 = 0. Combining ¢;, = 0 with (6a) and (9) and using the fact 1 — v; > 0 yields
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Next we prove the result in the case that p;, < 3. Then
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where the the first inequality uses (10), the first equality uses the definition of pj, and the second
inequality uses p, < 8 and —My,(dy) + S|V f(zk + di) | |dk | > 0.
Rearranging the previous inequality using 1 — 3 > 0 and then applying (6d) yields:
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Now, by (9), (6a) and the triangle inequality, and (13) respectively:
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Rearranging the latter inequality for ||V f(zy + d)|| and using (1 77 T 71 < 1from the require-
ments of Algorithm 1 yields:
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A.2  Proof of Lemma 5
Proof. For conciseness let m = |P.|. Suppose that the indices of P, are ordered increasing value by
a permutation function m, i.e., P. = {m(i) : i € [m]} with 7(1) < --- < w(m). Then
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where the first inequality uses the fact that f(x(;)) is non-increasing in 7 (7) and f(2r(;)) > fx and
the equality is simply the definition of the telescoping sum of f(2x(m)) — f(%(1)). Therefore,
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where the first equality uses the definition of pr(;), the second inequality follows from p ;) > 8 for
(i) € Pe, the third inequality uses that — My, (d¢;y) > 0, the final inequality uses that 7(i) € Pe
implies that |V f(2r(;) + dr(;))|| > € (by definition of 7(i) € P.) and de < ||dr(;)| (due to
Lemma 4).

Rearranging the latter inequality for m using the fact that S0ed. > 0 and Ay > 0 yields m <

% +1= g(féw + 1 = where the equalities use the definitions of d, and d.. O

A.3 Proof of Theorem 1

Proof. Define:
n;={k € N:k¢g P, k< Kk <k<j}

First we establish that

Moo < Poo + log,, (max {e, 1}) ) (14)
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Consider the induction hypothesis that
T < T wPET V€ ke, K. ) NN. (15)

If k = k. then p;, = ny, = 0 and the hypothesis holds. Suppose that the induction hypothesis holds
for k = j. Note that for all j € N either p;; = p; + 1 (and nj 1 = ny) or nj41 = n; + 1 (and
pj+1 = pj)- I pjp1 = pj + 1 then
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On the other hand, if n;41 = n; + 1 then
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Therefore by induction (15) holds. By (15) and Lemma 4,
d. < duh ™

which establishes (14).

By Lemma 4 we have k. < 1+log.,,, (max{1,dc/r1,r1/dc}) and Lemma 5 we have po, < d‘iew +1;
using these inequalities in conjuction with (14) gives
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is a problem-independent constant. As ¢y, co,w, 3,60,71, 72 and 3 are problem-independent con-
stants (see the definition of ¢; in Lemma 2 and the requirements of Algorithm 1) the result follows. [

B Proof of Theorem 2

We first prove Theorem 3 and then reduce Theorem 2 to Theorem 3. The following fact will be useful.
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Fact 3 ([53]). If f is a-strongly convex and S-smooth on the set C (i.e., ol < V2f(9c) = ST for all
x € C) then

allz =z ]| < [V f(2)|| < Sllz — z.]| (16)
where x, is any minimizer of f.

Theorem 3. Suppose that [ is L-Lipschitz, V f(x,) = 0 and there exists a, S,t > 0 such that
oI <X V2f(x) < Slforallx € {x € R" : |z — x,|| < t}. Consider the set
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Proof. We begin by establishing the premise of Lemma 6. First we establishz, € C' = x;41 € C.
2

Suppose that 2, € C'then f(zx41) < fag) < f(zs) + 2% By strong convexity we get ;11 € C.

Next we establish that min{yerg, ||zx+1 — ||} < [|dk|| < wye||xr — x4||- By strong convexity and

(6d) we have
o+ g
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which implies ||dj|| < W Furthermore, by (9), (6a) and ||dy|| < W we have
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which after rearranging
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By strong convexity and smoothness,
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where &, := min f(z) + %Hx — x3,||%. Therefore, as ||zx — 2. < 0‘32(;7;“) min {1, wys — 1},
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which combined with the triangle inequality and ||Z) — || < ||z — x«|| gives
il < [len + di — Zll + llze — Zrl| < wyaflzr — 2]

Furthermore, if ||dx|| < 727k then by (6b) we have §;, = 0 and &, = x, which gives

1
ok + di = 2ol < Sllow — 2l < llow = @ell = llow + di — 24| < lldi]|.

Next we show z;, € C implies pr > (. To obtain a contradiction we assume g < (3, by the
definition of the model, (6a) and strong convexity we get

M, (dy,) = %d{VZf(xk)dk + Vf(xp)Tdp = dF (V2 f(xr)dg + Spdi + V f(21)) — %d;{(VQf(xk) + 26, X)dy,
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It follows that by inequality (10), [|dy|| < wyallzk — .|| < 22(1 — B)a, inequality (11), ||dx|| <

wys|lxg — 24| < W we have
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which gives our desired contradiction.

With the premise of Lemma 6 established we conclude that for k > 2 4 i + log (n/||d;||) we have
0 = 0 and therefore by (18) we get the desired result. ]

The following Lemma is a standard result but we include it for completeness.

Lemma 7. If v? f(xy) is twice differentiable and positive definite, then there exists a neighborhood
N and positive constants o, § > 0 such that ol < VZf(m) < SIforallx € N.

Proof. As V[ is twice differentiable and the fact that continuous functions on compact sets are
bounded we conclude that there exists a neighborhood N around z, that V2 f is L-Lipschitz for
some constant L € (0, c0). Then by using the fact that there exists positive constants o, 5’ € (0, 00)
st. o/T < V2f (x,) = BT we conclude for sufficiently small ball around =, we have o//2I <
V2 f(z) < 28T for all z in a sufficiently small neighborhood N’ C N. O

Proof of Theorem 2. Follows by Lemma 7 and Theorem 3. O

C Solving trust-region subproblem

In this section, we detail our approach to solve the trust-region subproblem. We first attempt to take a
Newton’s step by checking if V2 f(zy) = 0 and ||V?f(x) "'V f(x)|| < 7. However, if that is
not the case, then the optimally conditions mentioned in (6), will be a key ingredient in our approach
to find ¢ and hence dj, (). Based on these optimally conditions, we will define a univariate function ¢
that we seek to find its root at each iteration. In our implementation we use y3 = 1.0 for (6d) which
is the same as satisfying (5d). The function ¢ is defined as bellow:

—1, if V2f(xg) + 0L 0or ||di(8)] > 7k
$(8) == S +1, iV f(zp) + 6120 & [ di(8)] < rarn
0, it Vf(xp) +01=0 & [|dp(0)] < rx

where:
dy.(0) := (V2 f(z) + 01~ (=V f(2x))

When we fail to take a Newton’s step, we first find an interval [d, §'] such that ¢(&) x ¢(d8’) < 0.
Then we apply bisection method to find d;, such that ¢(dx) = 0. In case our root finding logic failed,
then we use the approach from the hard case section under chapter 4 "Trust-Region Methods" in [44]
to find the direction d,.

The logic to find the interval [0, §'] is summarized as follow. We first compute ¢(d) using the § value
from the previous iteration. Then we search for ¢’ by starting with ' = 25. We compute ¢(¢’) and
in the case ¢(8’) < 0, we update ¢’ to become twice its current value, otherwise if ¢(6') > 0, we
update &’ to become half its current value. We keep repeating this logic until we get a 6’ such that
?(8) x ¢(6") < 0 or until we reach the maximum iteration limit which is marked as a failure.

The whole approach is summarized in Algorithm 2:
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Algorithm 2: trust-region subproblems solver

if V2f(x1,) = 0 then
dy, = =V f () 7'V f (1)
if ||di|| < r then

| return dj;

if hard case then

Find dj, using [44, pages 87-88] ;

return d;

else
Find initial interval [, '] using the ¢ function such that ¢(8) x ¢(6') < 0;
Use bisection method to find d such that ¢(d) =0 ;

| return d ()

D Experimental results details

D.1 Learning linear dynamical systems

The time-invariant linear dynamical system is defined by:
hit1 = Ahy + Buy + &
Tt = ht + 79t

where the vectors h; and x; represent the hidden and observed state of the system at time ¢. Here
ug, ¥y ~ N(0,1)4, & ~ N(0,0)% and A and B are linear transformations.

The goal is to recover the parameters of the system using maximum likelihood estimation and hence
we formulate the problem as follow:

+ |y — he|?

T
. Z Hht+1 — Ahf — B’th||2
min
AB.h o2

We synthetically generate examples with noise both in the observations and also the evolution of
the system. The entries of the matrix B are generated using a Normal distribution N(0,1). For
the matrix A, we first generate a diagonal matrix D with entries drawn from a uniform distribution
U10.9,0.99] and then we construct a random orthogonal matrix ) by randomly sampling a matrix
W ~ N(0,1)%*? and then performing an QR factorization. Finally using the matrices ) and D, we
define A:
A=Q"DQ

We compare our method against the Newton trust-region method available through the Op-
tim.jl package [51] licensed under https://github.com/JuliaNLSolvers/Optim. j1/blob/
master/LICENSE.md. In the results/learning problem subdirectory in the git repository, we present
the full results of running our experiments on 60 randomly generated instances with T' = 50, d = 4,
and o = 0.01 where we used a value of 10~ for the gradient termination tolerance. This experiment
was performed on a MacBook Air (M1, 2020) with 8§GB RAM.

D.2 Matrix completion

The original power consumption data is denoted by a matrix D € R™ *™2 where n; represents the
number of measurements taken per day within a 15 mins interval and ng represents the number
of days. Part of the data is missing, hence the goal is to recover the original data. The set 2 =
{(4,7)|D; ; is observed} denotes the indices of the observed data in the matrix D.

We decompose D as a product of two matrices P € R™*" and Q € R™*" where r < n; and
r < ng:

D = PQT.
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To account for the effect of time and day on the power consumption data , we use a baseline estimate
[54]:

di’j:/L+Ti+Cj

where 1 denotes the mean for all observed measurements, 7; denotes the observed deviation during
time 4, and c; denotes the observed deviation during day j [49, 54].

We formulate the matrix completion problem as the regularized squared error function of SVD model
[49, Equation 10]:

gin > (Dij = p=ri— ;= pigj )+ 2+ 6) + Aallpill3 + llg; 1)
T e

We use the public data set of Ausgrid, but we only use the data from a single substation (the
Newton trust-region method [51] is very slow for this example so testing it on all substations takes a
prohibitively long time). We limit our option to 30 days and 12 hours measurements i.e the matrix D
is of size 48 x 30 because with a larger matrix size, the Newton trust-region [51] was always reaching
the iterations limit.

We compare our method against Newton trust-region algorithm available through the Optim.jl pack-
age [51] licensed under https://github.com/JuliaNLSolvers/Optim.jl/blob/master/
LICENSE.md. In the results/matrix completion subdirectory in the git repository, we include the full
results of running our experiments on 10 instances by randomly generating the sampled measurements
from the matrix D with the same values for the regularization parameters as in [49] where we used a
value of 10~ for the gradient termination tolerance. This experiment was performed on a MacBook
Air (M1, 2020) with 8GB RAM.
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