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Abstract

A flexible conformal inference method is developed to construct confidence in-
tervals for the frequencies of queried objects in very large data sets, based on a
much smaller sketch of those data. The approach is data-adaptive and requires
no knowledge of the data distribution or of the details of the sketching algorithm;
instead, it constructs provably valid frequentist confidence intervals under the sole
assumption of data exchangeability. Although our solution is broadly applicable,
this paper focuses on applications involving the count-min sketch algorithm and
a non-linear variation thereof. The performance is compared to that of frequentist
and Bayesian alternatives through simulations and experiments with data sets of
SARS-CoV-2 DNA sequences and classic English literature.

1 Introduction

1.1 Frequency queries from sketched data

An important task in computer science is to estimate the frequency of an object given a lossy com-
pressed representation, or sketch, of a big data set [1, 2]; this task has real-world relevance in diverse
fields including machine learning [3], cybersecurity [4], natural language processing [5], genet-
ics [6], and privacy [7]. Practically, sketching may be motivated for example by memory limitations,
as large numbers of distinct symbols may otherwise be computationally expensive to analyze [6], or
by privacy constraints, in situations where the original data contain sensitive information [8]. There
exist many sketching algorithms, several of which are specifically designed to enable efficient ap-
proximations of the empirical frequencies of the compressed objects. We refer to the monograph of
[9] for a recent review of sketching. Building upon this literature, our paper studies the problem of
precisely quantifying the uncertainty of empirical frequency estimates obtained from sketched data
without making strong assumptions about the inner workings of the sketching procedure, which may
be complex and even unknown. The key ideas of the described solution are in principle applicable
regardless of how the data are compressed, but the exposition of this paper will focus for simplicity
on a particularly well-known sketching algorithm and some widely applied variations thereof.

1.2 The count-min sketch

The count-min sketch (CMS) of [10] is a renowned algorithm for compressing a data set of m
objects Z1, . . . , Zm ∈ Z , with Z being a discrete (and possibly infinite) space, into a representation
with reduced memory footprint, while allowing simple approximate queries about the observed
frequency of any possible z ∈ Z . At the heart of the CMS lie d ≥ 1 different w-wide hash functions
hj : Z → [w] := {1, . . . , w}, for all j ∈ [d] := {1, . . . , d} and some integer w ≥ 1. Each hash
function maps the elements of Z into one of w possible buckets, and it is designed to ensure that
distinct values of z populate the buckets uniformly. Hash functions are typically chosen at random
from a pairwise independent family H, which ensures the probability (over the randomness in the
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choice of hash functions) that two distinct objects z1, z2 ∈ Z are mapped by two different hash
functions into the same bucket is equal to 1/w2. The data set Z1, . . . , Zm is then compressed into a
sketch matrix C ∈ Nd×w with row sums equal to m. The element in the j-th row and k-th column
of C counts the number of data points mapped by the j-th hash function into the k-th bucket:

Cj,k =

m∑
i=1

1 [hj(Zi) = k] , j ∈ [d]. (1)

Because d and w are such that d ·w � m, the matrix C loses information compared to the full data
set, but it has the advantage of requiring much less space to store.

Given a sketch C from (1), one may want to answer queries about the original data. A fundamental
instance of this problem consists in estimating the true empirical frequency of an object z ∈ Z:

fm(z) :=

m∑
i=1

1 [Zi = z] . (2)

One solution is to return the smallest count among the d buckets into which z is mapped:

f̂CMS
up (z) = min

j∈[d]
{Cj,hj(z)} ≥ fm(z). (3)

This procedure is outlined in Algorithm A1 (Appendix A1) and it provides a deterministic upper
bound for fm(z) [10]. Of course, f̂CMS

up (z) tends to overestimate fm(z) due to possible hash colli-
sions. But the independence of the hash functions ensures collisions are not too common, leading to
a classical probabilistic lower bound for fm(z).
Theorem 1 ([10]). Fix any δ, ε ∈ (0, 1). Suppose d = d− log δe andw = de/εe. Then, PH[fm(z) ≥
f̂CMS

up (z)− εm] ≥ 1− δ for any fixed z ∈ Z , where f̂CMS
up (z) is as in (1) and depends on d,w.

For example, if d = 3, this says that a 95% lower bound on fm(z) is f̂CMS
up (z) − de ·m/we. The

subscript H in Theorem 1 clarifies that the randomness is with respect to the hash functions, while
Z1, . . . , Zm and z are fixed. The above bound can be useful to inform the choices of d and w prior
to sketching, but it is not fully satisfactory as a way of quantifying the uncertainty about the true
frequency of a given query. First, it is often too conservative [11] if the data are randomly sampled
from some distribution as opposed to being fixed. Second, it is not flexible: δ cannot be chosen by
the user because it is fixed by d, and ε is uniquely determined by the hash width. Thus, in general
Theorem 1 cannot give a reasonably tight confidence interval for fm(z) at an arbitrary level. As we
will discuss below, these limitations can be overcome by assuming the data are sampled randomly.

1.3 Uncertainty estimation for sketching with random data

An alternative approach to computing probabilistic lower and upper bounds for fm(z) was proposed
by [11] in order to address the often excessive conservativeness of the classical bounds described
above. The approach of [11] is based on bootstrapping ideas and departs from classical analysis
of the CMS as it leverages randomness in the data instead of randomness in the hash functions.
Precisely, [11] assumes the data and the queried object are independent and identically distributed
(i.i.d.) random samples from some unknown distribution. These assumptions may not always be
justified in practice, but they are useful because they can lead to much more informative confidence
intervals. In fact, the confidence intervals described by [11] are nearly exact and optimal for the
CMS, up to a possible finite-sample discrepancy between the bootstrap and population distributions.

A limitation of the bootstrap method of [11] is that it relies on the specific linear structure of the
CMS—the sketch matrixC in (3) can be written as a linear combination of the true frequencies of all
objects in the data set—and thus the idea is not easily extendable to other sketching algorithms that
may perform better than the CMS in practice. One issue with the CMS is that it is relatively sensitive
to random hash collisions, which can result in overly conservative deterministic upper bounds. This
challenge has motivated the development of alternative non-linear sketching algorithms, such as the
CMS with conservative updates (CMS-CU). Whenever a new object Zi is sketched, the CMS-CU
only updates the row of C with the smallest value of Cj,hj(z), leaving the other counters unaltered.
Then, the same CMS deterministic upper bound in (3) remains valid. This procedure is outlined in
Algorithm A2. This non-linear approach can lead to much higher query accuracy compared to the
vanilla CMS [12], but the theoretical analysis of the CMS-CU beyond a deterministic upper bound
is more challenging, and it appears to be a relatively less explored topic.
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1.4 Contributions

This paper develops a novel method for constructing valid and reasonably tight frequentist confi-
dence intervals for frequency queries based on sketched data. Our method works seamlessly with
the CMS-CU as well as with any possibly unknown sketching algorithm. The solution assumes the
data and the query are random samples from some unknown population, making only minimal ex-
changeability assumptions about this data generating process. Although our method requires higher
computational power and memory usage compared to pure sketching, the additional cost of our
uncertainty estimates will be negligible compared to the typical size of the data sets involved.

1.5 Related work

Different types of lower bounds have been developed for the CMS [9], although most treat the
data as fixed and only utilize the hashing randomness, similarly to Theorem 1. More recently,
uncertainty estimation for the CMS based on data randomness has been studied by [11] from a
frequentist perspective, as mentioned in Section 1.3, and by [13, 14] from a Bayesian perspective.
More precisely, [13] and [14] model the data with a prior distribution and compute the posterior
of the queried frequencies given the sketch. Our work is closer to [11] in that we treat the data as
random while seeking frequentist probabilistic guarantees. However, our approach is very different
from that of [11]: the latter exploits the specific linear structure of the CMS, while we view the
sketch as a black box and utilize conformal inference to obtain exact finite-sample inferences.

Conformal inference was pioneered by Vovk and collaborators [15] and brought to the statistics spot-
light by [16]. Although primarily conceived for supervised prediction [17–21], conformal inference
has found many other applications including outlier detection [22], causal inference [23], and sur-
vival analysis [24]. To the best of our knowledge, its potential for sketching remained untapped until
now. There exist many algorithms for using sketches to compute approximate frequency queries;
some are similar to the CMS [9, 25–27], while others are more complicated and may involve com-
plex learning algorithms [28, 29]. In theory our method is applicable to all of them, but here we
focus more on the CMS and variations thereof because it is a classic algorithm and it provides a
familiar example that facilitates the exposition. As we will make use of conformal inference, a brief
review of the relevant technical background is provided in the next section.

2 Preliminaries on conformal prediction

Conformal prediction is typically concerned with supervised learning, in which the data samples
are pairs (Xi, Yi), with Xi indicating a vector of features for the i-th observation and Yi denot-
ing the corresponding continuous (or discrete) label. In supervised learning, the goal is to use the
information contained in (X1, Y1), . . . , (Xm, Ym) to learn a mapping between features and labels
that can allow one to predict as accurately as possible the unseen label Ym+1 of a new sample with
features Xm+1. In particular, conformal prediction assumes that (X1, Y1), . . . , (Xm+1, Ym+1) are
exchangeable random samples from some unknown joint distribution over (X,Y ) and then con-
structs a prediction interval [L̂m,α(Xm+1), Ûm,α(Xm+1)] with guaranteed marginal coverage:

P[L̂m,α(Xm+1) ≤ Yn+1 ≤ Ûm,α(Xm+1)] ≥ 1− α, (4)

for any fixed α ∈ (0, 1). Conformal prediction is flexible, as it can leverage any machine learning
algorithm to approximately reconstruct the relation between X and Y , thus yielding relatively short
intervals satisfying (4). Note that, while it is appropriate to focus on conformal intervals in this
paper, similar techniques can also be utilized to construct more general prediction sets [30, 31].

The simplest version of conformal prediction begins by randomly splitting the available observations
into two disjoint subsets, assumed for simplicity to have equal size n = m/2. The first n samples
are spent to fit a black-box machine learning model for predicting Y given X; e.g., a neural network
or a random forest. The out-of-sample predictive accuracy of this model is then measured in terms
of a conformity score for each of the n hold-out data points. In combination with the model learnt
from the first half of the data, the empirical distribution of these scores is translated into a recipe
for constructing prediction intervals for future test points as a function of Xm+1; these intervals are
guaranteed to cover Yn+1 with probability at least 1 − α, treating all data as random. The details
of this procedure will be clarified shortly. Importantly, the coverage holds exactly in finite samples,
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regardless of the accuracy of the machine learning model, as long as Xm+1 is exchangeable with
the n hold-out data points. Note that it is unnecessary for the training data to be also exchangeable,
as these may be seen as fixed, but it is sometimes easier to say all data points are exchangeable.

The implementation of conformal inference depends on the choice of conformity scores. While
several different options exist, an intuitive and general explanation is the following. Imagine that
associated with the fitted machine learning model there exists a nested sequence [32] of prediction
intervals [L̂m,α(x; t), Ûm,α(x; t)] for each possible x. This sequence is indexed by t ∈ T ⊆ R,
which may be either discrete or continuous, and it is increasing: L̂m,α(x; t2) ≤ L̂m,α(x; t1) and
Ûm,α(x; t2) ≥ Ûm,α(x; t1) for all t2 ≥ t1. Further, assume there exists t∞ ∈ T such that
L̂m,α(x; t∞) ≤ Y ≤ Ûm,α(x; t∞) almost surely for all x. For example, one may consider a
sequence ψ̂m(x) ± t, where ψ̂m is a regression function for a bounded label Y given X learnt by
the black-box machine learning model and t plays the role of a predictive standard error. Then,
the conformity score for a data point with features X = x and label Y = y can be defined as the
smallest index t such that y is contained in the sequence of prediction intervals corresponding to x:

E(X,Y ) := min
{
t ∈ T : Y ∈ [L̂m,α(x; t), Ûm,α(x; t)]

}
. (5)

The conformal prediction rule is then easily stated. Let Icalib ⊂ {1, . . . ,m} be the subset of
hold-out data points, assumed without loss of generality to have size n = m/2. Let Q̂n,1−α be
the d(1 − α)(n + 1)e smallest value among the n conformity scores E(Xi, Yi) evaluated for all
i ∈ Icalib. The conformal prediction interval for a new data point with features Xm+1 is:[

L̂m,α(Xm+1; Q̂n,1−α), Ûm,α(Xm+1; Q̂n,1−α)
]
. (6)

Intuitively, this satisfies (4) because Ym+1 is outside (6) if and only if E(Xm+1, Ym+1) > Q̂n,1−α.
The rest of the proof is a simple exchangeability argument; see [20] or the proof of Theorem 2.

3 Conformalized sketching

3.1 Exchangeable queries and marginal coverage

Assume the m data points to be sketched, Z1, . . . , Zm ∈ Z , are exchangeable random samples (a
weaker condition than i.i.d.) from some distribution PZ onZ . Although PZ may be arbitrary and un-
known, our framework is more restrictive compared to the classical setting reviewed in Section 1.2,
which treats the data as fixed and thus can also handle non-stationary streams or adversarial cases.
Yet, imagining the data as approximately i.i.d. samples from some distribution is not an unprece-
dented idea in the context of sketching [11, 13, 14], and it may be justified when objects from a large
data set are processed in a random order; see Sections 4 and 5. As we shall see below, data exchange-
ability can be an extremely useful assumption because it allows one to obtain powerful inferences
while taking a completely agnostic view of the inner workings of the sketching algorithm.

Consider an arbitrary sketching function φ : [Z]m → C, where C is a space with lower dimensions
compared to [Z]m. For example, φmay represent the sketching performed by the CMS or CMS-CU,
in which case C = Nd×w, for some d,w such that d · w � m. In general, we will treat φ as a black
box and allow it to be anything, possibly involving random hashing or any other data compression
technique. The goal is to leverage the data exchangeability and the information in φ(Z1, . . . , Zm)
to estimate the unobserved true empirical frequency fm(z) of some object z ∈ Z , defined as in (2),
while accounting for uncertainty. More precisely, although still informally speaking, we would like
to construct a confidence interval [L̂m,α(z), Ûm,α(z)] guaranteed to contain fm(z) “with probability
at least 1− α”, where the randomness here is with respect to the random data sampling.

One way to address the above problem is to imagine the query z is also randomly sampled ex-
changeably with Z1, . . . , Zm. This is a convenient but quite strong assumption that will be partly
relaxed later. With this premise, we refer to z as Zm+1 and focus on computing a confidence interval
[L̂m,α(Zm+1), Ûm,α(Zm+1)] depending on φ(Z1, . . . , Zm) that is reasonably short and guarantees
marginal coverage of the true unknown frequency:

P
[
L̂m,α(Zm+1) ≤ fm(Zm+1) ≤ Ûm,α(Zm+1)

]
≥ 1− α, (7)

4



where the probability is with respect to the data in Z1, . . . , Zm as well as to the randomness in the
query Zm+1. The interpretation of (7) is as follows: the interval will cover the true frequency fm(Z)
for at least a fraction 1−α of all future test points Z on average, if the queries and the sketched data
are re-sampled exchangeably. In Section 3.3, we will develop a method for constructing reasonably
tight confidence intervals satisfying (7) exactly. This is already a non-trivial result on its own,
but marginal coverage is not fully satisfactory because some objects may be queried more often
than others, and therefore not all of our distinct inferences are equally reliable. In particular, the
confidence intervals for rare queries may have lower coverage, as illustrated by the following thought
experiment. Imagine PZ has support on Z = {0, 1, 2, . . . , 10100}, with P [Zi = 0] = 0.95 and
P [Zi = z] = 0.05/(|Z| − 1) for all z ∈ Z \ {0} and i ≥ 1. Then, a 95% confidence interval
satisfying (7) may be completely unreliable for all but one specific query about fm(0).

3.2 Beyond full exchangeability with approximate frequency-conditional coverage

To begin addressing the limitations of marginal coverage, Section 3.3 will develop a more refined
method for constructing confidence intervals that are simultaneously valid for both rare and common
random queries. Our approach re-purposes relevant ideas from Mondrian conformal inference [33],
which have been utilized before to construct prediction sets with label-conditional coverage for clas-
sification problems [15, 30, 34]. However, departing from the typical approach in classification, we
will not seek perfect coverage conditional on the exact true frequency of the queried object. In fact,
that problem would be impossible to solve without stronger assumptions [35], because fm(Zm+1)
can take a very large number of possible values when the sketched data set is big. Instead, we
will focus on achieving a relaxed concept of frequency-conditional coverage which groups together
different queries of objects that appear a similar number of times within the sketched data set. Pre-
cisely, let us fix any partition B = (B1, . . . , BL) of {1, . . . ,m} into L bins such that each Bl is
a sub-interval of {1, . . . ,m}, for some relatively small integer L. In theory, this partition should
be fixed prior to seeing the data and may not depend on the new query Zm+1. Our goal is to con-
struct a confidence interval [L̂m,α(Zm+1), Ûm,α(Zm+1)] depending on φ(Z1, . . . , Zm) and B that
is reasonably short and satisfies the following notion of frequency-range conditional coverage:

P
[
L̂m,α(Zm+1) ≤ fm(Zm+1) ≤ Ûm,α(Zm+1) | fm(Zm+1) ∈ B

]
≥ 1− α, ∀B ∈ B. (8)

The choice of B involves some trade-offs: finer partitions (larger L) yield more reliable theoretical
guarantees but possibly wider confidence intervals; in particular, intervals associated with a bin B
may tend to be wider if P [Z ∈ B] is small. In practice, we will adopt |B| = 5 later in this paper, but
much larger |B| can be utilized when working with very big data, as it will become clear below.

3.3 Conformalization methodolody

In the attempt of adapting conformal inference to address our sketching problem, the first difficulty is
that the latter is a data recovery problem, not a supervised prediction task. We propose to overcome
this challenge by storing in memory the true frequencies for all objects in the first m0 observations,
with m0 � m but sufficiently large subject to memory constraints. Without loss of generality,
assume m0 � m; otherwise, the problem becomes trivially easy. Let n ≤ m0 indicate the number
of distinct objects among the first m0 observations. The memory required to store these frequencies
is O(n), which will typically be negligible as long as m0 is also small compared to the size of the
sketch, |C|. This approach turns our problem into a supervised prediction one, as detailed below.

During an initial warm-up phase, the frequencies of the n distinct objects among the first m0 obser-
vations from the data stream, Z1, . . . , Zm0 , are stored exactly into:

fwu
m0

(z) :=

m0∑
i=0

1 [Zi = z] . (9)

Next, the remainingm−m0 data points are streamed and sketched, storing also the true frequencies
for all instances of objects already seen during the warm-up phase. In other words, the following
counters are computed and stored along with the sketch φ(Zm0+1, . . . , Zm):

f sv
m−m0

(z) :=

{∑m
i=m0+1 1 [Zi = z] , if fwu

m0
(z) > 0,

0, otherwise.
(10)

5



Again, this requires only O(n) memory. Now, let us define the variable Yi for all i ∈ {1, . . . ,m0}∪
{m+ 1} as the true frequency of Zi among Zm0+1, . . . , Zm:

Yi :=

m∑
i′=m0+1

1 [Zi′ = Zi] . (11)

Note that Yi is observable for i ∈ {1, . . . ,m0}, in which case Yi = f sv
m−m0

(Zi). For a new
query, Zm+1 is the target of inference—in truth, the target is fm(Zi) = Yi + fwu

m0
(Zi), but the

second term is already known exactly. To complete the connection between sketching and supervised
conformal prediction, one still needs to define meaningful features X , and this is where the sketch
φ(Zm0+1, . . . , Zm) comes into play. For each i ∈ {1, . . . ,m0} ∪ {m + 1, . . .}, define Xi as the
vector containing the object of the query as well as all the information in the sketch:

Xi := (Zi, φ(Zm0+1, . . . , Zm)) . (12)

The following result establishes that the pairs (X1, Y1), . . . , (Xm0
, Ym0

), (Xm+1, Ym+1) are ex-
changeable with one another. This anticipates that conformal prediction techniques can be applied
to the supervised observations (X1, Y1), . . . , (Xm0 , Ym0) to predict Ym+1 given Xm+1, guarantee-
ing the marginal coverage property in (7). All mathematical proofs are in Appendix A2.
Proposition 1. If the data Z1, . . . , Zm+1 are exchangeable, then the pairs of random variables
(X1, Y1), . . . , (Xm0

, Ym0
), (Xm+1, Ym+1) defined in (11)–(12) are exchangeable with one another.

Confidence intervals satisfying frequency-range coverage (8) can be obtained by modifying the stan-
dard conformal inference procedure as outlined in Algorithm A3, whose details are deferred to Ap-
pendix A1 for lack of space. First, each point (Xi, Yi) in Icalib = {1, . . . ,m0} is assigned to the
appropriate frequency bin based on Yi. Define nl as the number of calibration points in bin Bl, for
all l ∈ {1, . . . , L}. Then, Q̂nl,1−α(Bl) is defined as the d(1 − α)(nl + 1)e smallest value among
the nl scores assigned to bin Bl. Finally, the confidence interval for a new random query Xm+1 is:[

L̂m,α(Xm+1; Q̂
∗
n,1−α), Ûm,α(Xm+1; Q̂

∗
n,1−α)

]
,

where

Q̂∗n,1−α := max
l∈{1,...,L}

Q̂nl,1−α(Bl),

and [L̂m,α(·; t), Ûm,α(·; t)] is a rule for computing a nested sequence of intervals depending on
Zm+1 and φ(Zm0+1, . . . , Zm), assumed by convention to be increasing in t. Examples of such
rules are in the next section. Importantly, these rules may involve parameters to be fitted on a subset
of mtrain

0 supervised data points (Xi, Yi) for i ∈ {1, . . . ,mtrain
0 }, as long as the scores are only

evaluated on the remaining m0 − mtrain
0 points. The following result states that the confidence

interval output by Algorithm A3 has the desired frequency-range conditional coverage.
Theorem 2. If the data Z1, . . . , Zm+1 are exchangeable, the confidence interval output by Algo-
rithm A3 satisfies the frequency-range conditional coverage property defined in (8).

Theorem 2 also implies that confidence intervals satisfying the weaker marginal coverage property
defined in (7) can be obtained by applying Algorithm A3 with the trivial partition B dividing the
range of possible frequencies into a single bin of size m, because (7) is a special case of (8). Note
also that Algorithm A3 could be trivially modified to output perfect “singleton” confidence intervals
for any new queries that happen to be identical to an object previously observed during the warm-up
phase. We will not take advantage of this fact in the experiments presented in this paper to provide
a fairer comparison with alternative methods which do not involve a similar warm-up phase.

3.4 Conformity scores for one-sided confidence intervals

Algorithm A3 can accommodate virtually any data-adaptive rule for computing nested confidence
intervals, which may depend on Zm+1 and on the sketch φ := φ(Zm0+1, . . . , Zm). Two concrete
options are presented here. For simplicity, we focus on one-sided confidence intervals; that is,
we seek a 1 − α lower bound for fm(Xm+1). This is useful when a deterministic upper bound
f̂up(Zm+1) ≥ fm(Zm+1) is already available, as it is the case with the CMS or CMS-CU. Then,
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one can simply set Ûm,α((z, φ); t) := f̂up(z) and focus on computing L̂m,α(·; t). The construction
of two-sided confidence intervals is explained in Appendix A1.4 due to lack of space.

To construct the lower bound L̂m,α(·; t) of a one-sided interval, the first option is to use a fixed rule:

L̂fixed
m,α ((z, φ); t) := max{0, f̂up(Zm+1)− t}, t ∈ {0, 1, . . . ,m}. (13)

In words, the lower bound for fm(Zm+1) in (14) is defined by shifting the deterministic upper bound
downward by a constant t. The appropriate value of t guaranteeing the desired coverage for future
random queries is calibrated by Algorithm A3. This approach is intuitive, and it is very similar to
the optimal solution of [11] for the special case of the CMS. Further, it does not need training data,
so all m0 observations with tracked frequencies can be utilized for computing conformity scores.

The second option involves training but has the advantage of being more flexible; this is inspired by
the methods of [36, 37] for regression. Concretely, consider a machine learning model that takes as
input the known upper bound f̂up(Zi) and estimates the conditional distribution of f̂up(Zi)−fm(Zi)

given f̂up(Zi). For example, think of a multiple quantile neural network [38] or a quantile random
forest [39]. After fitting this model on the mtrain

0 supervised data points (Xi, Yi) allocated for
training, let q̂t be the estimated αt lower quantile of the of f̂up(Zi) − fm(Zi) | f̂up(Zi), for all
t ∈ [1, . . . , T ] and some fixed sequence 1 = α1 < . . . < αT = 0. Without loss of generality,
assume the machine learning model is that q̂0 = 0 and q̂T = m. Then, define L̂m,α(◦; t) as:

L̂adaptive
m,α ((z, φ); t) := max

{
0, f̂up(Xm+1)− q̂t

(
f̂up(Xm+1)

)}
, t ∈ {0, 1, . . . ,m}. (14)

This second approach can lead to a lower bound whose distance from the upper bound is adaptive.
This is an advantage because some sketching algorithms may introduce higher uncertainty about
common queries compared to rarer ones, or vice versa, and such patterns can be learnt given suffi-
cient data. Of course, the two above examples of L̂m,α(·; t) are not exhaustive. Algorithm A3 can
be applied in combination with any rule for computing nested sequences of lower bounds, and it can
leverage all high-dimensional information contained in φ(Zm0+1, . . . , Zm), not just the determin-
istic upper bound for the CMS and CMS-CU. However, the applications in this paper focus on the
CMS and CMS-CU, so other families of lower bounds are not discussed here.

4 Applications

4.1 Experiments with synthetic data sets

Conformalized sketching is applied with the two types of conformity scores described in Section 3.4,
focusing on the construction of one-sided confidence intervals. Additional experiments involving
two-sided intervals are described in Appendix A4. The adaptive scores utilized in this section are
based on an isotonic distributional regression model [40]. The goal is to compute lower frequency
bounds for random queries based on simulated data compressed by the CMS-CU, implemented
with d = 3 hash functions of width w = 1000. In particular, m = 100, 000 observations are
sampled i.i.d. from some distribution specified below. The first m0 = 5000 observations are stored
without loss during the warm-up phase, as outlined in Algorithm A3, while the remaining 95, 000
are compressed by the CMS-CU. The conformity scores are evaluated separately within L = 5
frequency bins, seeking the frequency-range conditional coverage property defined in (8). The bins
are determined in a data-driven fashion so that each contains approximately the same probability
mass; in practice, this is achieved by partitioning the range of frequencies for the objects tracked
exactly by Algorithm A3 according to the observed empirical quantiles. Lower bounds for new
queries are computed for 10, 000 data points also sampled i.i.d. from the same distribution. The
quality of these bounds is quantified with two metrics: the mean length of the resulting confidence
intervals and the coverage the proportion of queries for which the true frequency is correctly covered,
or empirical coverage. The performance is averaged over 10 independent experiments.

Experiments are performed on synthetic data sampled from two families of distributions. First, we
consider a Zipf distribution with P [Zi = z] = z−a/ζ(a) for all z ∈ {1, 2 . . . , }, where ζ is the
Riemann Zeta function and a > 1 is a control parameter affecting the power-law tail behavior.
Second, synthetic data are generated from a random probability measure distributed as the Pitman-
Yor prior [41] with a standard Gaussian base distribution and parameters λ > 0 and σ ∈ [0, 1), as
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explained in Appendix A1.5. The parameter λ is set to λ = 5000, while σ is varied. For σ = 0 the
Pitman-Yor prior reduces to the Dirichlet prior [42], while σ > 0 results in heavier tails.

Three benchmark methods are considered. The first one is the classical 95% lower bound in Theo-
rem 1. The second one is the Bayesian method of [13], which assumes a non-parametric Dirichlet
process prior for the distribution of the data stream, estimates its scaling parameter by maximizing
the marginal likelihood of the observed sketch, and then computes the posterior of the queried fre-
quencies conditional on the observed sketch. The performance of the lower 5% posterior quantile is
compared to the lower bounds obtained with the other methods according to the frequentist metrics
defined above. The third benchmark is the bootstrap method of [11], which is nearly exact and opti-
mal for the vanilla CMS (up to some possible finite-sample discrepancy between the bootstrap and
population distributions) but is not theoretically valid for other sketching techniques.

Figure 1 compares the performance of the conformal method to those of the three benchmarks on the
Zipf data. All methods achieve marginal coverage (4), with the exception of the Bayesian approach
which in this case is based on a misspecified prior. The length of the confidence intervals indicates
the classical bound is very conservative, while the bootstrap and conformal methods provide relative
informative bounds, particularly when a is larger and hash collisions become rarer. The conformal
intervals can be the shortest ones, especially if implemented with the adaptive conformity scores.
This should not be surprising because the bootstrap may not be optimal for the CMS-CU. Indeed, as
shown in Figure 2, the machine learning model deployed by our adaptive scores can take advantage
of the fact that this non-linear sketch allows increased precision for more common queries.
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Figure 1: Coverage and length of 95% confidence intervals with data from a Zipf distribution,
sketched with CMS-CU. The results are shown as a function of the Zipf tail parameter a. Standard
errors would be too mall to be clearly visible in this figure, and are hence omitted.
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Figure 2: Performance of confidence intervals stratified by the true query frequency. Left: frequency
below median; right: frequency above median. Other details are as in Figure 1.

Supplementary results reported in Appendix A3 show the CMS-CU leads to more precise queries
with all methods compared to the vanilla CMS; see Figure A1. Figure A2 confirms that conformal
lower bounds no longer have a clear advantage over the bootstrap ones if the data are sketched with
the vanilla CMS instead of the CMS-CU. In fact, although the conformal intervals obtained with the
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adaptive conformity scores can be little shorter than the bootstrap ones even for the vanilla CMS, the
latter have the advantage of (approximately, in the limit of large samples) satisfying an even stronger
frequency-conditional coverage property equivalent to (8) with bins of size 1 [11]. Analogous results
for the experiments with Pitman-Yor process data are also in Appendix A3; see Figures A3–A6.

4.2 Analysis of 16-mers in SARS-CoV-2 DNA sequences

This application involves a data set of nucleotide sequences from SARS-CoV-2 viruses made pub-
licly available by the National Center for Biotechnology Information [43]. The data include 43,196
sequences, each consisting of approximately 30,000 nucleotides. The goal is to estimate the em-
pirical frequency of each possible 16-mer, a distinct sequence of 16 DNA bases in contiguous nu-
cleotides. Given that each nucleotide has one of 4 bases, there are 416 ≈ 4.3 billion possible 16-mers.
Thus, exact tracking of all 16-mers is not unfeasible, which allows us to validate the sketch-based
queries. Sequences containing missing values are removed during pre-processing, for simplicity.

The experiments are carried out as in Section 4.1 (processing the 16-mers in a random order to
ensure their exchangeability), but a larger sample of size 1,000,000 is sketched, and the width w
of the hash functions is varied. Figure 3 compares the performances of all methods as a function
of the hash width, in terms of marginal coverage and mean confidence interval width. All methods
achieve the desired marginal coverage, except for the Bayesian approach when w is large. For
small w, all methods return intervals of similar width, because the distribution of SARS-CoV-2 16-
mers frequencies is quite concentrated with relatively narrow support (Figure A7), which makes it
especially difficult to compress the data without much loss. By contrast, the proposed conformal
methods yield noticeably shorter confidence intervals if w is large. Figure A8 reports the same
results stratified by the frequency of the queried objects, while Figure A9 confirms the advantage of
sketching with the CMS-CU as opposed to the vanilla CMS. Table A1 lists 10 common and 10 rare
queries along with their corresponding deterministic upper bounds for w = 50, 000, comparing the
lower bounds obtained with each method. Table A2 shows analogous results with w = 5, 000.
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Figure 3: Performance of confidence intervals based on sketched SARS-CoV-2 sequence data. The
results are shown as a function of the hash width. Other details are as in Figure 1.

Figure A10 compares the performances of different frequency point-estimates in terms of mean
absolute deviation from the true frequency. With the classical method, we take the midpoint of the
95% confidence interval as a point estimate, although other approaches are also possible [9]. For the
other methods, the point estimate is the lower confidence bound at level α = 0.5; in the Bayesian
case, this is the posterior median. Although a conformal lower bound at level α = 0.5 is not always
a reliable estimator of conditional medians [44], because the conformal coverage guarantees treat
the query as random, this approach outperformed the benchmarks in all of our experiments.

4.3 Analysis of 2-grams in English literature

This application is based on a data set consisting of 18 open-domain classic pieces of English liter-
ature downloaded using the NLTK Python package [45] from the Gutenberg Corpus [46]. The goal
is to count the frequencies of all 2-grams—consecutive pairs of English words—across this corpus.
After some basic preproccessing to remove punctuation and unusual words (only those in a dictio-
nary of size 25,487 common English words are retained), the total number of 2-grams left in this data
set is approximately 1,700,000 (although the total number of all possible 2-grams within this dictio-
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nary is approximately 650,000,000). The same experiments are then carried out as in Section 4.2,
sketching 1,000,000 randomly sampled 2-grams and querying 10,000 independent 2-grams. As in
the previous experiments, the 2-grams are processed in a random order to ensure exchangeability.

Figure 4 shows the conformal intervals with adaptive scores achieve the desired coverage and tend
to have the shortest width, while the Bayesian intervals are not valid unless the hashes are very
wide. The conformal approach has a larger advantage here because these data can be compressed
more efficiently compared to the one in the previous section because the frequency distribution of
English 2-grams has power-law tails; see Figure A7. Additional results along the lines of those in
the previous section are in Appendix A3; see Figures A11–A13 and Tables A1–A2.
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Figure 4: Performance of confidence intervals for random frequency queries, for a sketched data set
of English 2-grams in classic English literature. Other details are as in Figure 3.

5 Discussion

Conformalized sketching is a non-parametric and data-adaptive statistical method for quantifying
uncertainty in problems involving frequency estimation from sketched data. This paper has revolved
around the CMS because that is a prominent technique for which several benchmarks are available.
However, our method is very broadly applicable because it operates under the sole assumption of
data exchangeability, without requiring any knowledge of the sketching algorithm. Of course, ex-
changeability is not always an appropriate assumption, and thus one may sometimes need to rely
on more conservative bounds based on hashing randomness. Yet there are situations in which the
sketched data can be seen as exchangeable random samples from a population. For example, in nat-
ural language processing one may wish to count the frequencies of non-contiguous tuples of words
co-occurring in the same sentence within a large corpus, expanding on the example of Section 4.3.
In that case, it would be unfeasible to keep track of all frequencies exactly, but our approach would
be applicable as long as the tuples are sketched and queried in a random order. One limitation of con-
formalized sketching is that it does not provide guarantees about the expected proportion of correct
unique queries. In fact, if the queries are randomly sampled exchangeably with the sketched data
points, some of them may be redundant. Even though the expected proportion of incorrect unique
queries is sometimes below α (Figures A14–A15), this is not always the case (Figure A16). It may
be possible to modify our procedure to achieve this additional guarantee, but we leave this problem
for future work. Future research may also study theoretically, in some settings, the length of our
conformal confidence intervals, following for example an approach similar to those of [16, 47].

Accompanying software and data are available online at https://github.com/msesia/
conformalized-sketching. Experiments were carried out in parallel using a computing clus-
ter; each experiment required less than a few hours with a standard CPU and less than 5GB of
memory (20 GB of memory are needed for the analysis of the SARS-CoV-2 DNA data).
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