First-Order Algorithms for Min-Max Optimization in Geodesic Metric Spaces

Michael I. Jordan Tianyi Lin Emmanouil V. Vlatakis-Gkaragkounis
University of California, Berkeley
{jordan@cs,darren_lin@,emvlatakis@}.berkeley.edu

Abstract

From optimal transport to robust dimensionality reduction, a plethora of machine learning applications can be cast into the min-max optimization problems over Riemannian manifolds. Though many min-max algorithms have been analyzed in the Euclidean setting, it has proved elusive to translate these results to the Riemannian case. Zhang et al. have recently shown that geodesic convex concave Riemannian problems always admit saddle-point solutions. Inspired by this result, we study whether a performance gap between Riemannian and optimal Euclidean space convex-concave algorithms is necessary. We answer this question in the negative—we prove that the Riemannian corrected extragradient (RCEG) method achieves last-iterate convergence at a linear rate in the geodesically strongly-convex-concave case, matching the Euclidean result. Our results also extend to the stochastic or non-smooth case where RCEG and Riemannian gradient ascent (RGDA) achieve near-optimal convergence rates up to factors depending on curvature of the manifold.

1 Introduction

Constrained optimization problems arise throughout machine learning, in classical settings such as dimension reduction [2], dictionary learning [3, 4], and deep neural networks [5], but also in emerging problems involving decision-making and multi-agent interactions. While simple convex constraints (such as norm constraints) can be easily incorporated in standard optimization formulations, notably (proximal) gradient descent [6–10], in a range of other applications such as matrix recovery [11, 12], low-rank matrix factorization [13] and generative adversarial nets [14], the constraints are fundamentally nonconvex and are often treated via special heuristics.

Thus, a general goal is to design algorithms that systematically take account of special geometric structure of the feasible set [15–17]. A long line of work in the machine learning (ML) community has focused on understanding the geometric properties of commonly used constraints and how they affect optimization; [see, e.g., 18–26]. A prominent aspect of this agenda has been the re-expression of these constraints through the lens of Riemannian manifolds. This has given rise to new algorithms [27, 28] with a wide range of ML applications, including online principal component analysis (PCA), the computation of Mahalanobis distance from noisy measurements [29], consensus distributed algorithms for aggregation in ad-hoc wireless networks [30] and maximum likelihood estimation for certain non-Gaussian (heavy- or light-tailed) distributions [31].

Going beyond simple minimization problems, the robustification of many ML tasks can be formulated as min-max optimization problems. Well-known examples in this domain include adversarial machine learning [32, 33], optimal transport [34], and online learning [9, 35, 36]. Similar to their minimization counterparts, non-convex constraints have been widely applicable to the min-max optimization as well [37–41]. Recently there has been significant effort in proving tighter results either under more structured assumptions [42–52], and/or obtaining last-iterate convergence guarantees [38, 40, 48, 53–
matches the rate of second-order methods in the Euclidean case. Although theoretically faster, the change of geometry from Euclidean to Riemannian poses several difficulties. Indeed, a fundamental stumbling block has been that this problem may not even have theoretically meaningful solutions. In contrast with minimization where an optimal solution in a bounded domain is always guaranteed, existence of such saddle points necessitates typically the application of topological fixed point theorems [66, 67], KKM Theory [68]. For the case of convex-concave f with compact sets \mathcal{X} and \mathcal{Y}, Sion [69] generalized the celebrated theorem [70] and guaranteed that a solution (x^*, y^*) with the following property exists

$$\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} f(x, y).$$

However, at the core of the proof of this result is an ingenuous application of Helly’s lemma [71] for the sublevel sets of f, and, until the work of Ivanov [72], it has been unclear how to formulate an analogous lemma for the Riemannian geometry. As a result, until recently have extensions of the min-max theorem been established, and only for restricted manifold families [73–75]. Zhang et al. [1] was the first to establish a min-max theorem for a flurry of Riemannian manifolds equipped with unique geodesics. Notice that this family is not a mathematical artifact since it encompasses many practical applications of RMMO, including Hadamard and Stiefel ones used in PCA [76]. Intuitively, the unique geodesic between two points of a manifold is the analogue of the a linear segment between two points in convex set: For any two points $x_1, x_2 \in \mathcal{X}$, their connecting geodesic is the unique shortest path contained in \mathcal{X} that connects them. Even when the RMMO is well defined, transferring the guarantees of traditional min-max optimization algorithms like Gradient Ascent Descent (GDA) and Extra-Gradient (EG) to the Riemannian case is non-trivial. Intuitively speaking, in the Euclidean realm the main leitmotif of the last-iterate analyses of the aforementioned algorithms is a proof that δ_t and δ_{t-1} via a “square expansion,” namely:

$$\frac{\|x_t - x^*\|^2}{\alpha^2} = \frac{\|x_t - x^*\|^2 + \|x_{t-1} - x^*\|^2 - 2\langle x_t - x^*, x_{t-1} - x_t \rangle}{2\beta\gamma\cos(\hat{A})}. \quad (1)$$

Notice, however that the above expression relies strongly on properties of Euclidean geometry (and the flatness of the corresponding line), namely that the lines connecting the three points x_t, x_{t-1} and x^* form a triangle; indeed, it is the generalization of the Pythagorean theorem, known also as the law of cosines, for the induced triangle $(ABC) := \{x_t, x_{t-1}, x^*\}$. In a uniquely geodesic manifold such triangle may not belong to the manifold as discussed above. As a result, the difference of distances to the equilibrium using the geodesic paths $d_{\mathcal{M}}^\mathcal{X}(x_t, x^*) - d_{\mathcal{M}}^\mathcal{Y}(x_{t-1}, x^*)$ generally cannot be given in a closed form. The manifold’s curvature controls how close these paths are to forming a Euclidean triangle. In fact, the phenomenon of distance distortion, as it is typically called, was hypothesised by Zhang et al. [1, Section 4.2] to be the cause of exponential slowdowns when applying EG to RMMO problems when compared to their Euclidean counterparts. Multiple attempts have been made to bypass this hurdle. Huang et al. [77] analyzed the Riemannian GDA (RGDA) for the non-convex non-concave setting. However, they do not present any last-iterate convergence results and, even in the average/best iterate setting, they only derive sub-optimal rates for the geodesic convex-concave setting due to the lack of the machinery that convex analysis and optimization offers they derive sub-optimal rates for the geodesic convex-concave case, which is the problem of our interest. The analysis of Han et al. [78] for Riemannian Hamiltonian Method (RHM), matches the rate of second-order methods in the Euclidean case. Although theoretically faster in terms of iterations, second-order methods are not preferred in practice since evaluating second order derivatives for optimization problems of thousands to millions of parameters quickly becomes prohibitive. Finally, Zhang et al. [1] leveraged the standard averaging output trick in EG to derive a sublinear convergence rate of $O(1/\epsilon)$ for the general geodesically convex-concave Riemannian
framework. In addition, they conjectured that the use of a different method could close the exponential gap for the geodesically strongly-convex-strongly-convex scenario and its Euclidean counterpart.

Given this background, a crucial question underlying the potential for successful application of first-order algorithms to Riemannian settings is the following:

Is a performance gap necessary between Riemannian and Euclidean optimal convex-concave algorithms in terms of accuracy and the condition number?

1.1 Our Contributions

Our aim in this paper is to provide an extensive analysis of the Riemannian counterparts of Euclidean optimal first-order methods adapted to the manifold-constrained setting. For the case of the smooth objectives, we consider the Riemannian corrected extragradient (RCEG) method while for nonsmooth cases, we analyze the textbook Riemannian gradient descent ascent (RGDA) method. Our main results are summarized in the following table.

<table>
<thead>
<tr>
<th>Perf. Measure</th>
<th>Setting</th>
<th>Complexity</th>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last-Iterate</td>
<td>Det. GSCSC</td>
<td>$O\left(\frac{\kappa}{\tau_0} + \frac{1}{\xi_0}\right)\log\left(\frac{1}{\epsilon}\right)$</td>
<td>Thm. 3.1</td>
</tr>
<tr>
<td>Last-Iterate</td>
<td>Stoc. GSCSC</td>
<td>$O\left(\frac{\kappa}{\tau_0} + \frac{1}{\xi_0}\right)\log\left(\frac{1}{\epsilon}\right) + \frac{2\tau_{\text{gap}}^2}{\kappa^2} \log\left(\frac{1}{\epsilon}\right)$</td>
<td>Thm. 3.2</td>
</tr>
<tr>
<td>Avg-Iterate</td>
<td>Det. GCC</td>
<td>$O\left(\frac{\kappa}{\tau_0}\right)$</td>
<td>[1, Thm.1]</td>
</tr>
<tr>
<td>Avg-Iterate</td>
<td>Stoc. GCC</td>
<td>$O\left(\frac{\kappa}{\tau_0} + \frac{2\tau_{\text{gap}}^2}{\kappa^2}\right)$</td>
<td>Thm. 3.3</td>
</tr>
</tbody>
</table>

For the definition of the acronyms, Det and Stoc stand for deterministic and stochastic, respectively. GSCSC and GCC stand for geodesically strongly-convex-strongly-concave (cf. Assumption D.1) and geodesically convex-concave (cf. Assumption D.2). Here $\epsilon \in (0, 1)$ is the accuracy, ℓ, ℓ' the Lipschitzness of the objective and its gradient, $\kappa = \ell/\mu$ is the condition number of the function, where μ is the strong convexity parameter, $(\tau_0, \xi_0, \tau_{\text{gap}})$ are curvature parameters (cf. Assumption 2.1), and σ^2 is the variance of a Riemannian gradient estimator.

Our first main contribution is the derivation of a linear convergence rate for RCEG, answering the open conjecture of [1] about the performance gap of single-loop extragradient methods. Indeed, while a direct comparison between $d^2_M(x_t, x^\star)$ and $d^2_M(x_{t-1}, x^\star)$ is infeasible, we are able to establish a relationship between the iterates via appeal to the duality gap function and obtain a contraction in terms of $d^2_M(x_t, x^\star)$. In other words, the effect of Riemannian distance distortion is quantitative (the contraction ratio will depend on it) rather than qualitative (the geometric contraction still remains under a proper choice of constant stepsize). More specifically, we use $d^2_M(x_t, x^\star) + d^2_N(y_t, y^\star)$ and $d^2_M(x_{t+1}, x^\star) + d^2_N(y_{t+1}, y^\star)$ to bound a gap function defined by $f(x_t, y^\star) - f(x^\star, y_t)$. Since the objective function is geodesically strongly-convex-strongly-concave, we have $f(x_t, y^\star) - f(x^\star, y_t)$ is lower bounded by $\frac{\ell}{2}(d^2_M(x_t, x^\star)^2 + d^2_N(y_t, y^\star)^2)$. Then, using the relationship between (x_t, y_t) and (\hat{x}_t, \hat{y}_t), we conclude the desired results in Theorem 3.1. Notably, our approach is not affected by the nonlinear geometry of the manifold.

Secondly, we endeavor to give a systematic analysis of aspects of the objective function, including its smoothness, its convexity and oracle access. As we shall see, similar to the Euclidean case, better finite-time convergence guarantees are connected with a geodesic smoothness condition. For the sake of completeness, in the paper’s supplement we present the performance of Riemannian GDA for the full spectrum of stochasticity for the non-smooth case. More specifically, for the stochastic setting, the key ingredient to get the optimal convergence rate is to carefully select the step size such that the noise of the gradient estimator will not affect the final convergence rate significantly. As a highlight, such

2 Preliminaries and Technical Background

We present the basic setup and optimality conditions for Riemannian min-max optimization. Indeed, we focus on some of key concepts that we need from Riemannian geometry, deferring a fuller presentation, including motivating examples and further discussion of related work, to Appendix A-C.

Riemannian geometry. An n-dimensional manifold \mathcal{M} is a topological space where any point has a neighborhood that is homeomorphic to the n-dimensional Euclidean space. For each $x \in \mathcal{M}$, each tangent vector is tangent to all parametrized curves passing through x and the tangent space $T_x\mathcal{M}$ of a manifold \mathcal{M} at this point is defined as the set of all tangent vectors. A Riemannian manifold \mathcal{M} is a smooth manifold that is endowed with a smooth (“Riemannian”) metric $\langle \cdot, \cdot \rangle_x$ on the tangent space $T_x\mathcal{M}$ for each point $x \in \mathcal{M}$. The inner metric induces a norm $\| \cdot \|_x$ on the tangent spaces.

A geodesic can be seen as the generalization of an Euclidean linear segment and is modeled as a smooth curve (map), $\gamma : [0, 1] \rightarrow \mathcal{M}$, which is locally a distance minimizer. Additionally, because of the non-flatness of a manifold a different relation between the angles and the lengths of an arbitrary geodesic triangle is induced. This distortion can be quantified via the sectional curvature, TCIs provide a tool for bounding Riemannian “inner products” that are more troublesome than classical Euclidean inner products.

The following proposition summarizes the TCIs that we will need; note that if $\kappa_{\min} = \kappa_{\max} = 0$ (i.e., Euclidean spaces), then the proposition reduces to the law of cosines.

Proposition 2.1 Suppose that \mathcal{M} is a Riemannian manifold and let Δ be a geodesic triangle in \mathcal{M} with the side length a, b, c and let A be the angle between b and c. Then, we have

1. If $\kappa_\mathcal{M}$ that is upper bounded by $\kappa_{\max} > 0$ and the diameter of \mathcal{M} is bounded by $\frac{\pi}{\sqrt{\kappa_{\max}}}$, then

 $$a^2 \geq \xi(\kappa_{\max}, c) \cdot b^2 + c^2 - 2bc \cos(A),$$

 where $\xi(\kappa, c) := 1$ for $\kappa \leq 0$ and $\xi(\kappa, c) := c\sqrt{\kappa} \cot(c\sqrt{\kappa}) < 1$ for $\kappa > 0$.

2. If $\kappa_\mathcal{M}$ is lower bounded by κ_{\min}, then

 $$a^2 \leq \bar{\xi}(\kappa_{\min}, c) \cdot b^2 + c^2 - 2bc \cos(A),$$

 where $\bar{\xi}(\kappa, c) := c\sqrt{-\kappa} \coth(c\sqrt{-\kappa}) > 1$ if $\kappa < 0$ and $\bar{\xi}(\kappa, c) := 1$ if $\kappa \geq 0$.

Also, in contrast to the Euclidean case, x and $v = \text{grad}_x f(x)$ do not lie in the same space, since \mathcal{M} and $T_x\mathcal{M}$ respectively are distinct entities. The interplay between these dual spaces typically is carried out via the exponential maps. An exponential map at a point $x \in \mathcal{M}$ is a mapping from the tangent space $T_x\mathcal{M}$ to \mathcal{M}. In particular, $y := \text{Exp}_x(v) \in \mathcal{M}$ is defined such that there exists a geodesic $\gamma : [0, 1] \rightarrow \mathcal{M}$ satisfying $\gamma(0) = x$, $\gamma(1) = y$ and $\gamma'(0) = v$. The inverse technique has been used for analyzing stochastic RCEG in the Euclidean setting [79] and our analysis can be seen as the extension to the Riemannian setting. For the nonsmooth setting, the analysis is relatively simpler compared to smooth settings but we still need to deal with the issue caused by the nonlinear geometry of manifolds and the interplay between the distortion of Riemannian metrics, the gap function and the bounds of Lipschitzness of our bi-objective. Interestingly, the rates we derive are near optimal in terms of accuracy and condition number of the objective, and analogous to their Euclidean counterparts.
map exists since the manifold has a unique geodesic between any two points, which we denote as \(\text{Exp}_x^y : M \mapsto T_x M \). Accordingly, we have \(d_M(x, y) = \|\text{Exp}_x^y(y)\|_x \) is the Riemannian distance induced by the exponential map.

Finally, in contrast again to Euclidean spaces, we cannot compare the tangent vectors at different points \(x, y \in M \) since these vectors lie in different tangent spaces. To resolve this issue, it suffices to define a transport mapping that moves a tangent vector along the geodesics and also preserves the length and Riemannian metric \(\langle \cdot, \cdot \rangle_x \); indeed, we can define a parallel transport \(\Gamma_x : T_x M \mapsto T_y M \) such that the inner product between any \(u, v \in T_x M \) is preserved; i.e., \(\langle u, v \rangle_x = \langle \Gamma_x^y(u), \Gamma_x^y(v) \rangle_y \).

Riemannian min-max optimization and function classes. We let \(M \) and \(N \) be Riemannian manifolds with unique geodesic and bounded sectional curvature and assume that the function \(f : M \times N \mapsto \mathbb{R} \) is defined on the product of these manifolds. The regularity conditions that we impose on the function \(f \) are as follows.

Definition 2.1 A function \(f : M \times N \mapsto \mathbb{R} \) is geodesically \(L \)-Lipschitz if for all \(x, x' \in M \) and \(y, y' \in N \), the following statement holds true: \[|f(x, y) - f(x', y')| \leq L(d_M(x, x') + d_N(y, y')). \]

Additionally, if \(f \) is also differentiable, it is called geodesically \(\ell \)-smooth if for all \(x, x' \in M \) and \(y, y' \in N \), the following statement holds true,

\[
\begin{align*}
\|\nabla f(x, y) - \Gamma^x_y \nabla f(x', y')\| &\leq \ell (d_M(x, x') + d_N(y, y')), \\
\|\nabla f(x, y) - \Gamma^y_x \nabla f(x, y')\| &\leq \ell (d_M(x, x') + d_N(y, y')),
\end{align*}
\]

where \(\nabla f(x', y'), \Gamma^x_y \nabla f(x', y') \in T_x M \times T_y N \) is the Riemannian gradient of \(f \) at \((x', y') \), \(\Gamma^x_y \) is the parallel transport of \(M \) from \(x' \) to \(x \), and \(\Gamma^y_x \) is the parallel transport of \(N \) from \(y' \) to \(y \).

Definition 2.2 A function \(f : M \times N \mapsto \mathbb{R} \) is geodesically strongly-convex-strongly-concave with the modulus \(\mu > 0 \) if the following statement holds true,

\[
\begin{align*}
f(x', y') &\geq f(x, y) + \langle \nabla_x f(x, y), x' \rangle_x + \mu \frac{1}{2} (d_M(x, x')^2), \quad \text{for each } y \in N, \\
f(x, y') &\leq f(x, y) + \langle \nabla_y f(x, y), y' \rangle_y + \mu \frac{1}{2} (d_N(y, y')^2), \quad \text{for each } x \in M,
\end{align*}
\]

where \(\langle \nabla_x f(x', y'), \nabla_y f(x', y') \rangle \in T_x M \times T_y N \) is a Riemannian subgradient of \(f \) at a point \((x', y') \). A function \(f \) is geodesically convex-concave if the above holds true with \(\mu = 0 \).

Following standard conventions in Riemannian optimization [1, 82, 83], we make the following assumptions on the manifolds and objective functions:

Assumption 2.1 The objective function \(f : M \times N \mapsto \mathbb{R} \) and manifolds \(M \) and \(N \) satisfy

1. The diameter of the domain \(\{(x, y) \in M \times N : -\infty < f(x, y) < +\infty\} \) is bounded by \(D > 0 \).
2. \(M, N \) admit unique geodesic paths for any \((x, y), (x', y') \in M \times N \).
3. The sectional curvatures of \(M \) and \(N \) are both bounded in the range \([\kappa_{\text{min}}, \kappa_{\text{max}}]\) with \(\kappa_{\text{min}} \leq 0 \).

If \(\kappa_{\text{max}} > 0 \), we assume that the diameter of manifolds is bounded by \(\frac{1}{\sqrt{\kappa_{\text{max}}}} \).

Under these conditions, Zhang et al. [1] proved an analog of Sion’s minimax theorem [69] in geodesic metric spaces. Formally, we have

\[
\max_{y \in N} \min_{x \in M} f(x, y) = \min_{x \in M} \max_{y \in N} f(x, y),
\]

which guarantees that there exists at least one global saddle point \((x^*, y^*) \in M \times N\) such that \(\min_{x \in M} f(x, y^*) = f(x^*, y^*) = \max_{y \in N} f(x^*, y) \). Note that the unicity of geodesics assumption is algorithm-independent and is imposed for guaranteeing that a saddle-point solution always exist. Even though this rules out many manifolds of interest, there are still many manifolds that satisfy such conditions. More specifically, the Hadamard manifold (manifolds with non-positive curvature, \(\kappa_{\text{max}} = 0 \)) has a unique geodesic between any two points. This also becomes a common regularity condition in Riemannian optimization [82, 83]. For any point \((x, y) \in M \times N\), the duality gap \(f(x, y^*) - f(x^*, y) \) thus gives an optimality criterion.

\(^1\)In particular, our assumed upper and lower bounds \(\kappa_{\text{min}}, \kappa_{\text{max}} \) guarantee that TCIs in Proposition 2.1 can be used in our analysis for proving finite-time convergence.
We start with a basic version of EG as follows, where

\[\hat{x}_t \leftarrow \text{proj}_M(x_t - \eta \cdot \nabla_x f(x_t, y_t)), \quad \hat{y}_t \leftarrow \text{proj}_N(y_t + \eta \cdot \nabla_y f(x_t, y_t)),\]

...and...
Turning to the setting where \mathcal{M} and \mathcal{N} are Riemannian manifolds, the rather straightforward way to do the generalization is to replace the projection operator by the corresponding exponential map and the gradient by the corresponding Riemannian gradient. For the first line of Eq. (2), this approach works and leads to the following updates:

$$\hat{x}_t \leftarrow \text{Exp}_x(-\eta \cdot \text{grad}_x f(x_t, y_t)), \quad \hat{y}_t \leftarrow \text{Exp}_y(\eta \cdot \text{grad}_y f(x_t, y_t)).$$

However, we encounter some issues for the second line of Eq. (2): The aforementioned approach leads to some problematic updates, $x_{t+1} \leftarrow \text{Exp}_x(-\eta \cdot \text{grad}_x f(\hat{x}_t, \hat{y}_t))$ and $y_{t+1} \leftarrow \text{Exp}_y(\eta \cdot \text{grad}_y f(\hat{x}_t, \hat{y}_t))$; indeed, the exponential maps $\text{Exp}_x(\cdot)$ and $\text{Exp}_y(\cdot)$ are defined from $T_x\mathcal{M}$ to \mathcal{M} and from $T_y\mathcal{N}$ to \mathcal{N} respectively. However, we have $-\text{grad}_x f(\hat{x}_t, \hat{y}_t) \in T_{\hat{x}_t}\mathcal{M}$ and $\text{grad}_y f(\hat{x}_t, \hat{y}_t) \in T_{\hat{y}_t}\mathcal{N}$. This motivates us to reformulate the second line of Eq. (2) as follows:

$$x_{t+1} \leftarrow \text{proj}_{\mathcal{M}}(\hat{x}_t - \eta \cdot \nabla_x f(\hat{x}_t, \hat{y}_t) + (x_t - \hat{x}_t)), \quad y_{t+1} \leftarrow \text{proj}_{\mathcal{N}}(\hat{y}_t + \eta \cdot \nabla_y f(\hat{x}_t, \hat{y}_t) + (y_t - \hat{y}_t)).$$

In the general setting of Riemannian manifolds, the terms $x_t - \hat{x}_t$ and $y_t - \hat{y}_t$ become $\text{Exp}_x^{-1}(x_t) \in T_{\hat{x}_t}\mathcal{M}$ and $\text{Exp}_y^{-1}(y_t) \in T_{\hat{y}_t}\mathcal{N}$. This observation yields the following updates:

$$x_{t+1} \leftarrow \text{Exp}_x(-\eta \cdot \text{grad}_x f(\hat{x}_t, \hat{y}_t) + \text{Exp}_x^{-1}(x_t)), \quad y_{t+1} \leftarrow \text{Exp}_y(\eta \cdot \text{grad}_y f(\hat{x}_t, \hat{y}_t) + \text{Exp}_y^{-1}(y_t)).$$

We summarize the resulting RCEG method in Algorithm 1 and present the stochastic extension with noisy estimators of Riemannian gradients of f in Algorithm 2.

3.2 Main results

We present our main results on global convergence for Algorithms 1 and 2. To simplify the presentation, we treat separately the following two cases:

Assumption 3.1 The objective function f is geodesically ℓ-smooth and geodesically strongly-convex-strongly-concave with $\mu > 0$.

Assumption 3.2 The objective function f is geodesically ℓ-smooth and geodesically convex-concave.

Letting $(x^*, y^*) \in \mathcal{M} \times \mathcal{N}$ be a global saddle point of f (which exists under either Assumption 3.1 or 3.2), we let $D_0 = (d_{\mathcal{M}}(x_0, x^*))^2 + (d_{\mathcal{N}}(y_0, y^*))^2 > 0$ and $\kappa = \ell / \mu$ for geodesically strongly-convex-strongly-concave setting. For simplicity of presentation, we also define a ratio $\tau(\cdot, \cdot)$ that measures how non-flatness changes in the spaces: $\tau(\kappa_{\min}, \kappa_{\max}, c) = \frac{\tau(\kappa_{\min}, \kappa_{\max}, c)}{\tau(\kappa_{\max}, \kappa_{\min}, c)} \geq 1$. We summarize our results for Algorithm 1 in the following theorem.

Theorem 3.1 Given Assumptions 2.1 and 3.1, and letting $\eta = \min\{1/(2\ell \sqrt{\tau_0}), \xi_0/(2\mu)\}$, there exists some $T > 0$ such that the output of Algorithm 1 satisfies that $(d(x_T, x^*))^2 + (d(y_T, y^*))^2 \leq \epsilon$ (i.e., an ϵ-saddle point of f in Definition 2.4) and the total number of Riemannian gradient evaluations is bounded by

$$O\left(\left(\kappa \sqrt{\tau_0} + \frac{1}{\xi_0} \right) \log \left(\frac{D_0}{\epsilon}\right)\right),$$

where $\tau_0 = \tau(\kappa_{\min}, \kappa_{\max}, D) \geq 1$ measures how non-flatness changes in \mathcal{M} and \mathcal{N} and $\xi_0 = \frac{\tau(\kappa_{\min}, \kappa_{\max}, D)}{\tau(\kappa_{\max}, \kappa_{\min}, D)} \leq 1$ is properly defined in Proposition 2.1.

Remark 3.1 Theorem 3.1 illustrates the last-iterate convergence of Algorithm 1 for solving geodesically strongly-convex-strongly-concave problems, thereby resolving an open problem delineated by Zhang et al. [1]. Further, the dependence on κ and $1/\epsilon$ cannot be improved since it matches the lower bound established for min-max optimization problems in Euclidean spaces [84]. However, we believe that the dependence on τ_0 and ξ_0 is not tight, and it is of interest to either improve the rate or establish a lower bound for general Riemannian min-max optimization.
Remark 3.2 The current theoretical analysis covers local geodesic strong-convex-strong-concave settings. The key ingredient is to define the local region; indeed, if we say the set of \(\{(x, y) : d_M(x, x^*) \leq \delta, d_N(y, y^*) \leq \delta_1\} \) is a local region where the function is geodesic strong-convex-strong-concave. Then, the set of \(\{(x, y) : (d_M(x, x^*))^2 + d_N(y, y^*)^2 \leq \delta^2\} \) must be contained in the above local region and the objective function is also geodesic strong-convex-strong-concave. If \((x_0, y_0) \in \{(x, y) : (d_M(x, x^*))^2 + d_N(y, y^*)^2 \leq \delta^2\} \), our theoretical analysis guarantees the last-iterate linear convergence rate. Such argument and definition of local region were standard for min-max optimization in the Euclidean setting; see Liang and Stokes [55, Assumption 2.1]. For an important optimization problem that is globally geodesically strongly-convex-strongly-concave, we refer to Appendix B where Robust matrix Karcher mean problem is indeed the desired one.

In the scheme of SREG, we highlight that \((g_{x}^t, g_{y}^t)\) and \((\hat{g}_{x}^t, \hat{g}_{y}^t)\) are noisy estimators of Riemannian gradients of \(f\) at \((x_t, y_t)\) and \((\hat{x}_t, \hat{y}_t)\). It is necessary to impose the conditions such that these estimators are unbiased and have bounded variance. By abuse of notation, we assume that

\[
g_{x}^t = \text{grad}_x f(x_t, y_t) + \xi_x^t, \quad g_{y}^t = \text{grad}_y f(x_t, y_t) + \xi_y^t, \quad \hat{g}_{x}^t = \text{grad}_x f(\hat{x}_t, \hat{y}_t) + \hat{\xi}_x^t, \quad \hat{g}_{y}^t = \text{grad}_y f(\hat{x}_t, \hat{y}_t) + \hat{\xi}_y^t,\tag{3}
\]

where the noises \((\xi_x^t, \xi_y^t)\) and \((\hat{\xi}_x^t, \hat{\xi}_y^t)\) are independent and satisfy that

\[
\mathbb{E}[\xi_x^t] = 0, \quad \mathbb{E}[\xi_y^t] = 0, \quad \mathbb{E}[\|\xi_x^t\|^2 + \|\xi_y^t\|^2] \leq \sigma^2, \\
\mathbb{E}[\hat{\xi}_x^t] = 0, \quad \mathbb{E}[\hat{\xi}_y^t] = 0, \quad \mathbb{E}[\|\hat{\xi}_x^t\|^2 + \|\hat{\xi}_y^t\|^2] \leq \sigma^2.\tag{4}
\]

We are ready to summarize our results for Algorithm 2 in the following theorems.

Theorem 3.2 Given Assumptions 2.1 and 3.1, letting \(\eta > 0\) satisfy \(\eta = \min\{1, \frac{\xi_0}{D_0\epsilon^2}\} \), there exists some \(T > 0\) such that the output of Algorithm 2 satisfies that \(\mathbb{E}[\|d(\bar{x}_T, x^*)\|^2 + \|d(y_T, y^*)\|^2] \leq \epsilon\) and the total number of noisy Riemannian gradient evaluations is bounded by

\[
O\left(\left(\kappa\sqrt{\tau_0} + \frac{1}{\xi_0}\right)\log\left(\frac{D_0}{\epsilon}\right) + \frac{\sigma^2\xi_0}{\mu^2}\log\left(\frac{1}{\epsilon}\right)\right),
\]

where \(\tau_0 = \tau(\kappa_{\text{min}}, \kappa_{\text{max}}, D) \geq 1\) measures how non-flatness changes in \(M\) and \(N\) and \(\xi_0 = \frac{\kappa_{\text{max}}}{\kappa_{\text{min}}, D} \leq 1\) is properly defined in Proposition 2.1.

Theorem 3.3 Given Assumptions 2.1 and 3.2 and assume that \(\eta > 0\) satisfies \(\eta = \min\{1, \frac{1}{\tau_0\xi_0}\} \), there exists some \(T > 0\) such that the output of Algorithm 2 satisfies that \(\mathbb{E}[\|f(\bar{x}_T, y^*) - f(x^*, y_T)\|] \leq \epsilon\) and the total number of noisy Riemannian gradient evaluations is bounded by

\[
O\left(\frac{\ell D_0^2\sqrt{\tau_0}}{\epsilon^2} + \frac{\sigma^2\xi_0}{\epsilon^2}\right),
\]

where \(\tau_0 = \tau(\kappa_{\text{min}}, \kappa_{\text{max}}, D) \geq 1\) measures how non-flatness changes in \(M\) and \(N\) and \(\xi_0 = \frac{\kappa_{\text{max}}}{\kappa_{\text{min}}, D} \leq 1\) is properly defined in Proposition 2.1. The time-average iterates \((\bar{x}_t, y_T) \in M \times N\) can be computed by \((\bar{x}_0, y_0) = (0, 0)\) and the inductive formula: \(\bar{x}_{t+1} = \text{Exp}_{\bar{x}_t}(\frac{1}{T+1} \cdot \text{Exp}_{\bar{x}_t}^{-1}(\hat{x}_t))\) and \(y_{t+1} = \text{Exp}_{\bar{y}_t}(\frac{1}{T+1} \cdot \text{Exp}_{\bar{y}_t}^{-1}(\hat{y}_t))\) for all \(t = 0, 1, \ldots, T - 1\).

Remark 3.3 Theorem 3.2 presents the last-iterate convergence rate of Algorithm 2 for solving geodesically strongly-convex-strongly-concave problems while Theorem 3.3 gives the time-average convergence rate when the function \(f\) is only assumed to be geodesically convex-concave. Note that we carefully choose the stepsize such that our upper bounds match the lower bounds established for stochastic min-max optimization problems in Euclidean spaces \([79, 85, 86]\), in terms of the dependence on \(\kappa, 1/\epsilon\) and \(\sigma^2\), up to log factors.

Discussions: The last-iterate linear convergence rate in terms of Riemannian metrics is only limited to geodesically strongly convex-concave cases but other results, e.g., the average-iterate sublinear...
We present numerical experiments on the task of robust principal component analysis (RPCA) for (i) it is a classical one in ML; (ii) Zhang et al. [1] also uses this example and observes the linear (see the precise definition in Theorem 3.3). Note that our implementations of both algorithms are via grid search. Additional results on the effect of stepsize are summarized in Appendix G.

\[\| \text{iterate converge faster than RCEG at the early stage and all of them finally converge to an optimal and RCEG with last-iterate; here, SRCEG-last and SRCEG-avg refer to Algorithm 2 with last iterate} \]

Figure 2 presents the comparison between SRCEG (with either last iterate or time-average iterate) the iterates generated during early stage will significantly slow down the convergence of RCEG. It is clear that the last iterate of RCEG consistently exhibits linear convergence to an optimal solution in all the settings, verifying our theoretical results in Theorem 3.1. In contrast, the average iterate of RCEG converges much slower than the last iterate of RCEG. The possible reason is that the problem of RPCA is strongly-convex-strongly-concave and averaging with \(\ell \) is selected via grid search. For SRCEG, we set \(\eta = \frac{1}{\ell^2} \) where \(\ell, a > 0 \) are selected via grid search. Additional results on the effect of stepsize are summarized in Appendix G.

\[\max_{M \in M_{\text{PSD}}^d} \min_{x \in \mathbb{S}^d} \left\{ -x^T M x - \frac{\alpha}{n} \sum_{i=1}^n d(M, M_i) \right\}. \]

\[\text{(5)} \]

In this formulation, \(\alpha > 0 \) denotes the penalty parameter, \(\{ M_i \}_{i \in [n]} \) is a sequence of given data SPD matrices, \(M_{\text{PSD}}^d = \{ M \in \mathbb{R}^{d \times d} : M > 0, M = M^T \} \) denotes the SPD manifold, \(\mathbb{S}^d = \{ x \in \mathbb{R}^d : \| x \| = 1 \} \) denotes the sphere manifold and \(d(\cdot, \cdot) : M_{\text{PSD}}^d \times M_{\text{PSD}}^d \to \mathbb{R} \) is the Riemannian distance induced by the exponential map on the SPD manifold \(M_{\text{PSD}}^d \). As demonstrated by Zhang et al. [1], the problem of RPCA is nonconvex-nonconcave from a Euclidean perspective but is locally geodesically strongly-convex-strongly-concave and satisfies most of the assumptions that we make in this paper. In particular, the SPD manifold is complete with sectional curvature in \([-\frac{1}{2}, 1] \) and the sphere manifold is complete with sectional curvature of 1. Other reasons why we use such example are: (i) it is a classical one in ML; (ii) Zhang et al. [1] also uses this example and observes the linear convergence behavior; (iii) the numerical results show that the unicity of geodesics assumption may not be necessary in practice; and (iv) this is an application where both min and max sides are done on Riemannian manifolds.

Following the previous works of Zhang et al. [1] and Han et al. [78], we generate a sequence of data matrices \(M_i \) satisfying that their eigenvalues are in the range of \([0.2, 4.5] \). In our experiment, we fix \(\alpha = 1.0 \) and also vary the problem dimension \(d \in \{ 25, 50, 100 \} \). The evaluation metric is set as gradient norm. We set \(n = 40 \) and \(n = 200 \) in Figure 1 and 2. For RCEG, we set \(\eta = \frac{1}{\ell^2} \) where \(\ell > 0 \) is selected via grid search. For SRCEG, we set \(\eta = \min\{ \frac{1}{\ell^2}, \frac{\ell}{\ell^2} \} \) where \(\ell, a > 0 \) are selected via grid search. Additional results on the effect of stepsize are summarized in Appendix G.

Experimental results. Figure 1 summarizes the effects of different outputs for RCEG; indeed, RCEG-last and RCEG-avg refer to Algorithm 1 with last iterate and time-average iterate respectively. It is clear that the last iterate of RCEG consistently exhibits linear convergence to an optimal solution in all the settings, verifying our theoretical results in Theorem 3.1. In contrast, the average iterate of RCEG converges much slower than the last iterate of RCEG. The possible reason is that the problem of RPCA is only locally geodesically strongly-convex-strongly-concave and averaging with the iterates generated during early stage will significantly slow down the convergence of RCEG.

Figure 2 presents the comparison between SRCEG (with either last iterate or time-average iterate) and RCEG with last-iterate; here, SRCEG-last and SRCEG-avg refer to Algorithm 2 with last iterate and time-average iterate respectively. We observe that SRCEG with either last iterate or average iterate converge faster than RCEG at the early stage and all of them finally converge to an optimal solution. This demonstrates the effectiveness and efficiency of SRCEG in practice. It is also worth
We would like to thank the area chair and five anonymous referees for constructive suggestions that helped improve the paper. This work was supported in part by the Mathematical Data Science program of the Office of Naval Research under grant number N00014-18-1-2764 and by the Vannevar Bush Faculty Fellowship program under grant number N00014-21-1-2941. The work of Michael I. Jordan is also partially supported by NSF Grant IIS-1901252. Emmanouil V. Vlatakis-Gkaragkounis is grateful for financial support by the Google-Simons Fellowship, Pancretan Association of America and Simons Collaboration on Algorithms and Geometry. This project was completed while he was a visiting research fellow at the Simons Institute for the Theory of Computing. Additionally, he would like to acknowledge the following series of NSF-CCF grants under the numbers 1763970/2107187/1563155/1814873.
References

Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on how to answer these questions. For each question, change the default [TODO] to [Yes], [No], or [N/A]. You are strongly encouraged to include a justification to your answer, either by referencing the appropriate section of your paper or providing a brief inline description. For example:

- Did you include the license to the code and datasets? [Yes]
- Did you include the license to the code and datasets? [No] The code and the data are proprietary.
- Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the Checklist section does not count towards the page limit. In your paper, please delete this instructions block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
 (a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contributions and scope? [Yes]
 (b) Did you describe the limitations of your work? [Yes]
 (c) Did you discuss any potential negative societal impacts of your work? [N/A] This is a theoretical work that does not have any negative societal impacts.
 (d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]

2. If you are including theoretical results...
 (a) Did you state the full set of assumptions of all theoretical results? [Yes]
 (b) Did you include complete proofs of all theoretical results? [Yes] Proof details are deferred to the supplementary material.

3. If you ran experiments...
 (a) Did you include the code, data, and instructions needed to reproduce the main experimental results (either in the supplemental material or as a URL)? [Yes]
 (b) Did you specify all the training details (e.g., data splits, hyper-parameters, how they were chosen)? [Yes]
 (c) Did you report error bars (e.g., with respect to the random seed after running experiments multiple times)? [N/A]
 (d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
 (a) If your work uses existing assets, did you cite the creators? [N/A]
 (b) Did you mention the license of the assets? [N/A]
 (c) Did you include any new assets either in the supplemental material or as a URL? [N/A]
 (d) Did you discuss whether and how consent was obtained from people whose data you’re using/curating? [N/A]
 (e) Did you discuss whether the data you are using/curating contains personally identifiable information or offensive content? [N/A]

5. If you used crowd-sourcing or conducted research with human subjects...
 (a) Did you include the full text of instructions given to participants and screenshots, if applicable? [N/A]
 (b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? [N/A]
 (c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? [N/A]