
Motion Transformer with Global Intention
Localization and Local Movement Refinement

Shaoshuai Shi, Li Jiang, Dengxin Dai, Bernt Schiele
Max Planck Institute for Informatics, Saarland Informatics Campus

{sshi, lijiang, ddai, schiele}@mpi-inf.mpg.de

Appendix

1 Implementation Details

More architecture details. We train a single model for predicting the future motion of all three
categories (i.e., Vehicle, Pedestrian, Cyclist), and each category has their own motion query pairs.

The input history state Ain contains three types of information, including agent history motion state
(i.e., position, object size, heading angle and velocity), one-hot category mask of each agent and
one-hot time embedding of each history time step. The polyline encoder for Ain contains a three-layer
MLP with feature dimension 256. The input map feature Min contains three types of information,
including the position of each polyline point, the polyline direction at each point, and the type of
each polyline. The polyline encoder for Min contains a five-layer MLP with feature dimension 64,
where we adopt a smaller feature dimension since the number of map polylines is much larger than
the number of agents. Both two polyline encoders are finally projected to 256 feature dimension with
another linear layer separately.

For the dense future prediction module, we adopt a three-layer MLP with intermediate feature
dimension 512 for predicting future position and velocity of all agents. For the prediction head in
each decoder layer, we adopt a three-layer MLP with intermediate feature dimension 512, and the
model weights are not shared across different decoder layers.

The details of Gaussian regression loss. Given the predicted Gaussian Mixture Models for a specific
future time step, we adopt negative log-likelihood loss to maximum the likelihood of the agent’s
ground-truth position (Ŷx, Ŷy) at this time step, and the detailed loss can be formulated as:

LG = − logNh(Ŷx − µx, σx; Ŷy − µy, σy; ρ)− log(ph) (1)

= log σx + log σy + 0.5 log(1− ρ2) +
1

2(1− ρ2)

((
dx
σx

)2

+

(
dy
σy

)2

− 2ρ
dxdy
σxσy

)
− log(ph),

where dx = Ŷx − µx, dy = Ŷy − µy, and Nh(µx, σx;µy, σy; ρ) is the selected positive Gaussian
component for optimization. ph is the predicted probability of this selected positive Gaussian
component, and we adopt cross entropy loss in the above equation to maximum the probability of
selected positive Gaussian component.

Final training losses. Given the above definition of Gaussian regression loss, the final training loss of
MTR framework is the sum of all the Gaussian regression loss in each decoder layer and the auxiliary
regression loss with equal loss weights.

The distribution of static intention points. As mentioned in the paper, we adopt k-means clustering
algorithm to generate 64 static intention points for each category. As shown in Figure 1, the generated
intention points can well cover most motion intentions by jointly considering both the velocity and
direction of future motion. For example, vehicle category has a series of intention points in the
heading direction that actually model the same intent direction with different velocities.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Y axis (meter)

X
ax
is
(m
et
er
)

X
ax
is
(m
et
er
)

Y axis (meter)

X
ax
is
(m
et
er
)

Y axis (meter)

Vehicle Pedestrian Cyclist

Figure 1: The distribution of static intention points for each category. The green point is the current
position of the agent, and the intention points are shown as orange stars. The gray dotted lines indicate
the distribution of ground-truth trajectory for each category, and note that only 10% ground-truth
trajectories are drawn in the figure for better visualization.

2 Per-class Results of MTR Framework

As shown in Table 1 and 2, we report the per-category performance of our approach for both the
marginal and joint motion prediction challenges of Waymo Open Motion Dataset [2] for reference.

Table 1: Per-class performance of marginal motion prediction on the validation and test set of Waymo
Open Motion Dataset. †: The results are shown in italic for reference since the performance is
achieved with model ensemble technique.

Setting Category minADE ↓ minFDE ↓ Miss Rate ↓ mAP ↑

Test MTR

Vehicle 0.7642 1.5257 0.1514 0.4494
Pedestrian 0.3486 0.7270 0.0753 0.4331

Cyclist 0.7022 1.4093 0.1786 0.3561
Avg 0.6050 1.2207 0.1351 0.4129

Val

MTR

Vehicle 0.7665 1.5359 0.1527 0.4534
Pedestrian 0.3456 0.7260 0.0741 0.4364

Cyclist 0.7016 1.4134 0.1830 0.3594
Avg 0.6046 1.2251 0.1366 0.4164

MTR-e2e

Vehicle 0.6087 1.2161 0.1160 0.3708
Pedestrian 0.3046 0.6254 0.0696 0.3028

Cyclist 0.6346 1.2796 0.1845 0.2998
Avg 0.5160 1.0404 0.1234 0.3245

Table 2: Per-class performance of joint motion prediction on the validation and test set of Waymo
Open Motion Dataset.

Setting Category minADE ↓ minFDE ↓ Miss Rate ↓ mAP ↑

Test MTR

Vehicle 0.9793 2.2157 0.3833 0.2977
Pedestrian 0.7098 1.5835 0.3973 0.2033

Cyclist 1.0652 2.3908 0.5428 0.1102
Avg 0.9181 2.0633 0.4411 0.2037

Val MTR

Vehicle 0.9675 2.1728 0.3722 0.3018
Pedestrian 0.7097 1.5522 0.3984 0.1892

Cyclist 1.0623 2.4357 0.5410 0.1065
Avg 0.9132 2.0536 0.4372 0.1992

3 Evaluation of Dense Future Prediction

As introduced in the paper, we propose the dense future prediction module to enable the future
interactions among the agents, where the accuracy of the predicted trajectories for all neighboring
agents is important for predicting better multimodal trajectories of our interested agent. As shown in

2



Table 3: The performance of dense future prediction on the validation set of Waymo Open Motion
Dataset. The dense future prediction module predicts a single future trajectory (8 seconds into the
future) for each agent in the validation set. ADE indicates average displacement error, and FDE
indicates final displacement error. The FDE is evaluated based on the last time step of future 8
seconds, and the miss rate is evaluated based on FDE with different distance thresholds.

Category ADE ↓ FDE ↓ Miss Rate
(thresh=2m) ↓

Miss Rate
(thresh=6m) ↓

Vehicle 0.8755 3.4929 0.3343 0.1984
Pedestrian 0.4998 1.9685 0.3317 0.0601

Cyclist 1.6565 6.3868 0.7697 0.3747
Avg 1.0106 3.9494 0.4786 0.2111

Table 4: The performance comparison with the top-10 submissions on the test set leaderboard of
Argoverse2 dataset. K is the number of predicted trajectories for calculating the evaluation metrics.

Method Miss Rate (K=6) ↓ Miss Rate (K=1) ↓ brier-minFDE (K=6) ↓
MTR (Ours) 0.15 0.58 1.98
TENET [5] 0.19 0.61 1.90

OPPred 0.19 0.60 1.92
Qml 0.19 0.62 1.95

GANet 0.17 0.60 1.97
VI LaneIter 0.19 0.61 2.00

QCNet 0.21 0.60 2.14
THOMAS [3] 0.20 0.64 2.16

HDGT [4] 0.21 0.66 2.24
GNA 0.29 0.71 2.45
vilab 0.29 0.71 2.47

Table 3, our simple dense future prediction module can predict accurate future trajectory for all agents,
where the average miss rate with 6.0m distance threshold is 21.11% for future motion prediction of 8
seconds. It’s worth noting that this miss rate is achieved with a single predicted future trajectory for
each agent. Although the trajectory generated by the dense future prediction module is still not as
accurate as that of the decoder network, they can already benefit the multimodal motion prediction of
our interested agent by enabling the future interactions of the agents.

4 Performance Comparison on Argoverse 2 Dataset

The Argoverse 2 Motion Forecasting Dataset [6] is another large-scale dataset for motion prediction,
which contains 250,000 scenarios for training and validation. The model needs to take the history
five seconds of each scenarios as niput, and predict the six-second future trajectories of one interested
agent, where HDMap is always available to provide map context information. To train our model on
this dataset, we adopt the same hyper-parameters as in Waymo dataset, except that the model takes
five-second history trajectories as input and needs to predict six-second future trajectories.

We compare out approach with the top-10 submissions on the leaderboard of Argoverse2 dataset [1],
where most submissions are tailored for Argoverse2 Motion Forcasting Competition 2022 and
are highly competitive. As shown in Table 4, our MTR framework achieves new state-of-the-
art performance with remarkable gains on the miss-rate related metrics, demonstrating the great
generalizability and robustness of our approach.

Table 5: Effects of the number of neighbors for
local self-attention in transformer encoder.

#neighbors minADE ↓ minFDE ↓ MR ↓ mAP ↑
4 0.6677 1.3724 0.1672 0.3405
8 0.6681 1.3673 0.1670 0.3428

16 0.6697 1.3712 0.1668 0.3437
32 0.6701 1.3763 0.1678 0.3416
64 0.6727 1.3756 0.1687 0.3367

Table 6: Effects of the number of map polylines
for dynamic map collection.

#Polyline minADE ↓ minFDE ↓ MR ↓ mAP ↑
32 0.6735 1.3847 0.1701 0.3317
64 0.6699 1.3650 0.1672 0.3386

128 0.6697 1.3712 0.1668 0.3437
256 0.6704 1.3729 0.1665 0.3396

3



5 More Ablation Studies

Effects of the number of neighbors for local self-attention. As shown in Table 5, using 4 neighbors
in local self-attention already achieves good performance in terms of mAP, and the mAP metric keeps
growing when increasing the number of neighbors from 4 to 16. However, when we increase the
neighbors to 64 for conducting local self-attention, the performance drops a bit (i.e., from 34.37% to
33.67%). It demonstrates that a small number of neighbors can better maintain the local structure of
input elements and is easier to be optimized for achieving better performance, and a small number of
neighbors is also much more computational- and memory-efficient than a larger number of neighbors
for conducting self-attention.

Effects of the number of polylines for dynamic map collection. Table 6 shows that increasing
the number of collected map polylines from 32 to 128 can constantly improve the mAP metric by
retrieving trajectory-specific map features with larger receptive field. However, the performance
drops a bit (-0.41% mAP) when collecting 256 map polylines for refining the trajectory, which shows
that a larger number of collected map polylines may involve more noise and can not provide accurate
trajectory-specific map features for refinement.

Table 7: Effects of the number of decoder layers.
#decoders minADE ↓ minFDE ↓ MR ↓ mAP ↑

3 0.6717 1.3796 0.1686 0.3360
6 0.6697 1.3712 0.1668 0.3437
9 0.6658 1.3621 0.1661 0.3437

Table 8: Effects of the distribution of static inten-
tion points.

#Distribution minADE ↓ minFDE ↓ MR ↓ mAP ↑
uniform grids 0.7214 1.5563 0.1970 0.3178

k-means 0.6697 1.3712 0.1668 0.3437

Effects of the number of decoder layers. Table 7 shows that increasing the number of decoder layers
can constantly improve the performance, which demonstrates that our stacked transformer decoder
layers can iteratively refine the predicted trajectories by continually aggregating more accurate
trajectory-specific features. By default, we adopt 6 decoder layers by considering the trade-off
between the performance and the efficiency of MTR framework.

Effects of the distribution of static intention points. As introduced in the paper, we adopt k-means
algorithm to generate 64 static intention points as the basis of our motion query pairs. We ablate
another simple uniform sampling strategy to generate the same number of static intention points for
each category, where we uniformly sample 8 × 8 = 64 static intention points by considering the
range of trajectory distribution of each category (see Figure 1). As shown in Table 8, the performance
drops significantly when replacing k-means algorithm with the uniform sampling for generating static
intention points. It verifies that our k-means based algorithm can produce better distribution of static
intention points, which can capture more accurate and more complete future motion intentions with a
small number of static intention points. Figure 1 also demonstrates the effectiveness of our default
static intention points for capturing multimodal motion intentions.

6 Qualitative Results

We provide more qualitative results of our MTR framework in Figure 2.

7 Notations

As shown in Table 9, we provide a lookup table for notations in the paper.

References
[1] Argoverse 2. Argoverse 2: Motion forecasting competition. https://eval.ai/web/challenges/

challenge-page/1719/leaderboard/4098, 2022. Accessed: 2022-08-02.

[2] Scott Ettinger, Shuyang Cheng, Benjamin Caine, Chenxi Liu, Hang Zhao, Sabeek Pradhan, Yuning Chai,
Ben Sapp, Charles R Qi, Yin Zhou, et al. Large scale interactive motion forecasting for autonomous driving:
The waymo open motion dataset. In ICCV, 2021.

[3] Thomas Gilles, Stefano Sabatini, Dzmitry Tsishkou, Bogdan Stanciulescu, and Fabien Moutarde. Thomas:
Trajectory heatmap output with learned multi-agent sampling. In arXiv preprint arXiv:2110.06607, 2021.

4

https://eval.ai/web/challenges/challenge-page/1719/leaderboard/4098
https://eval.ai/web/challenges/challenge-page/1719/leaderboard/4098


t+0s

t+8s

low

high

(a) V1 is moving forward with high speed.
Our model predicts multimodal behaviors
for V2: turn left or go straight. V2 is
predicted to yield for V1 when turning left.

12

(b) V1 is moving forward with high speed.
V2 is predicted to yield for V1 and then
turn left.

2

1

(c) V2 is moving forward with high speed.
V1 is predicted to turn left or go straight.
When V1 turns left, it is predicted to yield V2
and then turn left.

2

1

t+0s

t+8s

low

high

(d) V1 is moving forward with high speed.
P2 is predicted to wait for V1 to pass and
then cross the road.

(e) V2 is moving forward with high speed.
V1 is predicted to yield for V1 and then
turn right .

(f) V2 is passing the intersection with high
speed. V1 is on the left-turn lane and is
predicted to yield for V2 and then turn left.

1

2 1

2
1

2

t+0s

t+8s

low

high

(g) V2 is predicted to turn left. V1 is
predicted to slow down with high
confidence and yield for two pedestrians
who are crossing the road.

(h) V1 is moving forward with high speed.
V2 is predicted to turn left or go straight.
When V2 turns left, it is predicted to yield
for V1.

(i) V2 is passing the intersection with high
speed. V1 is predicted to turn left or turn right.
In any case, V1 is predicted to yield for V2.

1

2

1

2

1

2

Figure 2: Qualitative results of MTR framework on WOMD. There are two interested agents in each
scene (green rectangle), where our model predicts 6 multimodal future trajectories for each of them.
For other agents (blue rectangle), a single trajectory is predicted by dense future prediction module.
We use gradient color to visualize the trajectory waypoints at different future time step, and trajectory
confidence is visualized by setting different transparent. Abbreviation: Vehicle (V), Pedestrian (P).

[4] Xiaosong Jia, Penghao Wu, Li Chen, Hongyang Li, Yu Liu, and Junchi Yan. Hdgt: Heterogeneous
driving graph transformer for multi-agent trajectory prediction via scene encoding. In arXiv preprint
arXiv:2205.09753, 2022.

[5] Yuting Wang, Hangning Zhou, Zhigang Zhang, Chen Feng, Huadong Lin, Chaofei Gao, Yizhi Tang,
Zhenting Zhao, Shiyu Zhang, Jie Guo, et al. Tenet: Transformer encoding network for effective temporal
flow on motion prediction. In arXiv preprint arXiv:2207.00170, 2022.

[6] Benjamin Wilson, William Qi, Tanmay Agarwal, John Lambert, Jagjeet Singh, Siddhesh Khandelwal, Bowen
Pan, Ratnesh Kumar, Andrew Hartnett, Jhony Kaesemodel Pontes, et al. Argoverse 2: Next generation
datasets for self-driving perception and forecasting. In NeurIPS, 2021.

5



Table 9: Lookup table for notations in the paper.

Ain input history motion state of agent
Min input map features with polyline representation
Ca input feature dimension of agent’s state
Na number of agents
t number of given history frames

Nm number of map polylines
n number of points in each map polyline

Apast agent features after polyline encoder
Afuture encoded future features of the densely predicted trajectories for all agents
A agent features in transformer encoder
M map features in transformer encoder
D hidden feature dimension of transformer
PE function of sinusoidal position encoding
κ function of k-nearest neighbor algorithm
T number of future frames to be predicted
Si predicted future position and velocity of all agents at time step i
I static intention points
QI static intention query
Qj

S dynamic searching query in j-th decoder layer
Y j
1:T predicted future trajectories in j-th decoder layer
L number of map polylines collected along the predicted trajectory

Cj−1 input query content features of j-th decoder layer
Cj

sa query content features after self-attention of j-th decoder layer
Cj

A query agent features after cross-attention of j-th decoder layer
Cj

M query map features after cross-attention of j-th decoder layer
α function of dynamic map collection

Zj
1:T predicted GMM parameters in j-th decoder layer
pk predicted probability of k-th component in GMM
Nk function of k-th component in GMM
K number of components for each GMM

P j
i (o) predicted occurrence probability of the agent at spatial position o and time step i

6


	Implementation Details
	Per-class Results of MTR Framework
	Evaluation of Dense Future Prediction
	Performance Comparison on Argoverse 2 Dataset
	More Ablation Studies
	Qualitative Results
	Notations

