
Algorithm 1: Learning to caption novel objects with linguistic fluency
Input: Captioning model Cθ(·), Paraphrase model P , and Association model A.
Data: Captioned image xl , the corresponding GT caption yl , uncaptioned image xu , and lr

ηit.
Output: Trained Captioning model Cθ(·).

1 Initialize Cθ(·);
2 for it from 1 to num_iters do
3 ŷl ← Cθ(xl), ŷcu ← Cθ(xu);
4 Produce ŷmu by randomly masking words in the sentence in ŷcu (except for nouns);
5 ŷpu ← P(ŷmu )
6 Ls2s← CrossEntropy(ŷl , yl )
7 if A(xu , ŷ

b
u) ≤ A(xu , ŷ

c
u) then

8 LP ← 0
9 else

10 LP ← CrossEntropy(ŷcu , ŷ
p
u )

11 end
12 L← Ls2s + LP

13 Update parameters: θ← Adam(θ, ηit,∇θL)
14 end

A Remarks on fluency, fidelity, and adequacy

We first discuss how fluency, fidelity, and adequacy can be fundamentally and technically related
to language model and association model. For caption fluency, one would expect that the image
caption to be linguistically natural and fluent. That is, the NOC model not only requires to capture
the occurrence of novel-object vocabularies, the associated collocations such as verbs or modifiers
are expected to be properly utilized. Thus, given the context containing novel-object vocabularies
as ỹ and the associated wordings as ŵ, we define fluency as the probability of the NOC model
which correctly predicts the collocation given the novel image context p(ŵ|ỹ) (N as the number of
collocations). In natural language processing, masked language models are widely applied to predict
the masked word ŵ given the context ỹ. Thus, the objective of a masked language model would
be maximizing the log-likelihood of the masked word log(p(ŵ|ỹ)) given the context ỹ, which is
equivalent to our definition of fluency with the log function explicitly calculated. Therefore, this is
the reason why we adopt language model to learn the co-occurrence of novel-object vocabularies and
their associated collocations to improve the linguistic fluency.

We now relate fidelity and adequacy in image captions to cross-modal association. We start by
defining the probability of an object appearing in the images as p(x), and the probability of an object
mentioned by the captions as p(y). Relevant objects p(x, y) are defined as objects that are both
included in the image and described by the associated caption. Since fidelity assesses whether the
visual content presented in the produced caption is correct, it can be defined as the fraction of relevant
objects among objects in captions p(x,y)

p(y) = p(x|y). On the other hand, adequacy evaluates whether
sufficient visual details have been expressed by captions, and it can be defined as the fraction of
relevant objects among objects in an image p(x,y)

p(x) = p(y|x). Thus, we can calculate the point-wise
mutual information pmi of an image x and its caption y as follows:

pmi(x, y) ≡ log
p(x, y)

p(x)p(y)
= log

p(x|y)
p(x)

= log
p(y|x)
p(y)

, (5)

with mutual information as the expected value of point-wise mutual information. For the task of
NOC, both p(x) and p(y) are fixed (i.e., determined by the dataset). Therefore, the above derivation
implies that when the mutual information between an image and its captions increases, the resulting
fidelity and adequacy would be jointly improved. So that’s why we require CLIP to compute the
association between images and captions. Since it is trained via the InfoNCE objective, which is a
lower bound estimation of mutual information [27].

14



Algorithm 2: Learning novel object captions with fidelity and adequacy
Input: Captioning model Cθ(·) and Association model A.
Data: Captioned image xl , the corresponding GT caption yl , uncaptioned image xu , and lr

ηit.
Output: Trained Captioning model Cθ(·).

1 Initialize Cθ(·);
2 for it from 1 to num_iters do
3 ŷsl ← Cθ(xl), ŷsu ← Cθ(xu) (by sampling);
4 ŷgl ← Cθ(xl), ŷgu ← Cθ(xu) (by greedy decoding);
5 Calculate rrep(ŷ

s
u) and rrep(ŷ

g
u) by (3)

6 r(ŷl)← rCIDEr(ŷl, yl) + rA(xl, ŷl)
7 r(ŷu)← rA(xu, ŷu) + rrep(ŷu)
8 Calculate the gradient∇θLRL(θ)←−(r(ŷsd)− r(ŷgd))∇θ log pθ(ŷ

s
d), d ∈ {l, u}

9 Update parameters: θ← Adam(θ, ηit, ∇θLRL)
10 end

Table 7: Ablation studies on nocaps validation set.

Method
in-domain near-domain out-of-domain overall

CIDEr SPICE CIDEr SPICE CIDEr SPICE CIDEr SPICE

Baseline (Only w/ Ls2s) 89.07 13.29 83.29 12.61 68.77 10.59 81.17 12.32

+ LP 92.46 13.40 85.79 12.92 73.21 11.40 84.20 12.69

+ rCIDEr 101.19 13.84 95.38 13.44 83.24 12.06 93.75 13.23

+ rA 96.73 14.83 89.64 14.12 81.87 12.38 89.08 13.88

+ rrep (Ours) 102.77 14.83 97.90 14.40 86.33 12.54 96.25 14.10

B Implementation details

Following Hu et al. [13], Li et al. [28], Zhang et al. [29], we consider a BERT-base [35] architecture
for our captioning model. Given an image, the captioning model jointly takes the image region
features and the predicted detection tags to generate the associated caption. We use the same region
features as VinVL [29], which are released on their project page. Since the object detection model
Omni-detection used in previous works [13, 29] is not available, we replace it with a publicly available
model of TSD [44] to generate the object detection tag.

Reproducing our method. We perform VIVO [13] pre-training for 100 epochs with a batch size
of 1024 and a learning rate of 5× 10−5, which are exactly the same as the parameters stated in the
VIVO paper. After that, we propose to train our model following the training process described in
Algorithm 1 to learn to caption novel objects with linguistic fluency. We train our model for 20
epochs with an effective batch size of 512 (256 caption-labeled images and 256 uncaptioned images)
and a learning rate of 1.5× 10−5. Then, to learn novel object captions with fidelity and adequacy, we
train our model as decsribed in Algorithm 2. Specifically, we train our model for 4 epochs with an
effective batch size of 128 (64 caption-labeled images and 64 uncaptioned images) and a learning
rate of 2.5× 10−6. We use 8 V100 GPUs to perform the above training algorithms. Codes can be
found in the supplementary materials.

Reproducing baseline methods. For VinVL [29], we leverage the released model on their project
page and directly inference on the nocaps dataset. However, for VinVL+VIVO [29], since the
pre-trained model is not publicily available, we reproduce this method using the image region features
and object detection tags generated by models mentioned in the beginning of this section to train this
model. Specifically, the model is trained for 160K iterations (about 100 epochs) with a batch size of
1024 and a learning rate of 5 × 10−5, and fine-tuned for 30 epochs with a batch size of 256 and a
learning rate of 5× 10−5 using the cross-entropy loss. Last, we perform the SCST optimization [14]
with a learning rate of 2 × 10−6 for 5 epochs to obtain the final model. The numbers reported in
Table 7 are derived using this version of model.
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Table 8: Image captioning evaluation results on COCO “Karpathy” test split. Note that B@4 stands
for BLEU@4, M for METEOR, R for ROUGE-L, C for CIDEr, and S for SPICE.

B@4 M R C S
VinVL 39.8 29.9 59.6 134.6 23.9
VinVL+VIVO 39.7 29.9 59.6 134.5 23.8
Ours 40.0 30.4 60.2 137.3 24.5

Table 9: Ablation studies of the joint-training model on nocaps validation set.

Method
in-domain near-domain out-of-domain overall

CIDEr SPICE CIDEr SPICE CIDEr SPICE CIDEr SPICE
Baseline (Only w/ Ls2s) 96.1 13.71 90.35 13.41 79.96 11.77 89.07 13.13
+ LP 99.44 13.91 91.13 13.53 81.11 11.82 90.29 13.25
+ rCIDEr 109.14 14.52 100.66 14.08 88.61 12.69 99.43 13.87
+ rA 103.81 15.99 98.91 15.32 93.17 13.67 98.45 15.09
+ rrep (Ours) 110.56 15.23 105.16 14.81 96.22 13.19 104.12 14.55

C Additional experiments

C.1 Detailed ablation analysis

Table 7 lists the performances and compares contributions of the imposed objectives in our P2C.
The baseline model in Table 7 is only trained on the COCO Caption dataset using the sequence-to-
sequence objective. To confirm our introduction of exploiting BERT to learn the associated wordings
of novel images, we apply LP to the baseline model, and report the results in the second row of
Table 7. The CIDEr scores improve significantly after adopting reinforce algorithm [33] and using
CIDEr scores of the generated captions as reward, and the results are in the third row. One can see
that the SPICE scores largely increase but the CIDEr scores slightly decrease after the deployment
of the association model A. We hypothesize that the captioning model properly captures the visual
content in images, but it describes the scene with poor linguistic fluency. As the discussion in Sec. 3.2,
we attribute the performance drop to the degenerate solution of increasing the association between
the captions and the corresponding images. Note that we further consider the repetition penalty to
regularize the captioning model. The results are shown in the last row of Table 7. One can see that
this regularization slightly improves the SPICE scores but significantly increase the CIDEr scores.
By comparing the performances listed in Table 7, we see that the full version of our P2C achieved the
best performance in terms of CIDEr and SPICE. Thus, the design of our P2C can be successfully
verified.

C.2 Experiments on the COCO Caption dataset

To validate that our method generalize well on the task of describing the seen objects, we conduct
experiments on the COCO Caption test set and report the numbers in Table 8. The training data for
VinVL [29] is image caption pairs from the COCO [45] dataset. While for VinVL + VIVO and our
method, we additionally leverage the uncaptioned image from the Open Images [37] dataset as extra
data. One can see that our method outperforms the other competitive approaches on different metrics
which verifies the effectiveness of our approach.

C.3 Experiments on the nocaps (XD) benchmark

Recall that in Sec. 4.2, we quantitatively show that our method surpasses current state-of-the-art
large-scale methods even if we use a smaller training corpus. In the subsection, we would like to
investigate whether the improvement from our module design is still significant when we scale up
training data.

To quantitatively show that the performance gain in Table 2 is not simply contributed by the additional
data we considered, we ablate our model on the nocaps validation set and show the results in Table 9.
We observed a similar performance trend as we reported in Table 7, where LP slightly improves
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Table 10: Human study on the nocaps validation set.

Method M1 M2 M3 M4
(Turing Test) (Fluency) (Fidelity) (Adequacy)

VinVL
0.25 3.99 3.70 3.46

+VIVO
Ours 0.43 4.06 4.33 4.24
Human 0.53 4.09 4.44 4.18

the CIDEr scores, and rA significantly boost SPICE but slightly deteriorates the CIDEr scores. One
can see that the regularization rrep slightly improves the SPICE scores but significantly increase the
CIDEr. By comparing the performances listed in Table 7 and Table 9, we see that our design of using
a paraphrase model P to enhance fluency (in terms of CIDEr) and the uses of the association model A
to encourage captions with sufficient fidelity and adequacy (in terms of SPICE) still function properly
when more diverse image-caption pairs are considered, verifying the design of our P2C.

C.4 Human study

To conduct human study, we randomly picked 60 images from the nocaps validation set, and compared
the captions generated by our method to those generated by the SOTA of VinVL+VIVO [29], and the
human-annotated captions provided by the nocaps dataset. Following the evaluation protocols used in
the COCO Captioning Challenge 2015 [45], we designed 4 different metrics and asked individuals to
evaluate captions from these aspects. The following are the four metrics we used in the experiment:
M1: Is the caption generated by human (0: machine, 1: human)? (Percentage of captions that pass
the Turing Test.) M2: Rate the correctness of the captions on a scale 1-5 (incorrect-correct): Whether
the described objects or activities are correct. M3: Rate the amount of detail of the captions on a
scale 1-5 (lack of details - very detailed): Whether the caption has detailed all the objects and their
attributes. M4: Rate the fluency of the captions on a scale 1-5 (lack of fluency-very fluent): Whether
the caption use phrases/words that human generally would use to describe the scene, i.e., the caption
is linguistically natural and fluent.

Specifically, M2, M3, M4 correspond to the fidelity, adequacy, and fluency, respectively, which
are the particular objectives desired to be achieved. We asked 24 people two answer 6 different
questionnaires, and each questionnaire contains 10 captions from each method (i.e., ours, sota, and
human caption presented in a random order). We report the results in Table 10. We see that our
method surpassed the SOTA by clear margins, while our performances were comparable to those the
human ones across different metrics. This further supports the design of our model for NOC with
sufficient fluency, fidelity, and adequacy.

C.5 More qualitative results

Qualitative comparison on fluency, fidelity and adequacy. In this part, we provide more qualitative
results on the nocaps validation/test set, and the results are shown in Fig. 4 and 5. Note that wordings
that are less accurate or incorrectly describe the associated visual content are marked in bold. And, our
wording improvements are highlighted in red. Take results in the bottom row of Fig. 4 for example.
For the column of fluency, our model particularly described the turtle being “crawling on some
rocks" instead of “sitting on the top of a beach". For fidelity, our model predicted the background
preferably as “race track” instead of “street" from the prediction of VinVL model. As for the column
of adequacy, though both captions described a young men running, our model successfully captures
more details in the image (i.e., “there are number on their shirts"). For more qualitative results,
please refer to Fig. 5.

Qualitative results of some failure cases. In this part, we demonstrate some failure cases of our
P2C model. We empirically observe that the failure cases mainly come from the wrong/missing
detection tags predicted by the pre-trained object detectors. To be more specific, the captioning model
largely relies on the detection tags as clues to correctly describe novel objects. Take the result in the
left-side of Fig. 6 for example, the detection model falsely recognizes the raccoon as a squirrel, and
this detection result consequently damages the caption prediction. Therefore, how to jointly improve
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a woman sitting in front of a piano 
playing a keyboard.

Fluency Fidelity Adequacy

VinVL

Ours

VinVL

Ours

Fluency Fidelity Adequacy

a group of men cutting up 
watermelon in a field.

a woman standing in front of a 
projector screen with a presentation.

a group of men standing in a field 
with watermelon.

a woman standing in front of a 
computer screen.

a woman sitting on a piano.

a large turtle crawling on some 
rocks in the dirt.

a group of men running down a 
race track.

a tortoiset sitting on top of a 
beach.

a group of men running down a 
street.

a group of young men running in a 
field.

a group of young men running in 
the grass with numbers on their 

shirts.

Figure 4: Example results and comparisons for image captions produced by VinVL and ours in terms
of fluency, fidelity and adequacy. Note that both utilize VIVO for novel object detection.

the detection model and captioning model is still a open question, and we leave this problem for
future research. For more failure cases, please refer to Fig. 6.
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a man riding a bike on a street with 
a helmet.

Fluency Fidelity Adequacy

VinVL

Ours

VinVL

Ours

Fluency Fidelity Adequacy

a yellow lamp with a light bulb on 
a black background.

a black vase sitting on top of a 
table.

a man riding a pink bike in the 
street.

a woman wearing a brown hat and 
smiling.

a woman wearing a brown jacket 
and boots holding a cell phone.

a woman wearing a hat and a table.
a woman holding a cell phone in 

her hand.

a couple of people sitting on a red 
bike.

a couple of people riding on a red 
bike.

a yellow bee flying next to a bunch 
of purple flowers.

a yellow bee sitting on top of blue 
flowers.

Figure 5: Example results and comparisons for image captions produced by VinVL and ours in terms
of fluency, fidelity and adequacy. Note that both utilize VIVO for novel object detection.

a brown squirrel sitting on a tree 
branch.

a man holding a tennis racket 
on a field

Man, Football helmet, Sports uniform, 
Baseball glove, Baseball bat

a collage of pictures of dogs 
and a lion.

Detection 
tags

Ours

Tree, Monkey, squirrel Dog, Carnivore, Lion, Brown bear

GT tags Raccoon lacrosse stick Jaguar

Figure 6: False captions misled by the wrong object detection tags.
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