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Abstract

We provide an efficient unified plug-in approach for estimating symmetric prop-
erties of distributions given n independent samples. Our estimator is based on
profile-maximum-likelihood (PML) and is sample optimal for estimating various
symmetric properties when the estimation error ε� n−1/3. This result improves
upon the previous best accuracy threshold of ε� n−1/4 achievable by polynomial
time computable PML-based universal estimators [ACSS21, ACSS20]. Our esti-
mator reaches a theoretical limit for universal symmetric property estimation as
[Han21] shows that a broad class of universal estimators (containing many well
known approaches including ours) cannot be sample optimal for every 1-Lipschitz
property when ε� n−1/3.

1 Introduction

Given n independent samples y1, ..., yn ∈ D from an unknown discrete distribution p ∈ ∆D the
problem of estimating properties of p, e.g. entropy, distance to uniformity, support size and coverage
are among the most fundamental in statistics and learning. Further, the problem of estimating
symmetric properties of distributions p (i.e. properties invariant to label permutations) are well
studied and have numerous applications [Cha84, BF93, CCG+12, TE87, Für05, KLR99, PBG+01,
DS13, RCS+09, GTPB07, HHRB01].

Over the past decade, symmetric property estimation has been studied extensively and there have
been many improvements to the time and sample complexity for estimating different properties,
e.g. support [VV11b, WY15], coverage [ZVV+16, OSW16], entropy [VV11b, WY16, JVHW15],
and distance to uniformity [VV11a, JHW16]. Towards unifying the attainment of computationally-
efficient, sample-optimal estimators a striking work of [ADOS17] provided a universal plug-in
approach based on a (approximate) profile maximum likelihood (PML) distribution, that (approxi-
mately) maximizes the likelihood of the observed profile (i.e. multiset of observed frequencies).

Formally, [ADOS17] showed that given y1, ..., yn if there exists an estimator for a symmetric property
f achieving accuracy ε and failure probability δ, then this PML-based plug-in approach achieves
error 2ε with failure probability δ exp (3

√
n). As the failure probability δ for many estimators for

well-known properties (e.g. support size and coverage, entropy, and distance to uniformity) is roughly
exp (−ε2n), this result implied a sample optimal unified approach for estimating these properties
when the estimation error ε� n−1/4.
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This result of [ADOS17] laid the groundwork for a line of work on the study of computational and
statistical aspects of PML-based approaches to symmetric property estimation. For example, follow
up work of [HS21] improved the analysis of [ADOS17] and showed that the failure probability of
PML is at most δ1−c exp(−n1/3+c), for any constant c > 0 and therefore it is sample optimal in
the regime ε� n−1/3. The condition ε� n−1/3 on the optimality of PML is tight [Han21], in the
sense that, PML is known to be not sample optimal in the regime ε� n−1/3. In fact, no estimator
(that obeys some mild conditions), is sample optimal for estimating all symmetric properties in the
regime ε� n−1/3; see Section 2 after Theorem 2.6 for details.

We also remark that the statistical guarantees in [ADOS17, HS21] hold for any β-approximate
PML1 for suitable values of β. In particular, [HS21] showed that any β-approximate PML for
β > exp(−n1−c′) and any constant c′ > 0, has a failure probability of δ1−c exp(n1/3+c + n1−c′)
for any constant c > 0. These results further imply a sample optimal estimator in the regime
ε � n−min(1/3,c′/2) for properties with failure probability less than exp(−ε2n). Note that better
approximation leads to a larger range of ε for which the estimator is sample optimal.

Regarding computational aspects of PML, [CSS19a] provided the first efficient algorithm with a
non-trivial approximation guarantee of exp(−n2/3 log n), which further implied a sample optimal
universal estimator for ε � n−1/6. This was then improved by [ACSS21] which showed how to
efficiently compute PML to higher accuracy of exp(−

√
n log n) thereby achieving a sample optimal

universal estimator in the regime ε� n−1/4. The current best polynomial time approximate PML
algorithm by [ACSS20] achieves an accuracy of exp(−k log n), where k is the number of distinct
observed frequencies. Although this result achieves better instance based statistical guarantees, in the
worst case it still only implies a sample optimal universal estimator in the regime ε� n−1/4.

In light of these results, a key open problem is to close the gap between the regimes ε� n−1/3 and
ε� n−1/4, where the former is the regime in which PML based estimators are statistically optimal
and the later is the regime where efficient PML based estimators exist. In this work we ask:

Is there an efficient approximate PML-based estimator that is sample optimal for ε� n−1/3.

In this paper, we answer this question in the affirmative. In particular, we give an efficient PML-based
estimator that has failure probability at most δ1−c exp(n1/3+c + n1−c′), and consequently is sample
optimal in the regime ε� n−1/3. As remarked, this result is tight in the sense that PML and a broad
class of estimators are known to be not optimal in the regime ε� n−1/3.

To obtain this result we depart slightly from the previous approaches in [ADOS17, CSS19a, ACSS21].
Rather than directly compute an approximate PML distribution we compute a weaker notion of
approximation which we show suffices to get us the desired universal estimator. We propose a notion
of a β-weak approximate PML distribution inspired by [HS21] and show that an exp(−n1/3 log n)-
weak approximate PML achieves the desired failure probability of δ1−c exp(n1/3+c) for any constant
c > 0. Further, we provide an efficient algorithm to compute an exp(−n1/3 log n)-weak approximate
PML distribution. Our paper can be viewed as an efficient algorithmic instantiation of [HS21].

Ultimately, our algorithms use the convex relaxation presented in [CSS19a, ACSS21] and provide
a new rounding algorithm. We differ from the previous best exp(−k log n) approximate PML
algorithm [ACSS20] only in the matrix rounding procedure which controls the approximation
guarantee. At a high level, the approximation guarantee for the rounding procedure in [ACSS20] is
exponential in the sum of matrix dimensions. In the present work, we need to round a rectangular
matrix with an approximation exponential in the smaller dimension, which may be infeasible for
arbitrary matrices. Our key technical innovation is to introduce a swap operation (see Section 4.1)
which facilitates such an approximation guarantee. In addition to a better approximation guarantee
than [ACSS20], our algorithm also exhibits better run times (see Section 2).

Organization: We introduce preliminaries in Section 1.1. In Section 2, we state our main results
and also cover related work. In Section 3, we provide the convex relaxation to PML studied in
[CSS19a, ACSS21]. Finally, in Section 4, we provide a proof sketch of our main computational
result. Many proofs are then differed to the appendix.

1β-approximate PML is a distribution that achieves a multiplicative β-approximation to the PML objective.
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1.1 Preliminaries

General notation: For matrices A,B ∈ Rs×t, we use A ≤ B to denote that Aij ≤ Bij for all
i ∈ [s] and j ∈ [t]. We let [a, b] and [a, b]R denote the interval ≥ a and ≤ b of integers and reals
respectively. We use Õ(·), Ω̃(·) notation to hide all polylogarithmic factors in n and N . We let
an � bn to denote that an ∈ Ω(bnn

c) or bn ∈ O(n−can), for some small constant c > 0.

Throughout this paper, we assume we receive a sequence of n independent samples from a distribution
p ∈ ∆D, where ∆D

def
= {q ∈ [0, 1]DR |

∥∥q∥∥
1

= 1} is the set of all discrete distributions supported on
domain D. Let Dn be the set of all length n sequences of elements of D and for yn ∈ Dn let yni
denoting its ith element. Let f(yn, x)

def
= |{i ∈ [n] | yni = x}| and px be the frequency and probability

of x ∈ D respectively. For a sequence yn ∈ Dn, let M = {f(yn, x)}x∈D\{0} be the set of all its
non-zero distinct frequencies and m1,m2, . . . ,m|M| be these distinct frequencies. The profile of a

sequence yn denoted φ = Φ(yn) is a vector in Z|M|, where φj
def
= |{x ∈ D | f(yn, x) = mj}| is

the number of domain elements with frequency mj . We call n the length of profile φ and let Φn

denote the set of all profiles of length n. The probability of observing sequence yn and profile φ for
distribution p are P(p, yn) =

∏
x∈D pf(yn,x)

x and P(p, φ) =
∑
{yn∈Dn | Φ(yn)=φ} P(p, yn).

Profile maximum likelihood: A distribution pφ ∈ ∆D is a profile maximum likelihood (PML)
distribution for profile φ ∈ Φn if pφ ∈ argmaxp∈∆DP(p, φ). Further, a distribution pβφ is a β-
approximate PML distribution if P(pβφ, φ) ≥ β · P(pφ, φ). For a distribution p and a length n, let X
be a random variable that takes value φ ∈ Φn with probability P (p, φ). We call H(X) (entropy of X)
the profile entropy with respect to (p, n) and denote it by H(Φn,p).

Probability discretization: Let R def
= {ri}i∈[1,`] be a finite discretization of the probability space,

where ri ∈ [0, 1]R and ` def
= |R|. We call q ∈ [0, 1]DR a pseudo-distribution if ‖q‖1 ≤ 1 and a

discrete pseudo-distribution with respect to R if all its entries are in R as well. We use ∆Dpseudo and
∆DR to denote the set of all pseudo-distributions and discrete pseudo-distributions with respect to R
respectively. In our work, we use the following most commonly used [CSS19a, ACSS21, ACSS20]
probability discretization set. For any α > 0,

Rn,α
def
= {1} ∪

{
1

2n2
(1 + n−α)i | for all i ∈ Z≥0 such that

1

2n2
(1 + n−α)i ≤ 1

}
. (1)

For all probability terms defined involving distributions p, we extend those definitions to pseudo
distributions q by replacing px with qx everywhere.

See Appendix A for the definition of an estimator and optimal sample complexity.

2 Results

Here we provide our main results. In our first result (Theorem 2.2), we show that a weaker notion of
approximate PML suffices to obtain the desired universal estimator. Later we show that these weaker
approximate PML distributions can be efficiently computed (Theorem 2.3).
Definition 2.1. Given a profile φ, we call a distribution p′ ∈ ∆D β-approximate PML distribution
with respect to R if P (p′, φ) ≥ β ·maxq∈∆DR

P
(

q
‖q‖1 , φ

)
.

The above definition generalizes β-approximate PML distributions which is simply the special case
when R = [0, 1]R. Using our new definition, we show that for a specific choice of the discretization
set Rn,1/3, a distribution p′ that is an approximate PML with respect to Rn,1/3 suffices to obtain a
universal estimator; this result is formally stated below.
Theorem 2.2 (Competitiveness of an approximate PML w.r.t R). For symmetric property f , suppose
there exists an estimator f̂ that takes input a profile φ ∈ Φn drawn from p ∈ ∆D and satisfies,

P
(
|f(p)− f̂(φ)| ≥ ε

)
≤ δ ,
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then for R = Rn,1/3 (See Equation (1)), a discrete pseudo distribution q′ ∈ ∆DR such that q′/‖q′‖1 is
an exp(−O(|R| log n))-approximate PML distribution with respect to the R satisfies,

P
(∣∣∣∣f ( q′

‖q′‖1

)
− f(p)

∣∣∣∣ ≥ 2ε

)
≤ δ1−c exp(O(n1/3+c)), for any constant c > 0 . (2)

The proof of the above theorem is implicit in the analysis of [HS21], however we provide a short
simpler proof using their continuity lemma (Lemma 2 in [HS21]). Note that the bound on the failure
probability we get is the same asymptotically as that of exact PML from [HS21], which is known to
be tight [Han21]. Furthermore, to achieve such an improved failure probability bound all we need
is an approximate PML distribution with respect to R, for some R which is of small size. Taking
advantage of this fact and building upon [CSS19a, ACSS21], we provide a new rounding algorithm
that outputs the desired approximate PML distribution with respect to R.
Theorem 2.3 (Computation of an approximate PML w.r.t R). We provide an algorithm that given
a probability discretization set R = Rn,α for α > 0 (See Equation (1)) and a profile φ with k

distinct frequencies, runs in time Õ
(
|R|+ n

min(k,|R|)
(
min(|R|, n/k)kω + min(|R|, k)k2

))
, where

ω < 2.373 is the current matrix multiplication constant [Wil12, Gal14, AW21] and returns a pseudo
distribution q′ ∈ ∆DR such that,

P
(

q′

‖q′‖1
, φ

)
≥ exp (−O(min(k, |R|) log n)) · max

q∈∆DR

P
(

q
‖q‖1

, φ

)
.

When R = Rn,1, our algorithm computes an exp(−O(k log n)) approximate PML distribution,
therefore our result is at least as good as the previous best known approximate PML algorithm due
to [ACSS20]. In comparison to [ACSS20], our rounding algorithm is simpler and we suspect, more
practical. We provide a more detailed comparison to it later in this section.

Applications: Our main results have several applications which we discuss here. First note that,
combining Theorem 2.2 and 2.3 immediately yields the following corollary.
Corollary 2.4 (Efficient unified estimator). Given a profile φ ∈ Φn with k distinct frequencies, we
can compute an approximate PML distribution q′ that satisfies Equation (2) in Theorem 2.2 in time
Õ
(

n
min(k,n1/3)

(
min(n1/3, n/k)kω + min(n1/3, k)k2

))
.

For many symmetric properties the failure probability is exponentially small as stated below.
Lemma 2.5 (Lemma 2 in [ADOS17], Theorem 3 in [HS21]). For distance to uniformity, entropy,
support size and coverage, and sorted `1 distance there exists an estimator that is sample optimal
and the failure probability is at most exp(−ε2n1−α) for any constant α > 0.

The above result combined with Corollary 2.4, immediately yields the following theorem.
Theorem 2.6 (Efficient sample optimal unified estimator). There exists an efficient approximate
PML-based estimator that for ε� n−1/3 and symmetric properties such as, distance to uniformity,
entropy, support size and coverage, and sorted `1 distance achieves optimal sample complexity and
has failure probability upper bounded by exp(−n1/3).

As our work computes an exp(−O(k log n)) approximate PML, we recover efficient version of
Lemma 2.3 and Theorem 2.4 from [ACSS20]. The first result uses exp(−O(k log n)) approximate
PML algorithm to efficiently implement an estimator that has better statistical guarantees based on
profile entropy [HO20] (See Section 1.1). The second result provides an efficient implementation of
the PseudoPML estimators [CSS19b, HO19]. Please refer to the respective papers for further details.

Tightness of our result: Recall that [HS21] showed that the failure probability of an (approximate)
PML based estimator is upper bounded by δ1−c exp(−n1/3+c), for any constant c > 0. This result
further implied a sample optimal universal estimator in the regime ε� n−1/3 for various symmetric
properties (Theorem 2.6). In our work, we efficiently recover these results and a natural question to
ask here is if these results can be improved.

As remarked earlier, [Han21] showed that the condition for optimality of PML (ε � n−1/3) is in
some sense tight. More formally, they showed that PML is not sample optimal in estimating every
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1-Lipschitz property in the regime ε� n−1/3. In fact, the results in [Han21] hold more broadly for
any universal plug-in based estimator that outputs a distribution p̂ satisfying,

max
p∈∆D

E‖p− p̂‖sorted
1 ≤ A(n)

√
k/n ,

where A(n) ≤ nγ for every γ > 0 and ‖p − q‖sorted
1

def
= minpermutations σ ‖p − qσ‖1 denotes the

sorted `1 distance between p and q. In other words, if an estimator is based on a reasonably good
estimate of the true distribution p (in terms of sorted-`1 distance), then it cannot be sample optimal
for every 1-Lipschitz property. Furthermore, many well-known universal estimators including PML
and LLM [HJW18] indeed provide a reasonably good estimate of the true distribution and therefore
cannot be sample optimal in the regime ε� n−1/3. Please refer to [Han21] for further details.

Comparison to approximate PML algorithms: All prior provable approximate PML algo-
rithms [CSS19a, ACSS21, ACSS20] have two key steps: (Step 1) solve a convex approximation to
the PML and (Step 2) round the (fractional) solution to a valid approximate PML distribution.

A convex approximation to PML was first provided in [CSS19a] and a better analysis for it is shown in
[ACSS21]. In particular, [CSS19a] and [ACSS21] showed that an integral optimal solution to step 1
approximates the PML up to accuracy exp(−n2/3 log n) and exp(−min(k, |R|) log n) respectively,
where k and |R| are the number of distinct frequencies and distinct probability values respectively.
In addition to the loss from convex approximation, the previous algorithms also incurred a loss in
the rounding step (Step 2). The loss in the rounding step for the previous works is bounded by
exp(−n2/3 log n) [CSS19a], exp(−

√
n log n) [ACSS21] and exp(−k log n) [ACSS20].

In our work, we show that there exists a choice of R (=Rn,1/3) that is of small size (|R| ≤ n1/3)
and suffices to get the desired universal estimator. As |R| ≤ n1/3, our approach only incur a loss of
exp(−min(k, |R|) log n) ∈ exp(−n1/3 log n) in the convex approximation step (Step 1). Further-
more for the rounding step (Step 2), we provide a new simpler and a practical rounding algorithm
with a better approximation loss of exp(−O(min(k, |R|) log n)) ∈ exp(−O(n−1/3 log n)).

Regarding the run times, both [ACSS20] and ours have run times of the form Tsolve+Tsparsify+Tround,
where the terms correspond to the time required to solve the convex program, sparsify and round
a solution. In our algorithm, we pay the same cost as [ACSS20] for the first two steps but our run
time guarantees are superior to theirs in the rounding step. In particular, the run time of [ACSS20] is
shown as a large polynomial and perhaps not practical as their approach requires enumerating all the
approximate min cuts. In contrast, our algorithm has a run time that is subquadratic.

Other related work PML was introduced by [OSS+04]. Many heuristic approaches have been pro-
posed to compute approximate PML, such as the EM algorithm in [OSS+04], an algebraic approaches
in [ADM+10], Bethe approximation in [Von12] and [Von14], and a dynamic programming approach
in [PJW17]. For the broad applicability of PML in property testing and to estimate other symmetric
properties please refer to [HO19]. Please refer to [HO20] for details related to profile entropy. Other
approaches for designing universal estimators are: [VV11b] based on [ET76], [HJW18] based on
local moment matching, and variants of PML by [CSS19b, HO19] that weakly depend on the target
property that we wish to estimate. Optimal sample complexities for estimating many symmetric prop-
erties were also obtained by constructing property specific estimators, e.g. support [VV11b, WY15],
support coverage [OSW16, ZVV+16], entropy [VV11b, WY16, JVHW15], distance to unifor-
mity [VV11a, JHW16], sorted `1 distance [VV11a, HJW18], Renyi entropy [AOST14, AOST17],
KL divergence [BZLV16, HJW16] and others.

Limitations of our work One of the limitations of all the provable approximate PML algo-
rithms [CSS19a, ACSS21, ACSS20] (including ours) is that they require the solution of a convex
program that approximates the PML objective and all these previous works use the CVX solver which
is not practical for large sample instances; note that our results hold for small error regimes which
lead to such large sample instances. Therefore, designing a practical algorithm to solve the convex
program is an important future research direction. As discussed above, local moment matching
(LLM) based approach is another universal approach for property estimation. It is unclear which of
the two (PML or LLM) can lead to practical algorithms.

5



3 Convex relaxation to PML

Here we restate the convex program from [CSS19a] that approximates the PML objective. The
current best analysis of this convex program is in [ACSS21]. We first describe the notation and later
state several results from [CSS19a, ACSS21] that capture the guarantees of the convex program.

Notation: For any matrices X ∈ Ra×c and Y ∈ Rb×c, we let concat(X,Y) denote the matrix
W ∈ R(a+b)×c that satisfies, Wi,j = Xi,j for all i ∈ [a] and j ∈ [c] and Wa+i,j = Yij for all i ∈ [b]

and j ∈ [c]. Recall we let R def
= {ri}i∈[`] be a finite discretization of the probability space, where

ri ∈ [0, 1]R and ` def
= |R|. Let r ∈ [0, 1]`R be a vector whose i’th element is equal to ri.

Lemma 3.1 (Lemma 4.4 in [CSS19a]). Let R = Rn,α for some α > 0. For any profile φ ∈ Φn and
distribution p ∈ ∆D, there exists a pseudo distribution q ∈ ∆DR that satisfies P(p, φ) ≥ P(q, φ) ≥
exp (−αn− 6)P(p, φ) and therefore,

max
p∈∆D

P(p, φ) ≥ max
q∈∆DR

P(q, φ) ≥ exp (−αn− 6) max
p∈∆D

P(p, φ) .

For any probability discretization set R, profile φ and pseudo distribution q ∈ ∆DR , define:

ZφR
def
=
{

X ∈ R`×[0,k]
≥0

∣∣∣ X1 ∈ Z`, [X>1]j = φj for all j ∈ [1, k] and r>X1 ≤ 1
}
, (3)

Zφ,frac
R

def
=
{

X ∈ R`×[0,k]
≥0

∣∣∣ [X>1]j = φj for all j ∈ [1, k] and r>X1 ≤ 1
}
. (4)

The j’th column corresponds to frequency mj and we use m0
def
= 0 to capture the unseen elements.

Without loss of generality, we assume m0 < m1 < · · · < mk. Let Cij
def
= mj log ri for all i ∈ [`]

and j ∈ [0, k]. The objective of the optimization problem is follows: for any X ∈ R`×[0,k]
≥0 define,

g(X)
def
= exp

( ∑
i∈[`],j∈[0,k]

[CijXij − Xij log Xij ] +
∑
i∈[`]

[X1]i log[X1]i

)
. (5)

For any q ∈ ∆DR , the function g(X) approximates the P(q, φ) term and is stated below.
Lemma 3.2 (Theorem 6.7 and Lemma 6.9 in [ACSS21]). Let R be a probability discretization
set. For any profile φ ∈ Φn with k distinct frequencies the following statements hold for α =
min(k, |R|) log n: exp (−O(α)) · Cφ · maxX∈ZφR

g(X) ≤ maxq∈∆DR
P(q, φ) ≤ exp (O (α)) · Cφ ·

maxX∈ZφR
g(X) and maxq∈∆DR

P(q, φ) ≤ exp (O (min(k, |R|) log n))·Cφ ·maxX∈Zφ,fracR
g(X) , where

Cφ
def
= n!∏

j∈[1,k](mj !)φj
is a term that only depends on the profile.2

The proof of concavity for the function g(X) and a running time analysis to solve the convex program
are provided in [CSS19a]. For any X ∈ ZφR, a pseudo-distributions associated with it is defined below.

Definition 3.3. For any X ∈ ZφR, the discrete pseudo-distribution qX associated with X and R is
defined as follows: for arbitrary [X1]i number of domain elements assign probability ri. Further
pX

def
= qX/‖qX‖1 is the distribution associated with X and R.

Note that qX is a valid pseudo-distribution because of the third condition in Equation (3) and these
pseudo distributions pX and qX satisfy the following lemma.
Lemma 3.4 (Theorem 6.7 in [ACSS21]). Let R and φ ∈ Φn be a probability discretization set
and a profile with k distinct frequencies. For any X ∈ ZφR, the discrete pseudo distribution qX
and distribution pX associated with X and R satisfy: exp (−O(k log n))Cφ · g(X) ≤ P(qX, φ) ≤
P(pX, φ) .

2The theorem statement in [ACSS21] is only written with an approximation factor of exp(O(k logn)).
However, their proof provides a stronger approximation factor which is upper bounded by the non-negative
rank of the probability matrix, which in turn is upper bounded by the minimum of distinct frequencies and
distinct probabilities. Therefore the theorem statement in [ACSS21] holds with a much stronger approximation
guarantee of exp (O (min(k, |R|) logn)).
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4 Approximate PML algorithm

Here we provide a proof sketch of Theorem 2.3 and provide a rounding algorithm that proves it. Our
rounding algorithm takes as input a matrix X ∈ Zφ,frac

R which may have fractional row sums and
round it to integral values. This new rounded matrix Xfinal corresponds to our approximate PML
distribution (See Definition 3.3). The description of our algorithm is as follows.

Algorithm 1 ApproximatePML(φ,R = Rn,α)

1: Let X be any solution that satisfies, log g(X) ≥ maxY∈Zφ,fracR
log g(Y)−O (min(k, |R|) log n).

2: X′ = sparsify(X).
3: (A,B) = swapmatrixround(X′).
4: (Xfinal,Rfinal) = create(A,B,R)
5: Let p′ be the distribution with respect to Xfinal and Rfinal (See Definition 3.3).
6: Return q = discretize(p′, φ,R)

We now provide a guarantee for each of these lines of Algorithm 1. We later use these guarantees to
prove our final theorem (Theorem 2.3). The guarantees of the approximate maximizer X computed in
the first step of the algorithm are summarized in the following lemma.
Lemma 4.1 ([CSS19a, ACSS21]). Line 1 of the algorithm can be implemented in
Õ(|R|k2 + |R|2k) time and the approximate maximizer X satisfies: Cφ · g(X) ≥
exp (−O (min(k, |R|) log n)) maxq∈∆DR

P(q, φ) .

The guarantees of the second step of our algorithm are summarized in the following lemma. Please
refer to [ACSS20] for the description of the procedure sparsify. We use this procedure so that we
can assume |R| ≤ k + 1 as we can ignore the zero rows of the matrix X.

Lemma 4.2 (Lemma 4.3 in [ACSS20]). For any X ∈ Zφ,frac
R , the algorithm sparsify(X) runs in time

Õ(|R| kω) and outputs X′ ∈ Zφ,frac
R such that: g(X′) ≥ g(X) and

∣∣{i ∈ [`] | [X′−→1 ]i > 0}
∣∣ ≤ k+ 1 .

To explain our next step, we need to define a new operation called the swap.
Definition 4.3. Given a matrix A, indices i1 < i2, j1 < j2 and a parameter ε ≥ 0, the operation
swap(A, i1, i2, j1, j2, ε) outputs a matrix A′ that satisfies,

A′ij =


Ai,j + ε for i = i1, j = j1 Ai,j − ε for i = i1, j = j2 ,

Ai,j − ε for i = i2, j = j1 Ai,j + ε for i = i2, j = j2 ,

Aij otherwise.
(6)

Definition 4.4 (Swap distance). A′ is x-swap distance from A, if A′ can be obtained from A through
a sequence of swap operations and the summation of the value ε’s in these operations is at most x,
i.e. there is a set of parameters {(i(s)1 , i

(s)
2 , j

(s)
1 , j

(s)
2 , ε(s))}s∈[t], where

∑
s∈[t] ε

(s) ≤ x, such that

A(s) = swap(A(s−1), i
(s)
1 , i

(s)
2 , j

(s)
1 , j

(s)
2 , ε(s)) for s ∈ [t], where A(0) = A and A(t) = A′.

The following lemma directly follows from Definition 4.3 and Definition 4.4.
Lemma 4.5. For any matrices A,A′ ∈ Rs×t, if A′ is x-swap distance from A for some x ≥ 0, then
A′
−→
1 = A

−→
1 and A′>

−→
1 = A>

−→
1 .

Recall that our objective g(X) contains two terms: (1) the linear term
∑
i∈[`],j∈[0,k] CijXij and (2)

the entropy term
∑
i∈[`][X

−→
1 ]i log[X−→1 ]i −

∑
i∈[`],j∈[0,k] Xij log Xij . The swap operation always

increases the first term, and in the following lemma we bound the loss due to the second term.

Lemma 4.6. If A′ ∈ R`×[0,k] is x-swap distance from A ∈ Zφ,frac
R , then, A′ ∈ Zφ,frac

R and g(A′) ≥
exp(−O(x log n))g(A).

One of the main contributions of our work is the following lemma, where we repeatedly apply swap
operation to recover a matrix A which exhibits several nice properties as stated below.
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Lemma 4.7. For any matrix A ∈ Rs×t (s ≤ t) that satisfies A>
−→
1 ∈ Zt≥0. The algorithm

swapmatrixround runs in O(s2t) time and returns matrices A′ and B such that,

• A′ is O(s)-swap distance from A, A′
−→
1 = A

−→
1 and A′>

−→
1 = A>

−→
1 .

• 0 ≤ Bij ≤ A′ij for all i ∈ [s] and j ∈ [t], B
−→
1 ∈ Zs≥0, B>

−→
1 ∈ Zt≥0 and ‖A′−B‖1 ≤ O(s).

The above lemma helps us modify our matrix X to a new matrix A that we can round using the create
procedure. The guarantees of this procedure are summarized below.

Lemma 4.8 (Lemma 6.13 in [ACSS21]). For any A ∈ Zφ,frac
R ⊆ R`×[0,k]

≥0 and B ∈ R`×[0,k]
≥0

such that B ≤ A, B
−→
1 ∈ Z`, B>

−→
1 ∈ Z[0,k] and ‖A − B‖1 ≤ t. The algorithm create(A,B,R)

runs in time O(`k) and returns a solution A′ and a probability discretization set R′ such that
|R′| ≤ |R|+ min(k + 1, t), A′ ∈ ZφR′ and g(A′) ≥ exp (−O (t log n)) g(A) .

As our final goal is to return a distribution in ∆DR , we also use the following discretization lemma.

Lemma 4.9. The function discretize takes as input a distribution p ∈ ∆D with `′ distinct proba-
bility values, a profile φ, a discretization set of the form R = Rn,α for some α > 0 and outputs

a pseudo distribution q ∈ ∆DR such that: P
(

q
‖q‖1 , φ

)
≥ exp(−O(min(k, |R|) + min(k, `′) +

α2n) log n)P (p, φ) .

In Section 5, we use the guarantees stated above for each line of Algorithm 1 to prove Theorem 2.3.
The description of the function discretize is specified in the proof of Lemma 4.9. We describe the
procedure swapmatrixround and provide a proof sketch of Lemma 4.7 in Section 4.1.

4.1 Description of swapmatrixround and comparison to [ACSS20]

Here we describe the procedure swapmatrixround and compare our rounding algorithm to [ACSS20].
Both of [ACSS20] and our approximate PML algorithm have four main lines (1-4); we differ from
[ACSS20] in the key Line 3. This line in [ACSS20] invokes a procedure called matrixround that
takes as input a matrix A ∈ R`×[0,k] and outputs a matrix B ∈ R`×[0,k] such that: B ≤ A, B−→1 ∈ Z`≥0,

B>−→1 ∈ Z[0,k]
≥0 and ‖A−B‖1 ≤ O(`+ k). Such a matrix B is crucial as the procedure create uses B

to round fractional row sums of matrix A to integral values. The error incurred in these two steps is
at most exp(O(‖A− B‖1 log n)) ∈ exp(O((`+ k) log n)). As the procedure sparsify allows us to
assume ` ≤ k+1, we get an exp(−k log n) approximate PML using [ACSS20]. However, the setting
that we are interested in is when `� k; for instance when ` ∈ O(n1/3) and k ∈ Θ(

√
n). In these

settings, we desire an exp(−O(min(`, k) log n)) ∈ exp(−O(` log n)) approximate PML. In order
to get such an improved approximation using [ACSS20], we need a matrix B satisfying the earlier
mentioned inequalities along with ‖A−B‖1 ≤ O(min(k, `)). However, such a matrix B may not exist
for arbitrary matrices A and the best guarantee any algorithm can achieve is ‖A− B‖1 ∈ O(`+ k).

To overcome this, we introduce a new procedure called swapmatrixround that takes as input, a
matrix A and transforms it to a new matrix A′ that satisfies: g(A′) ≥ exp(−O(min(k, `) log n))g(A).
Furthermore, this transformed matrix A′ exhibits a matrix B that satisfies the guarantees: B ≤ A′,
B−→1 ∈ Z`≥0, B>−→1 ∈ Zk≥0 and ‖A′ − B‖1 ≤ O(`). These matrices A′ and B are nice in that we can
invoke the procedure create, which would output a valid distribution with required guarantees. In the
following we provide a description of the algorithm that finds these matrices A′ and B.

Algorithm 2 swapmatrixround(A)

1: Let A(0) = A and D(0) = 0.
2: for r = 1 . . . ` do
3: (Y, j) = partialRound(A(r−1), r)

4: A(r) = roundiRow(Y, j, r).
5: D(r) = D(r−1) + Y− A(r).
6: end for
7: Return A′ = D(`) + A(`) and B = A(`).
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Our algorithm includes two main subroutines: partialRound and roundiRow. At each iteration
i, the procedure partialRound considers row i and modifies it by repeatedly applying the swap
operation. This modified row is nice as the procedure roundiRow can round this row to have an
integral row sum while not affecting the rows in [i − 1]. By iterating through all rows, we get the
required matrices A′ and B that satisfy the required guarantees. In the remainder, we formally state
the guarantees achieved by the procedures partialRound and roundiRow.

Lemma 4.10. The algorithm partialRound takes as inputs X ∈ R`×[0,k]
≥0 and i ∈ [`−1] that satisfies

the following, [X
−→
1 ]i′ ∈ Z≥0 for all i′ ∈ [1, i− 1] and [X>

−→
1 ]j ∈ Z≥0 for all j ∈ [0, k], and outputs

a matrix Y ∈ R`×[0,k]
≥0 and an index j′ such that:

• Y is within 3-swap distance from X.

• Yij′ ≥ o and
∑i−1
i′=1 Yi′j′ + Yij′ − o ∈ Z≥0, where o = [X

−→
1 ]i − b[X

−→
1 ]ic.

Furthermore, the running time of the algorithm is O(`k).

Note that by Lemma 4.5, if Y is within 3-swap distance from X, then Y−→1 = X−→1 and Y>−→1 =

X>−→1 .

Lemma 4.11. The algorithm roundiRow takes as inputs Y ∈ R`×[0,k]
≥0 , an column index j ∈ [0, k]

and a row index i ∈ [` − 1] such that: Y>
−→
1 ∈ Z[0,k]

≥0 , Yij ≥ o and
∑i−1
i′=1 Yi′j + Yij − o ∈ Z≥0,

where o = [Y
−→
1 ]i − b[Y

−→
1 ]ic. Outputs a matrix X ∈ R`×[0,k]

≥0 such that,

• X ≤ Y and ‖X− Y‖1 ≤ 1.

• [X
−→
1 ]i′ = [Y

−→
1 ]i′ for all i′ ∈ [i− 1], [X

−→
1 ]i ∈ Z≥0, and X>

−→
1 ∈ Z[0,k]

≥0 .

We defer the description of all the missing procedures and proofs to appendix.

5 Proof of Main Result (Theorem 2.3)

Here we put together the results from the previous sections to prove, Theorem 2.3.

Proof of Theorem 2.3. Algorithm 1 achieves the guarantees of Theorem 2.3. In the remainder of
the proof, we combine the guarantees of each step of the algorithm to prove the theorem. To-
ward this end, we first show the following two inequalities: Xfinal ∈ ZφRfinal

and g(Xfinal) ≥
exp(−O(min(k, |R|) log n))g(X). By Lemma 4.1, the Line 1 of Algorithm 1 returns a solution
X ∈ Zφ,frac

R that satisfies,

Cφ · g(X) ≥ exp (−O (min(k, |R|) log n)) max
q∈∆DR

P(q, φ) . (7)

By Lemma 4.2, the Line 2 of Algorithm 1 takes input X and outputs X′ such that

X′ ∈ Zφ,frac
R and g(X′) ≥ g(X), (8)

and
∣∣{i ∈ [`] | [X′−→1 ]i > 0}

∣∣ ≤ k + 1. As the matrix X′ has at most k + 1 non-zero rows, without
loss of generality we can assume |R| ≤ k + 1 (by discarding zero rows).

As matrix X′ ∈ Zφ,frac
R , we have that X′ has integral column sums and by invoking Lemma 4.7 with

parameters s = |R| and t = k + 1, we get matrices A and B that satisfy guarantees of Lemma 4.7.
As [A−→1 ]i = [X′−→1 ]i for all i ∈ [`], [A>−→1 ]j = [X′>−→1 ]j for all j ∈ [0, k] and X′ ∈ Zφ,frac

R , we
immediately get that A ∈ Zφ,frac

R . Further note that A is within O(|R|) = O(min(|R|, k))-swap
distance from X′ and by Lemma 4.6 we get that g(A) ≥ exp(−O(min(|R|, k) log n))g(X′). To
summarize, we showed the following inequalities,

A ∈ Zφ,frac
R and g(A) ≥ exp(−O(min(|R|, k) log n))g(X′) . (9)
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Note that, Lemma 4.7 also outputs a matrix B that satisfies: B ≤ A, B−→1 ∈ Z`, B>−→1 ∈ Z[0,k] and
‖A − B‖1 ≤ O(min(|R|, k)). These matrices A and B satisfy the conditions of Lemma 4.8 with
parameter value t = O(min(|R|, k)). Therefore, the procedure create takes in input matrices A,B
and returns a solution (Xfinal,Rfinal) such that |Rfinal| ≤ |R|+ min(R, k) ≤ 2|R| and,

Xfinal ∈ ZφRfinal
and g(Xfinal) ≥ exp(−O(min(|R|, k) log n))g(A) . (10)

As Xfinal ∈ ZφRfinal
, by definition Definition 3.3 and Lemma 3.2, the distribution p′ satisfies,

P (p′, φ) ≥ exp(−O(min(k, |Rfinal|) log n))Cφg(Xfinal) ≥ exp(−O(min(k, |R|)) log n))Cφg(A)

≥ exp(−O(min(k, |R|) log n))Cφg(X′) ≥ exp(−O(min(k, |R|) log n))Cφg(X)

≥ exp(−O(min(k, |R|) log n)) max
q∈∆DR

P(q, φ) .

In the second inequality we used Equation (10) and |Rfinal| ≤ 2|R|. In the third, fourth and fifth
inequalities, we used Equation (9), Equation (8) and Equation (7) respectively.

Recall we need a distribution that approximately maximizes maxq∈∆DR
P( q
‖q‖1 , φ) instead of just

maxq∈∆DR
P(q, φ). In the remainder of the proof we provide a procedure to output such a distribution.

For any constant c > 0, let c · R def
= {c · ri | ri ∈ R}. For any q ∈ ∆DR , as ‖q‖1 satisfies:

rmin ≤ ‖q‖1 ≤ 1, we get that,

max
q∈∆DR

P(
q
‖q‖1

, φ) = max
c∈[1,1/rmin]R

max
q∈∆Dc·R

P(q, φ) . (11)

The above expression holds as the maximizer q∗ of the left hand side satisfies: q∗ ∈ ∆D(1/‖q∗‖1)·R.

Define C def
= {(1 + β)i}i∈[a] for some β ∈ o(1), where a ∈ O( 1

β log(1/rmin)) is such that
rmin(1 + β)a = 1. For any constant c ∈ [1, 1/rmin]R, note that there exists a constant c′ ∈ C
such that c(1 − β) ≤ c′ ≤ c. Furthermore, for any distribution q ∈ ∆DR with ‖q‖1 = 1/c, note
that the distribution q′ = c′q ∈ ∆Dc′·R and satisfies: P( q

‖q‖1 , φ) = P(c · q, φ) = P( cc′ q
′, φ) =(

c
c′

)n P(q′, φ) . Therefore we get that, P(q′, φ) =
(
c′

c

)n
P( q
‖q‖1 , φ) ≥ (1 − β)nP( q

‖q‖1 , φ) ≥
exp(−2βn)P( q

‖q‖1 , φ) . Combining this analysis with Equation (11) we get that,

max
c∈C

max
q∈∆Dc·R

P(q, φ) ≥ exp(−2βn) max
q∈∆DR

P(
q
‖q‖1

, φ). (12)

For each c > 0 as |R| = |c · R|, our algorithm (Algorithm 1) returns a distribution pc that satisfies,
P (pc, φ) ≥ exp(−O(min(k, |R|) log n)) max

q∈∆Dc·R

P(q, φ) .

Let p∗ be the distribution that achieves the maximum objective value to our convex program among
the distributions {pc}c∈C . Then note that p∗ satisfies: P (p∗, φ) ≥ exp(−O(min(k, |R|) log n) −
2βn) maxq∈∆DR

P( q
‖q‖1 , φ) . Substituting β = min(k,|R|)

n in the previous expression, we get,

P (p∗, φ) ≥ exp(−O(min(k, |R|) log n)) max
q∈∆DR

P(
q
‖q‖1

, φ) .

As each of our distributions pc (including p∗) have the number of distinct probability values upper
bounded by 2|R|, by applying Lemma 4.9, we get a pseudo distribution q ∈ ∆DR with the desired
guarantees. The final run time of our algorithm is O(|C|T1) ∈ O( n

min(k,|R|) · T1), where T1 is the
time to implement Algorithm 1. Further note that by Lemma 3.1, without loss of generality we
can assume |R| ≤ n/k. As all the lines of Algorithm 1 are polynomial in n, our final running time
follows from the run times of each line and we conclude the proof.
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(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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A Additional definitions

Optimal sample complexity The sample complexity of an estimator f̂ : Dn → R when estimating
a property f : ∆D → R for distributions in a collection P ⊆ ∆D, is the number of samples f̂ needs
to determine f with accuracy ε and low failure probability δ for all distributions in P . Specifically,

C f̂ (f, P, δ, ε)
def
= min{n | P

(
|f(p)− f̂(xn)| ≥ ε

)
≤ δ for all p ∈ P}.

The sample complexity of estimating f is the lowest sample complexity of any estimator,

C∗(f, P, δ, ε) = min
f̂
C f̂ (f, P, δ, ε).

In the paper, the dependency on δ is typically de-emphasized and δ is assumed to be 1/3.

B Proof of Theorem 2.2

Here we provide the proof of Theorem 2.2. The proof of this statement is implicit in the analysis
presented in [HS21]. Here we provide a simpler and short proof that uses the continuity lemma
presented in [HS21]. For convenience, we restate this key lemma in our notation.
Lemma B.1 (Lemma 2 in [HS21]). Let A ≥ 2,c0 ∈ (0, 1), r, s be arbitrary constants with 0 < s <
r ≤ 1/2 and let R = Rn,r. Then there exists a constant c = c(A, c0, r, s) > 0 such that for any
distribution p ∈ ∆D, there exists a pseudo distribution q ∈ ∆DR such that: for all S ⊆ Φn, it holds
that,

P (p, S) ≥ P
(

q
‖q‖1

, S

)1/(1−con−s)

exp(−cn1−2r+s)

P
(

q
‖q‖1

, S

)
≥ P (p, S)

1/(1−con−s) exp(−cn1−2r+s)

Proof of Theorem 2.2. Let p be the hidden distribution. Given a profile φ, let qφ ∈ ∆DR be any
pseudo distribution that satisfies,

P
( qφ
‖qφ‖1

, φ

)
≥ exp(−O(|R| log n)) max

q∈∆DR

P
(

q
‖q‖1

, φ

)
≥ exp(−O(n−1/3 log2 n)) max

q∈∆DR

P
(

q
‖q‖1

, φ

)
.

As L def
= |∆DR | ≤ exp(O(n1/3 log2 n)), we use q1, . . .qL to denote the pseudo distributions in ∆DR .

Let G def
= {φ ∈ Φn | |f(p)− f̂(φ)| ≤ ε}, that is, the set of all profiles where the estimator succeeds.

Also let Si = {φ ∈ G | qφ = qi}. Using these definitions in the remainder of the proof, we upper
bound the failure probability of our estimator.

P
(∣∣∣∣f(

qφ
‖qφ‖1

)− f(p)

∣∣∣∣ > ε

)
≤ P (p,Φn\G) +

∑
{i∈[1,|L|] | |f(

qi
‖qi‖1

)−f(p)|>ε}

P (p, Si) ,

≤ δ +
∑

{i∈[1,|L|] | |f(
qi
‖qi‖1

)−f(p)|>ε}

P (p, Si) .

In the above inequality we used that the failure probability of the estimator is at most δ, that is,
P (p,Φn\G) ≤ δ. First note that from the definitions of qi, Si and qφ, we have that,

P
(

qi
‖qi‖1

, Si

)
≥ exp(−O(n−1/3 log2 n)) max

q∈∆DR

P
(

q
‖q‖1

, Si

)
.

Further applying Lemma B.1 with r = 1/3 and s with any tiny constant, we get that,

P
(

qi
‖qi‖1

, Si

)
≥ exp(−O(n−1/3 log n))P (p, Si)

1+O(n−c
′
)
exp(−O(n1/3+c′)) ,
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for any tiny constant c′ > 0. The above expression further simplifies to,

P
(

qi
‖qi‖1

, Si

)
≥ exp(−O(n1/3+c′))P (p, Si)

1+O(n−c
′
)
.

Suppose Si is set such that, P (p, Si) ≥ δ
1

1+O(n−c′ ) exp(O(n1/3+c′ )

1+O(n−c′ )
), then note that P

(
qi
‖qi‖1

, Si

)
>

δ. As the estimator provided by the conditions of the lemma succeeds on all the profiles in Si, we
that |f(p)− f̂(φ)| ≤ ε for all φ ∈ Si. Suppose |f(p)− f(

qi
‖qi‖1

)| > 2ε, then by triangle inequality

this would imply |f(
qi
‖qi‖1

)− f̂(φ)| > ε for all φ ∈ Si. However note that, P
(

qi
‖qi‖1

, Si

)
> δ, and

this would imply that the failure probability of the estimator is greater than δ when the underlying
distribution is qi

‖qi‖1
; a contradiction. Therefore, it should be the case that |f(p)− f(

qi
‖qi‖1

)| ≤ 2ε

for all Si that satisfy P (p, Si) ≥ δ
1

1+O(n−c′ ) exp(O(n1/3+c′ )

1+O(n−c′ )
) and our failure probability is upper

bounded by,

P
(∣∣∣∣f(

qφ
‖qφ‖1

)− f(p)

∣∣∣∣ > ε

)
≤ δ + |L|δ1−O(n−c

′
) exp(O(n1/3+c′)) .

Further, substituting the value of |L| ≤ exp(O(n1/3 log2 n)), we get our desired result and we
conclude our proof.

C Other results

Lemma C.1. For any two vectors u, v ∈ R[0,k]
≥0 , the following inequality holds,

(uT
−→
1 log uT

−→
1 +vT

−→
1 log vT

−→
1 )−

∑
i∈[0,k]

(ui log ui+vi log vi) ≤ wT
−→
1 logwT

−→
1 −

∑
i∈[0,k]

wi logwi

where w = u+ v.

Proof. For any x ∈ R[0,k]
≥0 , let f(x)

def
= xT

−→
1 log xT

−→
1 −

∑
i∈[0,k] xi log xi. Note that f(x) is

concave [CSS19a] and furthermore, f(c · x) = c · f(x).

Let w′ = 1
2u+ 1

2v, applying concavity we get that,

f(w′) ≥ 1

2
f(u) +

1

2
f(v),

As f(w) = 2f(w′), combined with above inequality we have our proof.

Lemma C.2. For many matrices X,Y ∈ R`×[0,k] (where ‖X‖1, ‖Y‖1, k, ` ≤ O(n2)) such that
‖X− Y‖1 ≤ α, we have that,∣∣∣∣∣∣

∑
i∈`,j∈[0,k]

Xij log Xij −
∑

i∈`,j∈[0,k]

Yij log Yij

∣∣∣∣∣∣ ≤ O(α log n) +O(log n) .

Furthermore,∣∣∣∣∣∑
i∈`

[X
−→
1 ]i log[X

−→
1 ]i −

∑
i∈`

[Y
−→
1 ]i log[Y

−→
1 ]i

∣∣∣∣∣ ≤ O(α log n) +O(log n) .

Proof. Note that x log x is O(log n)-Lipshcitz for x ≥ 1
n2 , and for any 0 ≤ x1, x2 ≤ 1

n2 , we have
|x1 log x1 − x2 log x2| ≤ O( 1

n2 log n). As a result, for any non-negative x1, x2 that are O(n2), we
have

|x1 log x1 − x2 log x2| ≤
(

1

n2
+ |x1 − x2|

)
·O(log n)

16



Note that
∑
i∈`,j∈[0,k] Xij ≤ O(n2) and

∑
i∈`,j∈[0,k] Yij ≤ O(n2). We have∣∣∣∣∣∣

∑
i∈`,j∈[0,k]

Xij log Xij −
∑

i∈`,j∈[0,k]

Yij log Yij

∣∣∣∣∣∣ ≤
∑

i∈`,j∈[0,k]

|Xij log Xij − Yij log Yij |

≤
∑

i∈`,j∈[0,k]

(
1

n2
+ |Xij − Yij |)O(log n) ≤ (1 + ‖X− Y‖1) ·O(log n) ≤ O(α log n) +O(log n)

and similarly,∣∣∣∣∣∑
i∈`

[X−→1 ]i log[X−→1 ]i −
∑
i∈`

[Y−→1 ]i log[Y−→1 ]i

∣∣∣∣∣ ≤∑
i∈`

∣∣∣[X−→1 ]i log[X−→1 ]i − [Y−→1 ]i log[Y−→1 ]i

∣∣∣
≤
∑
i∈`

(
1

n2
+ |[X−→1 ]i − [Y−→1 ]i|)O(log n) ≤ (

1

n
+ ‖X− Y‖1)O(log n) ≤ O(α log n) +O(log n)

We conclude the proof.

D Description and guarantees of partialRound

Here we provide the description of partialRound and its guarantees are summarized in Lemma 4.10.

Algorithm 3 partialRound(X, i)

1: Z = split(X, i).
2: (W, j) = partial_round_special(Z, i+ 1).
3: Y = combine(W, i).
4: Return (Y, j).

Lemma 4.10. The algorithm partialRound takes as inputs X ∈ R`×[0,k]
≥0 and i ∈ [`−1] that satisfies

the following, [X
−→
1 ]i′ ∈ Z≥0 for all i′ ∈ [1, i− 1] and [X>

−→
1 ]j ∈ Z≥0 for all j ∈ [0, k], and outputs

a matrix Y ∈ R`×[0,k]
≥0 and an index j′ such that:

• Y is within 3-swap distance from X.

• Yij′ ≥ o and
∑i−1
i′=1 Yi′j′ + Yij′ − o ∈ Z≥0, where o = [X

−→
1 ]i − b[X

−→
1 ]ic.

Furthermore, the running time of the algorithm is O(`k).

Our algorithm invokes several subroutines and in the following we provide description for each of
these and also state their guarantees. The subroutine partial_round_special provides an algorithm
that proves the Lemma 4.10 in the special case of [X−→1 ]i ∈ [0, 1). The description of this subroutine
and its guarantees are stated below. For convenience, we first introduce some new notation and a new
operation trans.

Notation: For any matrix X ∈ R`×[0,k]
≥0 and indices i1, i2, j1, j2, we define X(i1 : i2, j1 : j2)

def
=∑i2

i=i1

∑j2
j=j1

Xij and say (i, j) ∈ [i1 : i2, j1 : j2] if i1 ≤ i ≤ i2 and j1 ≤ j ≤ j2. Therefore,
X(i1 : i2, j1 : j2) =

∑
(i,j)∈[i1:i2,j1:j2] Xij . Also note that when i1 ≥ i2 + 1 or j1 ≥ j2 + 1, we are

summing over a empty set and X(i1 : i2, j1 : j2)
def
= 0.

Lemma D.1 (Guarantees of trans). Let X ∈ R`×[0,k]
≥0 . For any indices i1 ≤ i2 + 1 ≤ i3 ≤ i4 + 1,

j1 ≤ j2 + 1 ≤ j3 ≤ j4 + 1, and 0 ≤ v ≤ min{X(i3 : i4, j1 : j2),X(i1 : i2, j3 : j4)}, there exists
Y ∈ R`×[0,k]

≥0 such that, Y is within v-swap distance from X, and

• Y(i1 : i2, j1 : j2) = X(i1 : i2, j1 : j2) + v • Y(i3 : i4, j3 : j4) = X(i3 : i4, j3 : j4) + v,

• Y(i1 : i2, j3 : j4) = X(i1 : i2, j3 : j4)− v • Y(i3 : i4, j1 : j2) = X(i3 : i4, j1 : j2)− v.
• Yij = Xij ∀(i, j) /∈ [i1 : i2, j1 : j2] ∪ [i1 : i2, j3 : j4] ∪ [i3 : i4, j1 : j2] ∪ [i3 : i4, j3 : j4].
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1

i1

i2

i3

i4

`

0 j1 j2 j3 j4 k

+v −v

−v +v

Figure 1: trans operation. It increases two blocks by v respectively, and decreases two blocks by v
respectively.

Furthermore, we define operation trans(X, v, i1, i2, i3, i4, j1, j2, j3, j4) whose output is Y that satis-
fies properties above, and the running time of process trans is O(`k).

We defer the proof for lemma D.1 to appendix D.1. The description of our subroutine
partial_round_special is as follows.

Algorithm 4 partial_round_special(X, i)

1: j = min{r : X(1 : `, 0 : r) > X(1 : i− 1, 0 : k).
2: t = X(1 : i− 1, 0 : k)− X(1 : `, 0 : j − 1).
3: Y = X.
4: Y = trans(Y,Y(i : i, 0 : j − 1), 1, i− 1, i, i, 0, j − 1, j, k).
5: if Y(1 : i− 1, j : j) ≥ t then
6: v = Y(1 : i− 1, j : j)− bY(1 : i− 1, j : j)c.
7: Y = trans(Y,min {v + 1,Y(1 : i− 1, j : j)− t} , 1, i− 1, i+ 1, `, 0, j − 1, j, j).
8: else
9: v = dY(1 : i− 1, j : j)e − Y(1 : i− 1, j : j).

10: Y = trans(Y, v, 1, i− 1, i, `, j, j, j + 1, k).
11: end if
12: Y = trans(Y,Y(i : i, j + 1 : k), i, i, i+ 1, `, j, j, j + 1, k).
13: Return (Y, j).

Lemma D.2 (Guarantee of partial_round_special). The algorithm partial_round_special takes in
inputs X ∈ R`×[0,k]

≥0 and i ∈ [1, `− 1] that satisfy the conditions of Lemma 4.10 with an additions

assumption that
∑
j′∈[0,k] Xij′ ∈ [0, 1) and outputs a matrix Y ∈ R`×[0,k]

≥0 and an index j that satisfy
the guarantees of Lemma 4.10. Furthermore, the running time of this procedure is O(`k).

We defer the proof for lemma D.2 to appendix D.2. To extend the above algorithm for the general
case, we define simple operations split and combine that we define next. Intuitively, the operation
combine combines i-th and (i+ 1)-th rows by adding them up, and split splits i-th row into two rows
so that the summation of one row is an integer and the summation of the other row is less than one.

Definition D.3 (Combine). For any W ∈ R(`+1)×[0,k]
≥0 and t ∈ [1, `], Y def

= combine(W, t) ∈
R`×[0,k]
≥0 is defined as follows,

Yi,j =


Wi,j i ≤ t− 1

Wi,j + W(i+1),j i = t

W(i+1),j i ≥ t+ 1
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Line 4 Line 7

Line 12

Line 10 Line 12

+

−
−
+

+

−

−

+

+

−

−

+
+

−
−
+

+

−
−
+

= 0 = 0

= 0 = 0

∈ Z≥0

∈ Z≥0 ∈ Z≥0

= 0

Figure 2: Algorithm 4. We use a 3× 3 partitioned matrix to denote Y ∈ R`×[0,k]
≥0 , where the upper

(middle / lower) row denotes the first (i− 1) rows (the i-th row / the last (`− i) rows) of Y, and the
left (middle / right) column denotes the 0-th to (j − 1)-th columns (the j-th column / the last (k − j)
columns) of Y. Symbol + or − means increasing or decreasing some elements in the block. Symbol
= 0 means all the elements in the block are zero. Symbol ∈ Z≥0 means the sum of the block is a
non-negative integer.

W[1:t−1],[0:k]

W[t:t],[0:k]

W[t+1:t+1],[0:k]

W[t+2:`+1],[0:k]

Y[1:t−1],[0:k]

Y[t:t],[0:k]

Y[t+1:`],[0:k]

Figure 3: combine operation. It combines the t-th row and the (t+ 1)-th row by adding them up

Definition D.4 (Split). Let X ∈ R`×[0,k]
≥0 , r(t) :=

∑
j∈[0,k] Xtj and s(t) := min{j :

∑
j′≤j Xtj′ ≥

br(t)c}. We define split(X, t) to be Z ∈ R(`+1)×[0,k]
≥0 where,

Zi,j = Xi,j , i ≤ t− 1 Zi,j = X(i−1),j , i ≥ t+ 2

Zt,j =


Xt,j , j < s(t)

br(t)c −
∑
j′≤j−1 Xt,j′ , j = s(t)

0, j > s(t)

Zt+1,j =


0, j < s(t)∑
j′≤j Xt,j′ − br(t)c, j = s(t)

Xt,j , j > s(t)

We remark that Z has the following properties: 1) combine(Z, t) = X, 2)
∑
j∈[0,k] Ztj = br(t)c, 3)∑

j∈[0,k] Z(t+1),j = r(t)− br(t)c, which is a real number in [0, 1).
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X[1:t−1],[0:k]

X[t:t],[0:k]

X[t+1:`],[0:k]

Z[1:t−1],[0:k]

Z[t:t],[0:k]

Z[t+1:t+1],[0:k]

Z[t+2:`+2],[0:k]

Figure 4: split operation. It splits the t-th row into two rows, where the sum of one row is an integer,
and the sum of the other row is less than one.

D.1 Proof for lemma D.1

Proof for Lemma D.1. We define r(X) to be
{

(i, j) ∈ [i3 : i4, j1 : j2]

∣∣∣∣Xij > 0

}
, and s(X) to be{

(i, j) ∈ [i1 : i2, j3 : j4]

∣∣∣∣Xij > 0

}
. Note that r(X) is also dependent on i3, i4, j1 and j2, but they

are fixed in this proof, and s(X) is also dependent on i1, i2, j3 and j4. We prove the lemma by
induction.

When |r(X)|+ |s(X)| ≤ 1, one of |r(X)| and |s(X)| is 0, so v = 0, and Y = X is a feasible output.

Now we assume the lemma is true when |r(X)| + |s(X)| < t, and show it is still true when
|r(X)|+ |s(X)| = t, where t ≥ 2.

If |r(X)| = 0 or |s(X)| = 0, we have v = 0, and Y = X is a feasible output.

If |r(X)| > 0 and |s(X)| > 0, we draw arbitrary elements (c, b) ∈ r(X) and (a, d) ∈ s(X).

Let u = min{Xcb,Xad, v}. Let W = swap(X, a, c, b, d, u) , and we have

• W is u-swap distance from X, (13)
• W(i1 : i2, j1 : j2) = X(i1 : i2, j1 : j2) + u • W(i3 : i4, j3 : j4) = X(i3 : i4, j3 : j4) + u,

(14)
• W(i1 : i2, j3 : j4) = X(i1 : i2, j3 : j4)− u • W(i3 : i4, j1 : j2) = X(i3 : i4, j1 : j2)− u.

(15)
• ∀(i, j) /∈ [i1 : i2, j1 : j2] ∪ [i1 : i2, j3 : j4] ∪ [i3 : i4, j1 : j2] ∪ [i3 : i4, j3 : j4],Wij = Xij .

(16)

If u = v, Y = W is a feasible output. Otherwise, either u = Xcb or u = Xad, so either Wcb or Wad

becomes zero. Note that (a, b) and (c, d) are not in [i1 : i2, j3 : j4] ∪ [i3 : i4, j1 : j2], so we have
|r(W)|+ |s(W)| ≤ |r(X)|+ |s(X)| − 1. Let Y = trans(W, v− u, i1, i2, i3, i4, j1, j2, j3, j4), and it
is a feasible output because of the following properties.

• Y is (u+ (v − u) = v)-swap distance from X,

• Y(i1 : i2, j1 : j2) = W(i1 : i2, j1 : j2) + (v − u) = X(i1 : i2, j1 : j2) + v,

• Y(i3 : i4, j3 : j4) = W(i3 : i4, j3 : j4) + (v − u) = X(i3 : i4, j3 : j4) + v,

• Y(i1 : i2, j3 : j4) = W(i1 : i2, j3 : j4)− (v − u) = X(i1 : i2, j3 : j4)− v,

• Y(i3 : i4, j1 : j2) = W(i3 : i4, j1 : j2)− (v − u) = X(i3 : i4, j1 : j2)− v,

• ∀(i, j) /∈ [i1 : i2, j1 : j2] ∪ [i1 : i2, j3 : j4] ∪ [i3 : i4, j1 : j2] ∪ [i3 : i4, j3 : j4],Yij =
Wij = Xij ,
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where the relation between Y and W follows from inductive assumption, and the relation between W
and X follows from Equation (13) to (16).

To implement trans, it is sufficient to enumerate all the elements in r(X) and s(X), so the running
time can be O(`k).

D.2 Proof for Lemma D.2

Lemma D.2 is a special case of Lemma 4.10, with an additional input constraint
∑
j′∈[0,k] Xij′ ∈

[0, 1). In the output Y, the i-th row only has one positive element Yij . In algorithm 4, Line 4 makes
Yij′ where j′ < j be zero, Line 12 makes Yij′ where j′ > j be zero, and Line 7 and Line 10 make∑i−1

i′=1 Yi′j to be an integer.

Proof for Lemma D.2. There are mainly two parts in this proof. The former part proves the properties
of output Y based on Lemma D.1, and the latter part proves the parameters are valid when calling
trans in Algorithm 4.

First part of the proof In partial_round_special(X, i), Y(i : i, 0 : j − 1) only changes at
Line 4, when it decreases by Y(i : i, 0 : j − 1), so we have Y(i : i, 0 : j − 1) = 0 at Line 13.
Y(i : i, j + 1 : k) does not change after Line 12, where it decreases by Y(i : i, j + 1 : k), so we have
Y(i : i, j + 1 : k) = 0 at Line 13. Note that Yij =

∑
j′∈[0,k] Xij′ , so the output Y satisfies

Yij =
∑

j′∈[0,k]

Xij′

Y(1 : i − 1, j : j) does not change after Line 7 or Line 10. If the algorithm goes to Line 7,
Y(1 : i− 1, j : j) decreases by v + 1 or Y(1 : i− 1, j : j)− t, which means Y(1 : i− 1, j : j) =
max {(bY(1 : i− 1, j : j)c − 1) , t} at Line 13. If the algorithm goes to Line 10, Y(1 : i− 1, j : j)
increases by v, which means Y(1 : i − 1, j : j) = dY(1 : i− 1, j : j)e at Line 13. In both cases,
Y(1 : i− 1, j : j) is a non-negative integer at Line 13, so the output Y satisfies

i−1∑
i′=1

Yi′j ∈ Z≥0

We use three trans operations on Y which initially equals to X, and we have v ≤ 1 in each operation
trans(X, v, i1, i2, i3, i4, j1, j2, j3, j4), so Y is 3-swap distance from X.

We use O(1) trans operations on Y, so the algorithm takes O(`k) time.

Second part of the proof We also need to show 0 ≤ v ≤ min{X(i3 : i4, j1 : j2),X(i1 : i2, j3 :
j4)} in each operation trans(X, v, i1, i2, i3, i4, j1, j2, j3, j4) to ensure the operations are valid.

Based on the definition of j and t, we have

X(1 : i− 1, 0 : k) = X(1 : `, 0 : j − 1) + t,

0 ≤ t < Y(1 : `, j : j).

Note that t and Y(1 : `, j : j) are both integers, so we have

t ≤ Y(1 : `, j : j)− 1.

Before Line 4, Y = X, and we have Y(1 : i− 1, 0 : k) ≥ Y(1 : `, 1 : j − 1), which implies

Y(1 : i− 1, j : k) ≥ Y(i : `, 0 : j − 1) ≥ Y(i : i, 0 : j − 1),

which implies Line 4 is valid.

Before Line 7, we have Y(1 : i−1, 0 : k) = Y(1 : `, 0 : j−1)+t. Also, we have Y(i : i, 0 : j−1) = 0
because of Line 4. So, we have

Y(i+ 1 : `, 0 : j − 1) ≥ Y(1 : i− 1, j : j)− t,
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which implies Line 7 is valid.

Before Line 10, we have Y(1 : `, j : j) ≥ t. Note that t is an integer, so when Y(1 : i− 1, j : j) < t,
we have

Y(i : `, j : j) = Y(1 : `, j : j)− Y(1 : i− 1, j : j) ≥ t− Y(1 : i− 1, j : j) ≥ v.

We also have,

Y(1 : i− 1, j + 1 : k) = Y(1 : i− 1, 0 : k)− Y(1 : i− 1, 0 : j − 1)− Y(1 : i− 1, j : j)

≥ (Y(1 : i− 1, 0 : k)− Y(1 : `, 0 : j − 1))− Y(1 : i− 1, j : j)

= t− Y(1 : i− 1, j : j) ≥ v.

These two formulas imply Line 10 is valid.

After Line 7, we have either Y(1 : i − 1, j : j) = t (when v + 1 < Y(1 : i − 1, j : j) − t) or
Y(i+ 1 : `, j : j) ≥ 1 (the other case). After Line 10, we have Y(1 : i− 1, j : j) ≤ t. Since t is an
integer, when Y(1 : i− 1, j : j) ≤ t, we have

Y(i : `, j : j) = Y(1 : `, j : j)− Y(1 : i− 1, j : j) ≥ 1.

As a result, we always have Y(i : `, j : j) ≥ 1 before Line 12. Note that Y(i : i, 0 : k) < 1 and
Y(i : i, 0 : j − 1) = 0, so we have

Y(i+ 1 : `, j : j) = Y(i : `, j : j)− Yij > Y(i : i, 0 : k)− Yij = Y(i : i, j + 1 : k),

which implies Line 12 is valid.

D.3 Proof for Lemma 4.10

Proof of Lemma 4.10. We prove the properties mentioned in Lemma 4.10 one by one. Firstly we
have

• Yij ≥W(i+1),j =
∑
j′∈[0,k] Z(i+1),j′ = o,

•
∑i−1
i′=1 Yi′j + Yij − o =

∑i+1
i′=1 Wi′j − o =

∑i
i′=1 Wi′j ∈ Z≥0,

where the relation between W and Z is from Lemma D.2, and the relation between Y and W is from
the definition of combine.

Next we show Y is (3v)-swap distance from X. By lemma D.2, there is a set of parameters
{(as, bs, cs, ds, εi)}s∈[t], where

∑
s∈[t] εs = 3v, such that As = swap(As−1, as, bs, cs, ds, εs) for

s ∈ [t], and A0 = Z, At = W.

Let a′s = as − I(as > i) and c′s = cs − I(cs > i) for i ∈ [t], where I(·) is the indicator function. Let
A′0 = X and A′s = swap(A′s−1, a

′
s, bs, c

′
s, ds, εs) for s ∈ [t]. Then we have A′t = Y, which implies

Y is (3v)-swap distance from X.

We proved all the conditions of the lemma and we conclude the proof.

E Description and guarantees of roundiRow

Here we provide a description of the subroutine roundiRow.
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Algorithm 5 roundiRow(Y, j, i)

1: Let matrix X ∈ R`×[0,k]
≥0 .

2: Assign Xi′j′ = Yi′j′ for all i′ ∈ [`], j′ ∈ [0, k] and j′ 6= j; and Xi′j = Yi′j for all i′ ∈ [1, i−1].

3: Assign Xij = Yij − o and residue = 1− o.
4: for i′ = i+ 1 . . . ` do
5: Let wi′ = min(Yi′j , residue).
6: Xi′j = Yi′j − wi′ and residue = residue− wi′ .
7: if residue = 0 then
8: exit the for loop.
9: end if

10: end for
11: Return X.

The guarantees of the above algorithm are summarized in the lemma below.

Lemma 4.11. The algorithm roundiRow takes as inputs Y ∈ R`×[0,k]
≥0 , an column index j ∈ [0, k]

and a row index i ∈ [` − 1] such that: Y>
−→
1 ∈ Z[0,k]

≥0 , Yij ≥ o and
∑i−1
i′=1 Yi′j + Yij − o ∈ Z≥0,

where o = [Y
−→
1 ]i − b[Y

−→
1 ]ic. Outputs a matrix X ∈ R`×[0,k]

≥0 such that,

• X ≤ Y and ‖X− Y‖1 ≤ 1.

• [X
−→
1 ]i′ = [Y

−→
1 ]i′ for all i′ ∈ [i− 1], [X

−→
1 ]i ∈ Z≥0, and X>

−→
1 ∈ Z[0,k]

≥0 .

Proof. We first show that X ∈ R`×[0,k] is a non-negative matrix. Note that Xi′j′ = Yi′j′ − o if
i′ = i, j′ = j or else Xi′j′ takes one of the values in the set {Yi′j′ ,Yi′j′ − min(Yi′j′ , residue)}.
As Yij ≥ o, we get that Xi′j′ ≥ 0 for all i′ ∈ [`] and j′ ∈ [0, k]. Furthermore, it is immediate that,
X ≤ Y.

Consider any i′ ∈ [1, i− 1] and it is immediate that (Line 2) [X−→1 ]i′ = [Y−→1 ]i′ ∈ Z≥0. Furthermore,
[X−→1 ]i = [Y−→1 ]i − o = b[Y−→1 ]ic ∈ Z≥0.

Consider any j′ ∈ [0, k] such that j′ 6= j and note that Xi′j′ = Yi′j′ for all i′ ∈ [`]. Therefore, we
get that [X>−→1 ]j′ = [Y>−→1 ]j′ ∈ Z≥0. Now consider the index j,∑

i′∈[`]

Xi′j + 1 =
∑

i′∈[1,i−1]

Xi′j +
∑
i′∈[i,`]

Xi′j + 1 =
∑

i′∈[1,i−1]

Yi′j +
∑
i′∈[i,`]

(Yi′j − wi′) + 1,

=
∑
i′∈[`]

Yi′j − o−
∑

i′∈[i+1,`]

wi′ + 1

The second and third equalities follow from Lines 6 and 3 of the algorithm respectively. In the
following we show that,

∑
i′∈[i+1,`] wi′ = 1− o. To show this equality all we need is to show that

residue = 0 at the end of the loop, which holds when
∑
i′∈[i+1,`] Yi′j ≥ 1− o. As

∑
i′∈[`] Yi′j ∈

Z≥0, o ∈ (0, 1)R and z def
=
∑i
i′=1 Yi′j − o ∈ Z≥0, we get that,∑

i′∈[i+1,`]

Yi′j =
∑
i′∈[`]

Yi′j −
∑
i′∈[1,i]

Yi′j =
∑
i′∈[`]

Yi′j − z − o for some integer z ∈ Z≥0,

In the following we show that
∑
i′∈[`] Yi′j − z ≥ 1. As

∑
i′∈[`] Yi′j − z ∈ Z≥0 all we need

is to show that
∑
i′∈[`] Yi′j − z > 0. Suppose

∑
i′∈[`] Yi′j − z = 0, then

∑
i′∈[i+1,`] Yi′j =∑

i′∈[`] Yi′j − z − o = −o < 0, which is a contradiction as Yi′j′ ≥ 0 for all i′ ∈ [`], j ∈ [0, k].
Therefore we get that for all j′ ∈ [0, k],∑

i′∈[`]

Xi′j′ + 1 =
∑
i′∈[`]

Yi′j′ . (17)
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As X ∈ R`×[0,k]
≥0 and

∑
i′∈[`] Yi′j ∈ Z≥0 (requirements of the lemma) we get that,

∑
i′∈[`] Xi′j ∈

Z≥0. Therefore,
X>−→1 ∈ Z[0,k]

≥0 .

In the remainder of the proof we show that ‖X− Y‖1 ≤ 1. Recall, earlier we showed that: X ≤ Y,
[X>−→1 ]j′ = [Y>−→1 ]j′ for all j′ 6= j and [X>−→1 ]j + 1 = [Y>−→1 ]j . Combining these inequalities
together, we immediately get that, ‖X− Y‖1 = 1.

We proved all the conditions of the lemma and we conclude the proof.

F Guarantees of swapmatrixround

To prove Lemma 4.7, we show a stronger version of the lemma.

Lemma F.1. For any matrix A ∈ Rs×t (s ≤ t) that satisfies A>
−→
1 ∈ Zt≥0. In algorithm

swapmatrixround, for all r ∈ {0} ∪ [`],

• (D(r) + A(r)) is (3r)-swap distance from A.

• D(r)
ij ≥ 0,A(r)

ij ≥ 0 for all i ∈ [s] and j ∈ [t], [A(r)−→1 ]i ∈ Z≥0 for all i ∈ [r], (A(r))>
−→
1 ∈

Zt≥0 and ‖D(r)‖1 ≤ r.

Proof. We prove this lemma through induction.

Base case i=0 In this case A(0) = A, D(0) = 0, we have that all the conditions of the lemma are
immediately satisfied.

Inductive step r We assume that the lemma conditions hold for r − 1 and prove for the case r.
We use Y(r) to denote the value of Y in algorithm swapmatrixround when the enumerator is r.
We verify the properties claimed by the lemma one by one, and we use the properties related to
partialRound and roundiRow given by Lemma 4.10 and Lemma 4.11 respectively.

Since (Y(r), j) = partialRound(A(r−1), r), Y(r) is 3-swap distance from A(r−1), which implies
(Y(r) + D(r−1)) is 3-swap distance from (A(r−1) + D(r−1)). Note that (A(r) + D(r)) = (Y(r) +

D(r−1)), and (A(r−1) + D(r−1)) is (3(r − 1))-swap distance from A, so we have (D(r) + A(r)) is
(3r)-swap distance from A.

Since A(r) = roundiRow(Y(r), j, r), we have A(r)
ij ≥ 0 and (Y(r) − A(r))ij ≥ 0 for all i ∈ [s] and

j ∈ [t]. Furthermore, since D(r−1)
ij ≥ 0 for all i ∈ [s] and j ∈ [t], and D(r) = (Y(r)−A(r))+D(r−1),

we have D(r)
ij ≥ 0 for all i ∈ [s] and j ∈ [t].

Since (Y(r), j) = partialRound(A(r−1), r), we have [Y(r)−→1 ]i = [A(r−1)−→1 ]i ∈ Z≥0 for i ∈ [r−1].
Since A(r) = roundiRow(Y(r), j, r), we have [A(r)−→1 ]i = [Y(r)−→1 ]i ∈ Z≥0 for i ∈ [r − 1], and
[A(r)−→1 ]i ∈ Z≥0 for i = r. As a result, [A(r)−→1 ]i ∈ Z≥0 for i ∈ [r].

Since A(r) = roundiRow(Y(r), j, r), we have (A(r))>
−→
1 ∈ Zt≥0.

Since A(r) = roundiRow(Y(r), j, r), we have ‖Y(r) − A(r)‖1 ≤ 1. Then we have ‖D(r)‖1 ≤
‖Y(r) − A(r)‖1 + ‖D(r−1)‖1 ≤ r because D(r) = (Y(r) − A(r)) + D(r−1).

Corollary F.2. For any matrix A ∈ Rs×t (s ≤ t) that satisfies A>
−→
1 ∈ Zt≥0. The algorithm

swapmatrixround returns matrices A′ and B such that,

• A′ is O(s)-swap distance from A.
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• 0 ≤ Bij ≤ A′ij for all i ∈ [s] and j ∈ [t], B
−→
1 ∈ Zs≥0, B>

−→
1 ∈ Zt≥0 and ‖A′−B‖1 ≤ O(s).

A′ is O(s)-swap distance from A , and it implies A′−→1 = A−→1 and A′>−→1 = A>−→1 .

We run O(s) times partialRound, roundiRow, and matrix addition and subtraction, so the running
time is O(s2t).

We proved all the conditions of Lemma 4.7 and we conclude the proof.

G Proof for Lemma 4.9

Proof. Let {r′i}i∈[`′] be the set of distinct probability values of distribution p. Let X ∈ R`
′×[0,k]
≥0 be

the maximizer of the following optimization problem,

max
Y∈Zφp

g(Y) .

By Lemma 3.2, the maximizer X satisfies,

Cφ · g(X) ≥ exp(−O(min(k, `′)) log n)P (p, φ) ,

In the following we consider multiple distributions with different probabilities to denote the probability
values explicitly, we extend the notation of g(X) to g(X, r). Given the solution X, we now maximize
over the probability values, that is, solve,

max
r′′∈[0,1]`′

g(X, r′′) def
=

∑
i∈[`′],j∈[0,k]

(mj log r′′i Xij − Xij log Xij) +
∑
i∈[`′]

[X1]i log[X1]i ,

such that
∑
i∈[`′]

[X1]ir′′i = 1 .

The optimum solution r∗ satisfies
∑
i∈[`′][X1]ir∗i = 1 and,

r∗i =

∑
j∈[0,k] mjXij

[X−→1 ]i
∑
i′∈[`′]

∑
j∈[0,k] mjXi′j

=

∑
j∈[0,k] mjXij
n[X−→1 ]i

.

Furthermore,

Cφg(X, r∗) ≥ Cφg(X, r′) ≥ exp(−O(min(k, `′)) log n)P (p, φ) . (18)

Substituting values of r∗ in g(X, r∗) we get,

g(X, r∗) = n
∑
i∈[`′]

[X−→1 ]ir∗i log r∗i −
∑

i∈[`′],j∈[0,k]

Xij log Xij +
∑
i∈[`′]

[X1]i log[X1]i (19)

We now construct a pseudo distribution q by rounding down the probability values into set R
as follows: for each i ∈ [`], the number of elements with probability value ri is equal to∑
{i′∈[`′] | br∗

i′cR=ri}[X
−→
1 ]i′ , where bycR

def
= max{x∈R | x≤y} x. Define a new solution X′ ∈

R[`]×[0,k] as follows: X′ij
def
=

∑
{i′∈[`′] | br∗

i′cR=ri} Xi′j . Let β =
∑
i′∈[`′]br∗i′cR[X−→1 ]i′ =∑

i∈[`] ri[X′
−→
1 ]i and note that ‖q‖1 = β. Now note that the following inequality immediately

holds,

P
(

q
‖q‖1

, φ

)
= P (q, φ)β−n and P (q, φ) ≥ Cφg(X′, r). (20)

Now consider,

log g(X′, r) =
∑

i∈[`],j∈[0,k]

(mj log riX′ij − X′ij log X′ij) +
∑
i∈[`]

[X′1]i log[X′1]i,

≥
∑

i∈[`′],j∈[0,k]

mj logbr∗i′cRXij −
∑

i∈[`′],j∈[0,k]

Xij log Xij +
∑
i∈[`′]

[X1]i log[X1]i . (21)
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Consider the first term in the above expression,∑
i∈[`′],j∈[0,k]

mj logbr∗i′cRXij =
∑

i∈[`′],j∈[0,k]

mj log
br∗i cR
β

Xij + log β
∑

i∈[`′],j∈[0,k]

mjXij ,

=
∑

i∈[`′],j∈[0,k]

mj log
br∗i cR
β

Xij + n log β (22)

To simplify the above expression we define αi as, r∗i (1 + αi) =
br∗i cR
β , then we get that,

∑
i∈[`′]

r∗i (1 + αi)[X
−→
1 ]i =

∑
i∈[`′]

br∗i cR
β

[X−→1 ]i = 1.

However, we also have that,
∑
i∈[`′] r∗i [X

−→
1 ]i = 1. Combining both we get that,∑

i∈[`′] αir
∗
i [X
−→
1 ]i = 0. Substituting this equality in Equation 22, we get,

∑
i∈[`′],j∈[0,k]

mj logbr∗i′cRXij =
∑

i∈[`′],j∈[0,k]

mj log
br∗i cR
β

Xij + n log β

=
∑

i∈[`′],j∈[0,k]

mj log r∗i (1 + αi)Xij + n log β

=
∑

i∈[`′],j∈[0,k]

mj log r∗iXij +
∑

i∈[`′],j∈[0,k]

mj log(1 + αi)Xij + n log β

≥
∑

i∈[`′],j∈[0,k]

mj log r∗iXij +
∑

i∈[`′],j∈[0,k]

mj(αi − α2
i )Xij + n log β

≥
∑

i∈[`′],j∈[0,k]

mj log r∗iXij −
∑

i∈[`′],j∈[0,k]

mjα
2
iXij + n log β . (23)

In the fourth inequality we used the inequality log(1 + x) ≥ x − x2, when x ∈ (0, 1). In the last
inequality we used

∑
i∈[`′] αir

∗
i [X
−→
1 ]i = 0. Now note that each of the αi satisfy, |αi| ≤ O(α).

Substituting it in the above expression we get,∑
i∈[`′],j∈[0,k]

mj logbr∗i′cRXij ≥
∑

i∈[`′],j∈[0,k]

mj log r∗iXij − α2n+ n log β, (24)

where in the above inequality we used
∑
i∈[`′],j∈[0,k] mjXij =

∑
j∈[0,k] mjφj = n. Combining the

above inequality with Equation (21), we get,

logg(X′, r) ≥
∑

i∈[`′],j∈[0,k]

mj logbr∗i′cRXij −
∑

i∈[`′],j∈[0,k]

Xij log Xij +
∑
i∈[`′]

[X1]i log[X1]i,

≥
∑

i∈[`′],j∈[0,k]

mj log r∗iXij −
∑

i∈[`′],j∈[0,k]

Xij log Xij +
∑
i∈[`′]

[X1]i log[X1]i − α2n+ n log β,

= log g(X, r∗)− α2n+ n log β (25)

Combining everything we get the following,

logP (p, φ)− logP
(

q
‖q‖1

, φ

)
= logP (p, φ)− logP (q, φ) + n log β,

≤ O(min(k, `′) log n) + log(Cφg(X, r∗))− log(Cφg(X′, r)) + n log β,

≤ O(min(k, `′) log n) + α2n .

In the first, second and third inequalities we use Equation (18), Equation (20) and Equation (25)
respectively. We conclude the proof.
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H Proof for Lemma 4.6

We firstly show a special case of Lemma 4.6

Lemma H.1. If A′ = swap(A, i1, i2, j1, j2, ε) where A,A′ ∈ R`×[0,k] and A ∈ Zφ,frac
R , then,

A′ ∈ Zφ,frac
R and g(A′) ≥ exp(−4ε log n) g(A).

Proof. Since A′ = swap(A, i1, i2, j1, j2, ε), we have A′>−→1 = A>−→1 and A′−→1 = A−→1 . As A ∈
Zφ,frac

R , we immediately get that A′ ∈ Zφ,frac
R and we also have

g(A′)
g(A)

=
exp

(∑
i∈[`],j∈[0,k]

[
CijA′ij − A′ij log A′ij

]
+
∑
i∈[`][A

′1]i log[A′1]i

)
exp

(∑
i∈[`],j∈[0,k] [CijAij − Aij log Aij ] +

∑
i∈[`][A1]i log[A1]i

)
=

exp
(∑

i∈[`],j∈[0,k]

[
CijA′ij − A′ij log A′ij

] )
exp

(∑
i∈[`],j∈[0,k] [CijAij − Aij log Aij ]

)
≥

exp
(

(Ci1j1 − Ci1j2 − Ci2j1 + Ci2j2) ε
)

exp
(

A′i1j1 log A′i1j1 − Ai1j1 log A′i1j1 + A′i2j2 log A′i2j2 − Ai2j2 log A′i2j2
)

≥ 1

exp
(

2ε log(n+ 1)
) ≥ exp

(
− 4ε log n

)
,

where the last inequality holds because because d
dx (x log(x)) = (log(x) + 1) and

Ci1j1 − Ci1j2 − Ci2j1 + Ci2j2 = mj1ri1 −mj2ri1 −mj1ri2 + mj2ri2
= (mj2 −mj1)(ri2 − ri1) ≥ 0.

Proof for Lemma 4.6. Since A′ is x-swap distance from A, there exists a set of param-
eters denoted by {(i(s)1 , i

(s)
2 , j

(s)
1 , j

(s)
2 , ε(s))}s∈[t], where

∑
s∈[t] ε

(s) ≤ x, s.t A(s) =

swap(A(s−1), i
(s)
1 , i

(s)
2 , j

(s)
1 , j

(s)
2 , ε(s)) for s ∈ [t], where A(0) = A, A(t) = A′.

We apply Lemma H.1 on A(i) and A(i−1) for each i ∈ [t], and we have

A(0) ∈ Zφ,frac
R ⇒ A(1) ∈ Zφ,frac

R ⇒ A(2) ∈ Zφ,frac
R ⇒ · · · ⇒ A(t) ∈ Zφ,frac

R ,

g(A(t)) ≥ exp
(
−4ε(t) log n

)
g(A(t−1)) ≥ · · · ≥ exp

−4

∑
s∈[t]

ε(s)

 log n

 g(A(0)),

which implies A′ ∈ Zφ,frac
R and g(A′) ≥ exp (−O (x log n)) g(A). We conclude the proof.
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