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We organize the Supplementary Material as follows:

• We conduct ablation studies on the designs of SaVos, showing how they come naturally with
our insight to achieve amodal.

• As the necessity of LC is observed, we have another dive into the consistency loss to explain
its motivation.

• We provide theoretical analysis on the SaVos loss design, showing more insights on how
SaVos get supervision signal by exploring spatiotemporal information.

• For the cases can not be handled by spatiotemporal prior, we use empirical experiments and
analysis to verify that type prior can handle those.

• We provide details about the method for reproducing the experiments. Code is attached in
the supplementary.

• We have more visualizations from SaVos model. Videos are also attached.

A Ablation Studies on The Designs of SaVos

A.1 Ablation Study by Each Design Component

In this ablation study shown in Table 1, we verified the performance gain brought by each design
component of SaVos on both FISHBOWL and KINS-Video-Car. The last row is the default setting
for SaVos, according to the tables: removing any of the consistency loss, temporal embedding or
bi-directional prediction will make the performance drop.

Note that our SaVos is not a combination of tricks each brings a little portion of gain. Those designs
come naturally with our insight to achieve amodal completion using video. Since we use video, the
consistency loss across frames is derived, and temporal embedding is also an intuitive design choice.
Bi-directional prediction is not a must-have design. When we can run on offline setting, this is a
why-not choice. Though SaVos already works well on online setting without Bi-directional prediction
and the number beats the image-level baseline Self-Deocclusion[7]. We plot the mean value of the
alpha channel for the forward pass and backward pass separately at each timestamp in Figure 1a).
The plot meets our expectation of the alpha channel distribution: the alpha channel value for the
forward pass is low at the beginning, increasing rapidly to get out of the “cold” region from frame
0-20, then slowing increasing from 20-100, finally increasing rapidly from 100-120 since that is the
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Table 1: Ablation study on SaVos components

Consistency Loss Bi-directional prediction Temporal Embedding FISHBOWL KINS-Video-Car
Full Occluded Full Occluded

✓ ✓ ✗ 0.8785 0.6894 0.8214 0.2792
✗ ✓ ✓ 0.8606 0.6447 0.8244 0.2982
✓ ✗ ✓ 0.8749 0.6849 0.8231 0.2962
✓ ✓ ✓ 0.8863 0.7155 0.8258 0.3132

Table 2: Ablations on the architecture and losses for SaVos

Architecture Loss FISHBOWL KINS-Video-Car
Full Occluded Full Occluded

Self-Deocclusion [7] Self-Deocclusion [7] 0.8704 0.6502 0.8158 0.1790
SaVos Self-Deocclusion [7] 0.8742 0.6826 0.8021 0.2040
SaVos SaVos 0.8863 0.7155 0.8258 0.3132

“cold” region for backward pass. Combining predictions from both directions can help on the "cold
start" issue.

A.2 Disentanglement of The Contribution from Architecture and Self-supervised Loss

Compared with the ablation in Table 1 which focus more on the components of SaVos itself, this part
compares with the related work by disentangling the influence of loss and architectures. According
to Table 2, when both training with the self-supervision method in Self-Deocclusion [7], SaVos
architecture introduces around 0.03-0.04 occluded mIoU performance gain. After replacing the loss
into SaVos loss, the model achieves another 0.04 performance gain on FISHBOWL and 0.11 gain
on KINS-Video-Car. Both architecture and loss contribute to the performance gain, while the loss
contributes more for scenes like KINS-Video-Car.

A.3 Ablation Study on SaVos Model Inputs

SaVos takes image patch I , visible mask V and the optical flow patch for the visible part ∆V as
inputs. As shown in Table 3, removing either flow input or image patch harms the performance. We
analyze the results as follows:

Removing optical flow input Removing flow input hurts the performance by a large gap up to
more than 0.1 occluded IoU. In SaVos model design, we need to warp the amodal prediction to the
subsequent frame to get supervision. The warping function takes amodal flow as input. As described
in supplementary Section E, we crop out the objects and rescale them to 64x128. This operation may
lose the information of object motion. Then in the current setting, without flow, the network cannot
infer object motion from the input thus the pipeline does not work properly. If we do not apply crop
and scale, but put the full resolution mask and image as input, ideally the network can infer the flow
from the sequence but directly providing the flow would avoid some unnecessary heavy-lifting and
let the network focus on learning the completion signal.

Removing image patch input SaVos still outperforms the baseline in Self-Deocclusion[7]. Image
patch provides important information about which part of the object is occluded now. The visible mask
left the occluded part as background but image patch might contain the pixels of another object. Then
the network would know where to complete. Image patch can provide some photomatic guidance for
the flow completion, making the warping more accurate to collect more accurate supervision signals.

A.4 Learning-based Versus Rule-based Spatiotemporal Modeling

SaVos learns spatiotemporal prior for amodal segmentation. A proper baseline is manually aggregat-
ing optical flow across frames into a complete object shape. The detailed algorithm is introduced in
Algorithm 1. We also take the union of the forward and backward . As shown in the below Table 4,
SaVos outperforms this temporal baseline.
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Table 3: Ablations on the SaVos model inputs

Model FISHBOWL KINS-Video-Car
Full Occluded Full Occluded

Without flow 0.8508 0.6188 0.7922 0.1525
Without image 0.8673 0.6634 0.8025 0.2172
Full 0.8863 0.7155 0.8258 0.3132

Table 4: Learning-based SaVos versus rule-based spatiotemporal aggregation

Model FISHBOWL Occluded IoU KINS-Video-Car Occluded IoU
Temporal aggregation baseline k=5 0.3860 0.1487
Temporal aggregation baseline k=3 0.3937 0.1522
SaVos 0.7155 0.3132

The most important drawback to this naïve baseline is that if some parts of the objects are never
visible in the whole video, this baseline of only using temporal information has no chance to complete
the mask on those parts. This significantly limits the performance of this baseline in general. In
contrast, SaVos proposes properly learning the type prior, which can still complete the whole mask.

To complete the whole object, this suggested naïve baseline may need to aggregate multiple frames.
Consecutive warping across multiple frames might be inaccurate using the predicted flow. To verify
this statement, we notice that k=3 actually works better than k=5, considering k=5 contains more
information. In contrast, our SaVos model does not demand the constraint of consecutive warping,
but only warping to one nearby frame. Our completion signals across multiple frames are aggregated
by the consistency loss automatically using the backpropogation chain rule. This is the advantage of
our learning based method that makes the model more robust to flow noise.

In the rule-based baseline, there won’t be flow value for the occluded area for the occludee object.
One has to employ a rule to fill the flow value for the occluded area; otherwise it is impossible to
warp the whole to the next frame. To this end, this proposed baseline, we use the mean value of the
visible part. However this might be inaccurate. In SaVos, we simultaneously predict the amodal mask
and the flow value in the occluded area, which might be better than this baseline.

Algorithm 1 Rule-based spatiotemporal aggregating method
Input V , ∆V ▷ Visible masks and flows for an object
Initialize AV = Vn−k ▷ Aggregated visible mask as AV
Initialize ∆AV = ∆Vn−k ▷ Aggregated optical flow as ∆AV
for t = n− k + 1 to n do

AV = Warp(AV,∆AV ) ∪ Vt ▷ Warp the aggregated mask to take the union with Vt

IV = (1− Vt) ∩AV ▷ Identify the area completed by AV but invisible in t
∆AV = ∆Vt ∪ (mean(∆Vt) ∗ IV ) ▷ Update ∆AV , for the occluded part, use the mean to fill

end for

B Another Dive into The Motivation of The Consistency Loss LC

One possible further enhancement on the supervision signal is to compare M̂k
t to V k

l in all frames
with l ≥ t, considering different occluded areas might be revealed in different frames. In order to
make such comparison, in principle we can supervise the model training with the following complete
loss:

Lcomplete =

K∑
k=1

T−1∑
t=1

T∑
l=t

d
(
M̂k

t , V
k
l

)
(1)

With some distance measure d. However, in practice this loss has too high computational cost, and
the distance measure between M̂k

t and V k
l may be inaccurate when l is far from t.
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a) b)

Figure 1: a) Distribution of the alpha channel of the bi-directional prediction. b) tSNE on the
spatiotemporal embeddings for the test samples in FISHBOWL.

Instead of directly comparing M̂k
t and all V k

l , we build a chain to accumulate the training signals
along the sequence using the chain rule. To be specific, based on the definition of LM and M̂k

t+2:

dM (M̂k
t+2, V

k
t+2) = dM

(
Warp

(
M̃k

t+1,∆M̃k
t+1

)
, V k

t+2

)
(2)

and
M̂k

t+1 = Warp
(
M̃k

t ,∆M̃k
t

)
(3)

After adding the consistency loss LC , we have penalty on dC(M̃
k
t+1, M̂

k
t+1). Then the supervision

signal from V k
t+2 will be passed through M̂k

t+2 → M̃k
t+1 → M̂k

t+1 → M̃k
t . So on so forth for

l > t+ 2. This loss links the supervision signals in all future frames to guide the prediction in each
frame.

C Theoretical Analysis on The Loss Design of SaVos

Theorem 1 Given Lk
M = Lk

C = 0, with the following assumptions, we claim that the region covered
by M̂k

t includes Mk
t : 1) visible masks and object motion are from ground truth, 2) object k is rigid

and simply connected, and 3) each pixel of this object is visible in at least one frame. Further, define
an amodal trajectory Tp of point p as a sequence, {pt} containing locations of a point p across
frames, regardless of it being visible or occluded. We say Tp ∥ Tq if pt − qt is a constant for any t.
Then, we claim that M̂k

t = Mk
t with the following additional assumption: 4) Let q be an interior

point of object k with its trajectory Tq, any exterior point, p, of object k with its trajectory Tp ∥ Tq,
appears in the background in at least one frame.

This theorem makes an assumption that will not always strictly hold in practice, we emphasize that
having global optima of the proposed loss is a necessary but not sufficient condition for aligning
the correct amodal segmentation. The necessity indicates SaVos thoroughly captures the amodal
supervision signals which could be explored from spatiotemporal information.

C.1 Proof of Theorem 1

We start from notations, and formal definitions of rigid object and visibility. Next, we discuss the
behavior under the two losses and their insufficiency. Finally, we prove the theorem.
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Notations Given that V k
t represents the binary mask image for object k at frame t, we further use Vk

t

to refer to the set of pixels being one in V k
t . Similarly, Mk

t , M̂k
t , and M̃k

t , are sets of pixels being
one in Mk

t , M̂k
t , M̃k

t respectively.

Assuming a constant resolution for all It, let U be the set of all pixels in any image Ikt . Since for any
pair of objects i and j we have Vi

t+1 ∩ Vj
t+1 = ∅, we define the background region Bt as

Bt = U \
K⋃
i=1

Vi
t =

K⋂
i=1

Vi
t (4)

with Vi
t+1 as the complement of Vi

t+1. With the above additional notations, for object k with
no occlusion at frame t we have Mk

t = Vk
t . For an object k being occluded at frame t we have

Vk
t ⊂ Mk

t , which means the visible region is a subset of the amodal region, and Mk
t \Vk

t ⊆
⋃

i̸=k Vi
t ,

which means the occluded region belongs to the visible region of other objects.

Rigid object Let object k be a rigid object as in the assumption, its optical flow at any pixel is a pair
of constant, specifically:

∆V k
x,t[x, y] = ∆vkx,t

∆V k
y,t[x, y] = ∆vky,t

∆Mk
x,t[x, y] = ∆mk

x,t

∆Mk
y,t[x, y] = ∆mk

y,t

(5)

for any [x, y] in corresponding regions, where ∆vkx,t, ∆vky,t, ∆mk
x,t, ∆mk

y,t are four scalars for the
optical flow, with ∆vkx,t = ∆mk

x,t and ∆vky,t = ∆mk
y,t.

As a result, its groundtruth amodal masks at frame t and t+1 satisfy Mk
t+1[x+∆mk

x,t, y+∆mk
y,t] =

Mk
t [x, y]. Generally, for any pixel [xt, yt] ∈ Mk

t , we can warp it to its counterpart [xl, yl] in frame l

since [xl, yl] = [x+
∑l

t ∆mk
x,t, y +

∑l
t ∆mk

y,t].

Visibility The assumption on pixel visibility means that for any pixel [xt, yt] ∈ Mk
t , there

exists a frame l and a pixel [xl, yl] ∈ Vk
l such that V k

l [xl, yl] = Mk
t [xt, yt] and [xl, yl] =

[xt +
∑l

t ∆mk
x,t, yt +

∑l
t ∆mk

y,t].

Analysis on LM We start with defining Wk
t+1 as the set of pixels being one in W k

t+1 from the

equation: W k
t+1 =

(
1−

∑K
i=1 V

i
t+1

)
+ V k

t+1.

By definition, we have

Wk
t+1 = Bt+1 ∪ Vk

t+1 (6)

Thus LM can be re-written as

LM =

K∑
k=1

T∑
t=1

L(k,t)
M (7)

where

L(k,t)
M =

∑
[x,y]∈Wk

t+1

BCE(M̂k
t+1[x, y], V

k
t+1[x, y])

=−
∑

[x,y]∈Bt+1

log
(
1− M̂k

t+1[x, y]
)
−

∑
[x,y]∈Vk

t+1

log
(
M̂k

t+1[x, y]
) (8)
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For any k and t, L(k,t)
M becomes zero only when:

M̂k
t+1[x, y] =


1 if [x, y] ∈ Vk

t+1

0 if [x, y] ∈ Bt+1

arbitrary if [x, y] ∈
⋃

i ̸=k Vi
t+1

(9)

Note that for pixels in Vk
t+1 and Bt+1, the optimal value of M̂k

t+1[x, y] equals to the true value
in Mk

t+1[x, y]. However, for any pixel in
⋃

i̸=k Vk
t+1, M̂k

t+1[x, y] can take arbitrary value without
being penalized. Therefore M̂k

t+1[x, y] is not guaranteed to exactly equal to Mk
t+1[x, y], and this

demonstrate the insufficiency of loss one.

Analysis on LC The assumption of rigid object simplifies the relation between M̃k
t and M̂k

t+1.
Specifically the Warp operation becomes

M̂k
t+1[x+∆m̂k

x,t, y +∆m̂k
y,t] = M̃k

t [x, y] (10)

Again, we re-write LC as

LC =

K∑
k=1

T−1∑
t=1

L(k,t)
C (11)

where

L(k,t)
C =

∑
[x,y]∈M̃k

t+1∪M̂k
t+1

d
(
M̃k

t+1[x, y]− M̂k
t+1[x, y]

)
=

∑
[x,y]∈M̃k

t+1∪M̂k
t+1

d
(
M̂k

t+2[x−∆m̂k
x,t, y −∆m̂k

y,t]− M̂k
t+1[x, y]

) (12)

This formulation indicates that a zero L(k,t)
C = 0 means the masks in M̂k

t+1 and M̂k
t+2 have the same

shape, but potentially at different locations. When L(k,t)
C = 0 for any frame t ≤ T , we have that

all M̂k
t have the same shape. Formally it means for any [xt, yt] ∈ M̂k

t and any other frame l, there
exists a pixel [xl, yl] ∈ M̂k

l such that M̂k
l [xl, yl] = M̂k

t [x+
∑l

t ∆mk
x,t, y +

∑l
t ∆mk

y,t]. We name
this property as the Transitivity.

However, this loss doesn’t constraint on the relation of M̂k
t+1 to Vk

t+1 or Bt+1, thus it is not sufficient
to recover Mk

t+1 by M̂k
t+1.

Proof of Mk
t ⊆ M̂k

t Assume
{
M̂k

t

}T

t=1
is a set of amodal mask predictions for a rigid object k that

satisfies
∑

t L
(k,t)
M = 0 and

∑
t L

(k,t)
C = 0, we now proof Mk

t ⊆ M̂k
t for any t.

Since
∑

t L
(k,t)
M = 0, we have M̂k

t [x, y] = Mk
t [x, y],∀[x, y] ∈ Vk

t ∪ Bt. with
∑

t L
(k,t)
C = 0, we

also have the accurate optical flow scalars ∆m̂k
x,t = ∆mk

x,t and ∆m̂k
y,t = ∆mk

y,t, by estimating the
flow from pixels [xt, yt] ∈ Vk

t and [xt+1, yt+1] ∈ Vk
t+1.

With the visibility assumption, for an occluded pixel [xt, yt] ∈
(⋃

i ̸=k Vi
t

)
∩Mk

t , we know there
exists a frame l such that [xt, yt] can be warped to a visible pixel in another frame l. Combining this
and the transitivity property when

∑
t L

(k,t)
C = 0, we have M̂k

t [xt, yt] = V k
l [xl, yl] = M̂k

l [xl, yl].
Since [xl, yl] ∈ Vk

l , we know M̂k
l [xl, yl] = Mk

l [xl, yl] = 1. Thus, M̂k
t [xt, yt] = Mk

t [xt, yt] =

1∀[xt, yt] ∈ Mk
t , and that means Mk

t ⊆ M̂k
t .

Proof of Mk
t = M̂k

t We have proved that Mk
t ⊆ M̂k

t . Here we further analyze the factors of having
a non-empty M̂k

t \Mk
t .
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A pixel [xt, yt] ∈ M̂k
t \ Mk

t cannot be in Bt since LM = 0, thus it has to be in the region(⋃
i ̸=k Vi

t

)
∩Mk

t , i.e. on another object. With the transitivity property, there exists [xl, yl] ∈ M̂k
l

such that [xl, yl] = [xt +
∑l

t ∆mk
x,t, yt +

∑l
t ∆mk

y,t] in each frame l. Since [xt, yt] ∈ Mk

t , we have
[xl, yl] ̸∈ Mk

l for any frame l. As a consequence, for any frame l, we have similar conclusions as

[xl, yl] ∈ M̂k
l \Mk

l , [xl, yl] ̸∈ Bl, and [xl, yl] ∈
(⋃

i ̸=k Vi
l

)
∩Mk

l .

On the other hand, for any pixel [xt, yt], if it is in Bt, or it could warp to a pixel [xl, yl] ∈ Bt,
then we have [xt, yt] ̸∈ M̂k

t \Mk
t , and also [xl, yl] ̸∈ M̂k

l \Mk
l for all corresponding [xl, yl] =

[xt+
∑l

t ∆mk
x,t, yt+

∑l
t ∆mk

y,t]. Therefore, if every pixel [xt, yt] ∈ M̂k
t or any of its corresponding

[xl, yl] appears in the background, then M̂k
t \Mk

t = ∅ .

Because we made the assumption that no pixel out of Mk
t has relatively static motion to object k

across all frames that never appears in the background, so M̂k
t \Mk

t ̸= ∅ violates the assumption.
Therefore, we conclude with Mk

t = M̂k
t .

D Empirical Analysis on How SaVos Handles Cases Missed by
Spatiotemporal Prior

As mentioned in the above section, having global optima of the proposed loss is a necessary but
not sufficient condition for aligning the correct amodal segmentation. To make good prediction on
the cases where the assumptions in Theorem 1 are not hold, other prior and inductive bias from the
architecture and data should chime in. To be more specific, we empirically found type prior learned
through SaVos architecture handles cases missed by spatiotemporal prior. Typically, type prior models
the shape prototype and variations for a certain type of object. When the object type is recognized,
the model selects the prototype and certain variation to achieve amodal segmentation based on the
context. The cases missed by spatiotemporal prior are usually the ones break the assumptions in
Theorem 1. For example, part of an object keeps unseen in the whole video, as shown in Figure 2,
where the car marked in blue behind the closest-in-path-vehicle (relative to ego) has the bottom left
part always invisible. SaVos still complete the full amodal mask of the whole car.

Quantitatively, we split KINS-Video-Car into two parts. One presumably contains cases that break
the “pixel-wise visible in video” assumption. Specifically, we collect 2899 out of 4644 cases of which
the visible masks are touching with other objects in all tracked frames. This criterion roughly picks
out the desired cases (roughly 70% of the selected cases break the assumption). In Table 5, the mIoU
on the occluded part for this subset is not significantly lower than the numbers for the whole set and
the other subset. This validates SaVos has the capacity of handling more general amodal scenarios.

From the perspective of the architecture inductive bias, the encoder-decoder architecture in the
Amodal Maks Completor contains an information bottleneck. This makes it easy to squeeze out type
information since type is a concise representation and beneficial to amodal prediction. By receiving
amodal supervision signals on different parts from different scenes, as long as the model learns to
know they are amodal signals for the same type, those signals will be accumulated to form the type
prior. This design choice also appears in several image-level methods such as [7] and [3]. In that case,
SaVos can work as well as image-level methods on the cases break the “pixel-wise visible in video”
assumption as long as the part invisible in this video can show up on different instance for the same
type in other videos. If such a loosened assumption does not hold, then there will be no supervision
signal for that part in the whole dataset, image-level baseline models will also fail. Empirically, this
can be verified in Table 1. SaVos can beat the Self-Deocclusion[7] baseline even without Temporal
Embedding module. In test-time adaptation scenario where new types of objects appear, the methods
rely only on type prior will fail while SaVos still have the chance to provide amodal completion using
spatiotemporal prior.

To further verify this statement, We run tSNE on the spatiotemporal embeddings for the test samples
FISHBOWL in Figure 1b) and noticed the data shows a clear clustering pattern consistent with the
type information. Though objects for the same type might be split into more than one clusters, data
points from different classes usually won’t be entangled. This is an evidence that type information
are learned.
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Figure 2: The car marked in blue behind the closest-in-path-vehicle (relative to ego) has the bottom
left part always invisible. SaVos still complete the full amodal mask of the whole car. This is an
indicator that SaVos not only just learn spatiotemporal prior, but also type prior.

Table 5: Occluded-mIoU on subsets of KINS-Video-Car

Full set Subset 1 (break the assumption) Subset 2
mIoU on occluded part 0.3132 0.3104 0.3250

E Additional Details about the Method

E.1 Detailed Architecture Hyperparameters

We use CNN to encode visual input for Spatiotemporal Embedding Module, Amodal Completer and
Motion Predictor. The CNN has 6 layers. Each layer is followed by Group Normalization[5] and
leaky ReLU nonlinearity. The default hyperparmeters for CNN encoder are given in the following
Table 6.

To aggregate features on the temporal dimension, we use LSTM with 256 hidden dimensions in the
Spatiotemporal Embedding Module.

Table 6: Default hyperparameters for CNN encoders

Parameter Setting

internal resolution 64 × 128
channels in hidden layers 32, 64, 128, 256, 256, 512
strides in hidden layers 2, 2, 2, 2, (1,2), 1
kernels in hidden layers 4, 4, 4, 4, (3,4), 4
padding in hidden layers 1, 1, 1, 1, 1, 0

The decoders in Amodal Completor and Correspondence Predictor are built symmetrically by using
the reversed list of transposed convolutions and layer parameters. Additionally for the last layers we
remove the normalization and Leaky ReLU and add the sigmoid nonlinearity.

E.2 Implementation Details

We implement our model using PyTorch [4], which has BSD-style license. We use FlowNet2 [1]
to extract optical flow. For all datasets, We train the model with the Adam [2] optimizer with the
learning rate of 0.0001. We train 20 epochs on Chewing Gum and FISHBOWL dataset, 200 epochs for
KINS-Video-Car dataset and remain the model with the lowest self-supervised loss on the validation
set. The batch size are 64, 24 and 8 respectively. We train on an AWS g4dn.12xlarge EC2 instance
with four T4 GPUs. The training time is about one hour for Chewing Gum dataset and 24 hours for
both FISHBOWL and KINS-Video-Car dataset.

E.3 mIoU Metric Computing

For each frame in a video, we calculate the mean IoU of the objects in that frame, and then average
over all frames in a video dataset. We use this frame-level mean IoU metric in the paper. We can also
calculate the mean IoU for all the objects without considering frames, which can be referred to as
object-level mean IoU. We provide the results obtained by the above two metric computing methods
in Table 7, 8 and comparing with the baseline, showing that the difference of these two metrics is
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Table 7: Frame-level mean IoU

Method FISHBOWL KINS-Video-Car
Full Occluded Full Occluded

Self-Deocclusion [7] 0.8704 0.6502 0.8158 0.1790
SaVos (Ours) 0.8863 0.7155 0.8258 0.3132

Table 8: Object-level mean IoU

Method FISHBOWL KINS-Video-Car
Full Occluded Full Occluded

Self-Deocclusion 0.8678 0.6418 0.7931 0.1952
SaVos (Ours) 0.8843 0.7111 0.8063 0.3312

small and the conclusions made in this paper are hold in either metric. Our released code provides
the computing for both metrics.

F More Visualizations from SaVos

F.1 Visualization on KINS-Video-Car

The visualization on KINS-Video-Car in Figure 3 is mainly to show SaVos’s performance on cars
with different viewing angles and occlusion patterns. KINS-Video-Car is particularly challenging
considering there is ego-camera model. Also, even use off-the-shelf SOTA segmentation and tracking
model, the predicted visible mask and tracking still can’t be perfect. SaVos still be able to complete
object mask from different views of the cars.

Figure 3: Visualization of the prediction of our SaVos model on KINS-Video-Car dataset. The
transparent mask is the predicted modal mask by PointTrack[6]. The solid curve are the contours
of the amodal prediction by SaVos. From the figure we can see our model can predict the amodal
mask well in the scene with multiple cars and heavy occlusion. Our model performs well for cars in
different viewing angles and occlusion patterns. For examples: a)-d), which are cropped from the
case 1)-4), respectively.

F.2 Visualization on Chewing Gum

Chewing Gum is a classless dataset. The image-level models fail since there is no type prior to be
learned, even for the supervised method. SaVos learns to aggregate the temporal information from
the video to achieve amodal mask completion in this dataset.

References
[1] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy, and Thomas

Brox. Flownet 2.0: Evolution of optical flow estimation with deep networks. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 2462–2470, 2017.

9



Self-Deocclusion

U-Net (Supervised)

SaVos (Ours)

Ground Truth

Raw Data

Figure 4: Visualization of the prediction on Chewing Gum dataset. We show the sequence for the
images and the corresponding predictions for the occluded objects. From the visualization we can see
that the image-level models fail in this toy dataset, since there is no type prior to be learned. However,
the amodal mask can be predicted from temporal information. As showed in the figure, the SaVos
model learn to aggregate the temporal information from the video and predict the amodal mask well
in this dataset.

[2] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[3] Huan Ling, David Acuna, Karsten Kreis, Seung Wook Kim, and Sanja Fidler. Variational amodal
object completion. Advances in Neural Information Processing Systems, 33:16246–16257, 2020.

[4] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems,
32:8026–8037, 2019.

[5] Yuxin Wu and Kaiming He. Group normalization. In ECCV, 2018.

[6] Zhenbo Xu, Wei Zhang, Xiao Tan, Wei Yang, Huan Huang, Shilei Wen, Errui Ding, and Liusheng
Huang. Segment as points for efficient online multi-object tracking and segmentation. In
Proceedings of the European Conference on Computer Vision (ECCV), 2020.

[7] Xiaohang Zhan, Xingang Pan, Bo Dai, Ziwei Liu, Dahua Lin, and Chen Change Loy. Self-
supervised scene de-occlusion. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3784–3792, 2020.

10


	Ablation Studies on The Designs of SaVos
	Ablation Study by Each Design Component
	Disentanglement of The Contribution from Architecture and Self-supervised Loss
	Ablation Study on SaVos Model Inputs
	Learning-based Versus Rule-based Spatiotemporal Modeling

	Another Dive into The Motivation of The Consistency Loss LC
	Theoretical Analysis on The Loss Design of SaVos
	Proof of Theorem 1

	Empirical Analysis on How SaVos Handles Cases Missed by Spatiotemporal Prior
	Additional Details about the Method
	Detailed Architecture Hyperparameters
	Implementation Details
	mIoU Metric Computing

	More Visualizations from SaVos
	Visualization on KINS-Video-Car
	Visualization on Chewing Gum


