
6 Appendix: Omitted Technical Details

In this section, we provide proofs for all the claims made in the main body of the paper, additional
supporting propositions and lemmas, and also omitted details of the implementation of our algorithm.
The proofs are provided in the order in which the corresponding statement appears in the main body.
In Section 6.1, we prove the properties of our problem. We again emphasize that these properties are
crucial to achieving our goal of a scale-invariant algorithm for (P). Section 6.2 contains the proofs of
all our results pertaining to the convergence analysis of Algorithm 1, with proofs of the growth rate
of the scalar sequences {ai}, {aki }, and Ak grouped separately in Section 6.3, owing to their more
technical nature.

6.1 Omitted Proof from Section 2: Properties of Our Objective

Proposition 2.1. Given f : Rn
+ → R as defined in (2) and x⋆ ∈ argminx∈Rn

+
f(x), the following

statements all hold.

a) ∇f(x⋆) ≥ 0.

b) f(x⋆) = − 1
2∥Ax⋆∥22 = − 1

21
⊤x⋆.

c) for all j ∈ [n], we have x⋆j ∈
[
0, 1

∥A:j∥2
2

]
.

d) − 1
2

∑
j∈[n]

1
∥A:j∥2

2
≤ f(x⋆) ≤ − 1

2minj∈[n] ∥A:j∥2
2
.

Proof. We recall the first-order optimality condition stated in Inequality (1): for all x ≥ 0, we have
⟨∇f(x⋆),x− x⋆⟩ ≥ 0; we repeatedly invoke this inequality in the proof below.

1. Suppose there exists a coordinate j at which Proposition 2.1 (a) does not hold and instead,
we have∇jf(x

⋆) < 0. Consider x ≥ 0 such that xi = x⋆i for all i ̸= j and let xj = x⋆j + ε
for some ε > 0. Then, Inequality (1) becomes ∇jf(x

⋆) · ε ≥ 0. Under the assumption
∇jf(x

⋆) < 0, this is an invalid inequality, thus contradicting our assumption.

2. From Proposition 2.1 (a), we know that ∇f(x⋆) ≥ 0. If ∇if(x
⋆) > 0, and if x⋆i > 0, then

by picking a vector x such that xj = x⋆j for j ̸= i and xi = x⋆i − γ for any γ ∈ (0, x⋆i), we
violate Inequality (1). Therefore it must be the case that if∇if(x

⋆) > 0, then x⋆i = 0. Thus
we have

0 = ⟨x⋆,∇f(x⋆)⟩ = ⟨x⋆,A⊤Ax⋆ − 1⟩.

Therefore, f(x⋆) = 1
2 ⟨x

⋆,A⊤Ax⋆⟩ − 1⊤x⋆ = − 1
2 ⟨x

⋆,A⊤Ax⋆⟩ = − 1
21

⊤x⋆.

3. From the proof of Proposition 2.1 (b), we have ⟨x⋆,∇f(x⋆)⟩ = 0. We also have x⋆ ≥ 0
and, from Proposition 2.1 (a), that∇f(x⋆) ≥ 0. Therefore, if x⋆

i > 0 for some coordinate i
then it must be that ∇if(x

⋆) = 0. That is, 1 = ⟨A:i,Ax⋆⟩. Combining this equality with
the fact that A and x⋆ are both coordinate-wise non-negative gives

1 = ⟨A:i,Ax⋆⟩ ≥ ⟨A:i,A:ix
⋆
i ⟩,

which implies x⋆i ≤ 1
∥A:i∥2

2
for all coordinates i.

4. The lower bound follows immediately by combining Proposition 2.1 (b) and Proposi-
tion 2.1 (c). For the upper bound, we need to find a feasible point x̂ and compute the
function value at x̂, since f(x⋆) = miny≥0 f(y) ≤ f(x̂). Let x̂ = γek for some γ > 0.
Then,

f(x̂) =
1

2
γ2∥A:k∥22 − γ.

Let γ = 1
∥A:k∥2

2
. Then, f(x̂) = − 1

2∥A:k∥2
2

. We pick k = argmini∈[n] ∥A:i∥2, therefore

f(x⋆) ≤ − 1
2mini∈[n] ∥A:i∥2

2
as claimed.

15

6.2 Omitted Proofs from Section 3: Analysis of Algorithm

6.2.1 Proofs from Section 3.1: Results on Upper and Lower Estimates

We first show the results stating Uk and Lk are indeed valid upper and lower (respectively) estimates
of the Lagrangian.
Lemma 3.1. For Uk as defined in Eq. (10), Lagrangian defined in Eq. (3) and x̃k ∈ Rn

+ in Eq. (8),
we have, for all y ∈ Rm, the upper bound Uk(y) ≥ L(x̃k,y).

Proof. By evaluating the Lagrangian described by Eq. (3) at x = x̃k, and by definition of ψk from
Eq. (9), we obtain the following upper bound on the Lagrangian at (x̃k,y).

L(x̃k,y) = ⟨Ax̃k,y⟩ −
1

2
∥y∥22 − 1⊤x̃k

=
1

Ak

∑
i∈[k]

aki

[
⟨Axi,y⟩ −

1

2
∥y∥2 − 1⊤xi

]
=

1

Ak
ψk(y)

≤ 1

Ak
ψk(yk)−

1

2
∥y − yk∥22 = Uk(y),

where the final steps are by strong convexity of ψk and by Eq. (10).

We emphasize that y here can be random since this is a deterministic statement.
Lemma 3.2. For Lk defined in Eq. (17), for the Lagrangian in Eq. (3) and ỹk in Eq. (8), we have,
for a fixed u ∈ X , the lower bound EL(u, ỹk) ≥ ELk(u), where the expectation is with respect to
all the random choices of coordinates in Algorithm 1.

Proof. First, evaluating Eq. (3) at ỹk gives

L(u, ỹk) = ⟨Au, ỹk⟩ − 1⊤u− 1

2
∥ỹk∥22.

Taking the expectation on both sides, applying the definition of ỹk, convexity of 1
2∥ · ∥

2, and Jensen’s
inequality, and adding and subtracting 1

Ak
E
∑

i∈[k] ai⟨Ax,yi−1⟩+ 1
Ak
ϕ0(u) gives

EL(u, ỹk) ≥
1

Ak
E

∑
i∈[k]

ai

[
⟨Au,yi⟩ − 1⊤u− 1

2
∥yi∥22

]
=

1

Ak
E

∑
i∈[k]

ai

[
⟨Au,yi−1⟩ − 1⊤u− 1

2
∥yi∥22

]+
1

Ak
E [ϕ0(u)]−

1

Ak
E [ϕ0(u)]

+
1

Ak
E

∑
i∈[k]

ai⟨Au,yi − yi−1⟩

 .
We continue the analysis as

EL(u, ỹk) ≥
1

Ak
E [ϕk(u)]−

1

Ak
E [ϕ0(u)] +

1

Ak

∑
i∈[k]

aiE⟨Au,yi − yi−1⟩ −
1

2Ak
E
∑
i∈[k]

ai∥yi∥22

≥ 1

Ak
E [ϕk(xk)] + E

[
1

2Ak
∥u− xk∥2Λ

]
− 1

Ak
E[ϕ0(u)] +

1

Ak
E

∑
i∈[k]

ai⟨Au,yi − yi−1⟩

− 1

2Ak
E
∑
i∈[k]

ai∥yi∥22

= ELk(u),

the first step comes from Eq. (13), the second step comes from Eq. (16), and the final step comes
from Eq. (17).

16

6.2.2 Proofs from Section 3.2

We now describe three technical propositions that bound terms that show up in the proof of our result
on bounding the scaled gap estimate.

Proposition 6.1. For ψk defined in Eq. (9), with {aki } defined in Eq. (7), we have for all k ≥ 1,

ψk(yk)− ψk−1(yk−1) ≤ akk
{
⟨yk,Axk⟩ −

1

2
∥yk∥22 − 1⊤xk

}
+

k−1∑
i=1

(aki − ak−1
i)

[
⟨yk,Axi⟩ −

1

2
∥yk∥22 − 1⊤xi

]
− Ak−1

2
∥yk − yk−1∥22.

Proof. Evaluating ψk and ψk−1 as defined in Eq. (9) at yk and subtracting, we have

ψk(yk)− ψk−1(yk) = ak⟨A⊤yk − 1, nxk − (n− 1)xk−1⟩ −
ak
2
∥yk∥22. (20)

Next, applying strong convexity of ψk−1 at yk and yk−1 while using the fact that yk−1 minimizes
ψk−1 gives

ψk−1(yk)− ψk−1(yk−1) ≤ −
1

2
Ak−1∥yk − yk−1∥22. (21)

To complete the proof, it remains to add Eq. (20) and Inequality (21).

Proposition 6.2. The random function ϕk : X → R, k ≥ 2, defined in Eq. (15) satisfies the following
properties, with xk, yk, and yk evolving as per Algorithm 1.

a) It is separable in its coordinates: ϕk(x) =
∑

j∈[n] ϕk,j(xj), where, for each j ∈ [n], we

define ϕ0,j(xj) =
∥A:j∥2

2

2 (xj − [x0]j)
2, ϕ1,j(xj) = a1xj(A

⊤y0 − 1)j + ϕ0,j(xj), and for
k ≥ 2,

ϕk,j(xj) = ϕk−1,j(xj) + nak1j=jk⟨A⊤yk−1 − 1, xjkejk⟩. (22)

b) The primal variable xk is updated only on the jthk coordinate in each iteration: xk =
xk−1 + γejk for some γ, and [xk]j = [xk−1]j for j ̸= jk.

c) For a fixed x ∈ X and for k ≥ 1, we have, over all the randomness in the algorithm,

E [ϕk(x)] = E [ϕ0(x)] +
∑
i∈[k]

aiE
[
⟨A⊤yi−1 − 1,x⟩

]
. (23)

Proof. In the statement of Proposition 6.2 (a), the claim about separability of ϕ0 and ϕ1 can be
checked just from the definitions of ϕ0,j and ϕ1,j . We prove the claim of coordinate-wise separability
for k ≥ 2 by summing over j ∈ [n] both sides of Eq. (22). We can compute this sum via following
observation, which concludes the proof of Proposition 6.2 (a).∑

j∈[n]

ak1j=jk⟨A⊤yk−1 − 1, xjkejk⟩ = ak⟨A⊤yk−1 − 1, xjkejk⟩.

From Proposition 6.2 (a), we may therefore define, for j ̸= jk,

[xk]j = arg min
u∈R+

ϕk,j(u) = arg min
u∈R+

ϕk−1,j(u) = [xk−1]j .

Therefore, [xk]j = [xk−1]j for all j ̸= jk, thus proving Proposition 6.2 (b). To prove Proposi-
tion 6.2 (c), we use induction on k. The base case holds for k = 1 by the definition of ϕ1(x). Let
Proposition 6.2 (c) hold for k ≥ 1. Then, by the definition of ϕk as in Eq. (15), we have

ϕk(x) = ϕk−1(x) + nak⟨A⊤yk−1 − 1, xjkejk⟩, for all k ≥ 2.

17

Let Fk−1 be the natural filtration, containing all the randomness in the algorithm up to and including
iteration k − 1. Taking expectations with respect to all the randomness until iteration k and invoking
linearity of expectation, the inductive hypothesis, and the tower rule E[·] = E[E[· |Fk−1]], we have

E[ϕk(x)] = E[ϕk−1(x)] + nakE
[[
E⟨A⊤yk−1 − 1, xjkejk⟩|Fk−1

]]
= E [ϕ0(x)] +

∑
i∈[k−1]

aiE
[
⟨A⊤yi−1 − 1,x⟩

]
+ akE⟨A⊤yk−1 − 1,x⟩

= E [ϕ0(x)] +
∑
i∈[k]

aiE
[
⟨A⊤yi−1 − 1,x⟩

]
,

which finishes the proof of Proposition 6.2 (c).

Proposition 6.3. For all k ≥ 2, the random function ϕk : X → R, k ≥ 2, defined in Eq. (15)
satisfies the following inequality, where xk and yk evolve according to Algorithm 1.

ϕk(xk)− ϕk−1(xk−1) ≥ ak
(
n⟨A⊤yk−1 − 1, [xk]jkejk⟩

)
+

1

2
∥xk − xk−1∥2Λ.

Proof. We have, using x = xk in Eq. (15), that

ϕk(xk)− ϕk−1(xk) = nak⟨A⊤yk−1 − 1, [xk]jkejk⟩.

Applying Eq. (16) to ϕk−1 at xk gives

ϕk−1(xk)− ϕk−1(xk−1) ≥
1

2
∥xk − xk−1∥2Λ.

Adding these inequalities completes the proof of the claim.

We now use the preceding technical results to bound the change in scaled gap.
Lemma 3.3. Consider the iterates {xk} and {yk} evolving according to Algorithm 1. Let n ≥ 2
and assume that a1 = 1√

2n1.5
and a1 ≥ (n− 1)a2, while for k ≥ 3,

ak ≤ min
(nak−1

n− 1
,

√
Ak−1

2n

)
. (18)

Then, for fixed u ∈ X , any v ∈ Rm, and all k ≥ 2, the gap estimate Gk = Uk − Lk satisfies

E(AkGk(x,y)−Ak−1Gk−1(x,y))

≤ −E
(
Ak

2
∥y − yk∥22 −

Ak−1

2
∥y − yk−1∥22

)
− 1

2
E∥x− xk∥2Λ +

1

2
E∥x− xk−1∥2Λ

− akE⟨A(x− xk),yk − yk−1⟩+ ak−1E⟨A(x− xk−1),yk−1 − yk−2⟩

− 1

4
Ak−1E∥yk − yk−1∥22 +

1

4
Ak−2E∥yk−1 − yk−2∥22.

Proof. Using Gk = Uk − Lk, Uk from Eq. (10), and Lk from Eq. (17), we have

AkGk(u,v) = ψk(yk)− ϕk(xk) + ϕ0(u)

− Ak

2
∥v − yk∥22 −

1

2
∥u− xk∥2Λ −

∑
i∈[k]

ai⟨Au,yi − yi−1⟩+
∑
i∈[k]

ai
2
∥yi∥22.

Therefore, the difference in scaled gap between successive iterations is

AkGk(u,v)−Ak−1Gk−1(u,v) = [ψk(yk)− ψk−1(yk−1)]− [ϕk(xk)− ϕk−1(xk−1)]

− Ak

2
∥v − yk∥22 +

Ak−1

2
∥v − yk−1∥22

− 1

2
∥u− xk∥2Λ +

1

2
∥u− xk−1∥2Λ

− ak⟨Au,yk − yk−1⟩+
ak
2
∥yk∥22.

(24)

18

Based on the above expression, to prove the lemma, it suffices to bound the expectation of

Tk(u)
def
= [ψk(yk)− ψk−1(yk−1)]− [ϕk(xk)− ϕk−1(xk−1)]− ak⟨Au,yk − yk−1⟩+

ak
2
∥yk∥22.

(25)

First, we take expectations on both sides of the inequality in Proposition 6.3 by invoking E[·] =
E[E[· |Fk−1]] as before, where Fk−1 denotes the natural filtration. By using the fact that xk−1 is
updated only at coordinate jk (as stated in Proposition 6.2 (b)), we observe the following for the term
from the right hand side of Proposition 6.3.

E
[
⟨A⊤yk−1 − 1, [xk]jkejk⟩

]
=E

[
⟨A⊤yk−1 − 1,xk − xk−1⟩

]
+ E

[
E
[
⟨A⊤yk−1 − 1, [xk−1]jkejk⟩|Fk−1

]]
=E

[
⟨A⊤yk−1 − 1,xk − xk−1⟩

]
+

1

n
E
[
⟨A⊤yk−1 − 1,xk−1⟩

]
=E

[
⟨A⊤yk−1 − 1,xk − (1− 1/n)xk−1⟩

]
. (26)

Therefore, we have from Proposition 6.3 and scaling Eq. (26) by −nak that

−E [ϕk(xk)− ϕk−1(xk−1)] ≤ −
1

2
E
[
∥xk − xk−1∥2Λ

]
− akE

[
⟨A⊤yk−1 − 1, nxk − (n− 1)xk−1⟩

]
. (27)

We now bound the expectation of the term involving differences of ψk by taking expectations of both
sides of Proposition 6.1.

E [ψk(yk)− ψk−1(yk−1)] ≤ −
Ak−1

2
E
[
∥yk − yk−1∥22

]
− ak

2
E
[
∥yk∥22

]
+ akE

[
⟨A⊤yk − 1, nxk − (n− 1)xk−1⟩

]
.

(28)

By taking expectations on both sides of Eq. (25), we have

E[Tk(u)] = E [ψk(yk)− ψk−1(yk−1)]− E [ϕk(xk)− ϕk−1(xk−1)]

− akE
[
⟨Au,yk − yk−1⟩

]
+
ak
2
E
[
∥yk∥22

]
. (29)

Combining Eq. (27), Eq. (28), and Eq. (29) then gives

E[Tk(u)] ≤ −
Ak−1

2
E
[
∥yk − yk−1∥22

]
− 1

2
E
[
∥xk − xk−1∥2Λ

]
+ akE

[
⟨A⊤(yk − yk−1), nxk − (n− 1)xk−1 − u⟩

]
.

(30)

Recall that by the assumption in the statement of the lemma,

yk−1 = yk−1 +
ak−1

ak
(yk−1 − yk−2).

Plugging into Eq. (30) and rearranging, we have

E[Tk(u)] ≤ −
Ak−1

2
E
[
∥yk − yk−1∥22

]
− 1

2
E
[
∥xk − xk−1∥2Λ

]
+ (n− 1)akE

[
⟨A⊤(yk − yk−1),xk − xk−1⟩

]
− nak−1E

[
⟨A⊤(yk−1 − yk−2),xk − xk−1⟩

]
+ akE

[
⟨A⊤(yk − yk−1),xk − u⟩

]
− ak−1E

[
⟨A⊤(yk−1 − yk−2),xk−1 − u⟩

]
.
(31)

To complete the proof, we need to bound the terms from the first two lines on the right-hand side of
Eq. (31). First, observe that, by the coordinate update of xk and Young’s inequality, ∀β > 0,

⟨A⊤(yk − yk−1),xk − xk−1⟩ = ⟨yk − yk−1,A(xk − xk−1)⟩
= ⟨yk − yk−1,A:jk([xk]jk − [xk−1]jk)⟩

≤ β

2
∥yk − yk−1∥22 +

1

2β
∥A:jk∥22|[xk]jk − [xk−1]jk |2

=
β

2
∥yk − yk−1∥22 +

1

2β
∥xk − xk−1∥2Λ. (32)

19

By the same token, ∀γ > 0,

−⟨A⊤(yk−1 − yk−2),xk − xk−1⟩ ≤
γ

2
∥yk−1 − yk−2∥22 +

1

2γ
∥xk − xk−1∥2Λ. (33)

Recalling that, by the choice of step sizes, (n− 1)ak ≤ nak−1 and ak ≤
√

Ak−1

2n , we can verify that
for β = 2(n− 1)ak and γ = 2nak−1, the following inequalities hold:

(n− 1)akβ −Ak−1 ≤ −
Ak−1

2
,

(n− 1)ak
β

+
nak−1

γ
≤ 1.

(34)

Combining Equations (31)–(34),

E[Tk(u)] ≤ −
Ak−1

4
E[∥yk − yk−1∥22] + n2ak−1

2E[∥yk−1 − yk−2∥22]

+ akE
[
⟨A⊤(yk − yk−1),xk − u⟩

]
− ak−1E

[
⟨A⊤(yk−1 − yk−2),xk−1 − u⟩

]
.

(35)
It remains to combine Eq. (24), Eq. (25), and Eq. (35).

Lemma 3.4. Given a fixed u ∈ X , any v ∈ Rm, ȳ0 = y0, and x1 and y1 from Algorithm 1, we have

A1G1(u,v) = a1⟨A⊤(y1 − y0),x1 − u⟩+ ϕ0(u)− ϕ0(x1)−
1

2
∥u− x1∥2Λ −

A1

2
∥v − y1∥22.

Proof. Evaluating Eq. (10) and Eq. (17) at k = 1 gives

A1U1(v) = ψ1(y1)−
A1

2
∥v − y1∥22, (36)

A1L1(u) = ϕ1(x1) +
1

2
∥u− x1∥2Λ − ϕ0(u) + a1⟨Au,y1 − y0⟩ −

a1
2
∥y1∥22. (37)

By definition of ψ1 from Eq. (9), ϕ1 from Eq. (12), and the assignment a11 = a1, we have

ψ1(y1)− ϕ1(x1) = −
a1
2
∥y1∥22 + a1⟨y1,Ax1⟩ − a11⊤x1 − ϕ0(x1)− a1⟨A⊤y0 − 1,x1⟩

= −a1
2
∥y1∥22 + a1⟨A(y1 − y0),x1⟩ − ϕ0(x1),

where we have used that ȳ0 = y0, which holds by assumption. To complete the proof, it remains to
subtract Eq. (37) from Eq. (36) and combine with the last equality.

Theorem 3.5. [Main Result] Assume that n ≥ 4. Given a matrix A ∈ Rm×n
+ , ε > 0, an arbitrary

x0 ∈ X and ȳ0 = y0 = Ax0, let xk and Ak evolve according to SI-NNLS+ (Algorithm 1) for k ≥ 1.
For f defined in (2), define x⋆ ∈ argminx≥0 f(x). Then, for all K ≥ 2, we have

E
[
⟨∇f(x̃K), x̃K − x⋆⟩+ 1

2
∥A(x̃K − x⋆)∥2

]
≤ 2ϕ0(x

⋆)

AK
=
∥x0 − x⋆∥2Λ

AK
.

When K ≥ 5
2n log n, we have AK ≥

(K− 5
2n logn)2

36n2 . If ϕ0(x⋆) ≤ |f(x⋆)|, then for K ≥ 5
2n log n+

6n√
ε
, we have E[f(x̃K)− f(x⋆)] ≤ ε|f(x⋆)|. The total cost is O

(
nnz(A)

(
log n+ 1√

ε

))
.

Proof. Observe that, by the choice of step sizes, n2a2k−1 ≤
Ak−2

4 , ∀k ≥ 3. Thus, telescoping the
bound in Lemma 3.3 and combining with Lemma 3.4, we have

E[AKGK(u,v)]

≤ϕ0(u)−
AK

2
E[∥v − yK∥22]−

1

2
E[∥u− xK∥2Λ]− aKE[⟨A(u− xK),yK − yK−1⟩]

− AK−1

4
E[∥yK − yK−1∥22] + n2a1

2E[∥y1 − y0∥22]− E[ϕ0(x1)].

(38)

20

We first show how to cancel out the inner product term with the negative quadratic terms. Observe
that, ∀β > 0,

−aK⟨A(u− xK),yK − yK−1⟩ =− aK
n∑

j=1

(yK − yK−1)
⊤A:j(uj − [xK]j)

≤aK
(nβ

2
∥yK − yK−1∥22 +

1

2β
∥u− xK∥2Λ

)
,

where the last line is by Young’s inequality. In particular, choosing β = 2aK , we have 1
2aKnβ =

na2K , which is at most AK−1

4 , by the choice of step sizes in SI-NNLS+. Thus, since ϕ0(x1) =
1
2∥x1 − x0∥2Λ, Eq. (38) simplifies to

E[AKGK(u,v)]

≤ϕ0(u)−
AK

2
E[∥v − yK∥22]−

1

4
E[∥u− xK∥2Λ] + n2a1

2E[∥y1 − y0∥22]− E[ϕ0(x1)].
(39)

Since − 1
4E[∥u− xK∥2Λ] ≤ 0, we can ignore it. Let us now bound n2a12∥y1 − y0∥22 − ϕ0(x1). By

definition of x1 and ϕ1, we have x1 = x0 − a1Λ−1(A⊤y0 − 1). Further, from Eq. (9) and Eq. (6),
as we have y1 = Ax1 and y0 = Ax0, we can simplify the terms to bound as follows.

n2a21∥y1 − y0∥22 − ϕ0(x1)

=a1
2
(
n2a1

2∥AΛ−1(A⊤y0 − 1)∥22 −
1

2
∥Λ−1(A⊤y0 − 1)∥2Λ

)
≤a12

(
n2a1

2∥Λ−1/2A⊤AΛ−1/2∥2∥Λ− 1
2 (A⊤y0 − 1)∥22 −

1

2
∥Λ− 1

2 (A⊤y0 − 1)∥22
)

≤a12∥Λ− 1
2 (A⊤y0 − 1)∥22

(
n3a1

2 − 1

2

)
,

where the reasoning behind the first inequality follows from the definition of spectral norm
and that ∥AΛ−1/2∥22 = λmax(Λ

−1/2A⊤AΛ−1/2); the last inequality follows as the matrix
Λ−1/2A⊤AΛ−1/2 has all ones on the main diagonal, and thus its trace is at most n, and since
it is positive semidefinite, its spectral norm is at most its trace. As a1 = 1√

2n1.5
, we conclude that

n2a1
2∥y1 − y0∥22 − ϕ0(x1) ≤ 0. Thus, Eq. (39) simplifies to

E[AKGK(u,v)] ≤ E[ϕ0(u)]−
AK

2
E[∥v − yK∥22]. (40)

By construction, Gapu,v
L (x̃K , ỹK) ≤ GK(u,v). Further, by Inequality (5), f(x̃K) − f(x⋆) +

1
2∥A(x̃K − x⋆)∥2 ≤ Gapu,v

L (x̃K , ỹK). Hence, we can conclude from Eq. (40) that

E
[
f(x̃K)− f(x⋆) +

1

2
∥A(x̃K − x⋆)∥2

]
≤ ϕ0(x

⋆)

AK
=
∥x0 − x⋆∥2Λ

2AK
. (41)

On the other hand, for u = x⋆ and v = y⋆ = Ax⋆, Gapu,vL (x̃K , ỹK) ≥ 0, and, recalling from
Eq. (6), Eq. (8), and Eq. (9) that yK = Ax̃K , we can also conclude from Eq. (40) that

E
[1
2
∥A(x̃K − x⋆)∥22

]
≤ ϕ0(x

⋆)

AK
=
∥x0 − x⋆∥2Λ

2AK
. (42)

By Proposition 2.1 (b), f(x⋆) = − 1
21

⊤x⋆ = − 1
2∥Ax⋆∥22. Using this identity, one can verify that,

∀x,

f(x)− f(x⋆) +
1

2
∥A(x− x⋆)∥22 = ⟨ATAx− 1,x− x⋆⟩

= ⟨∇f(x),x− x⋆⟩.
Hence, summing Eq. (41) and Eq. (42), we also have

E
[
⟨∇f(x̃K), x̃K − x⋆⟩+ 1

2
∥A(x̃K − x⋆)∥2

]
≤ 2ϕ0(x

⋆)

AK
=
∥x0 − x⋆∥2Λ

AK
.

Finally, the bound on the rate of growth of Ak is provided in Appendix 6.3.

21

The reason A does not show up in the final bounds (thereby rendering our algorithm “scale-invariant”)
is because Proposition 2.1 allows bounding ∥x0 − x⋆∥2Λ by |f(x⋆)| where we crucially use the non-
negativity of A and x. This does not seem possible for general A. However, an additive (as opposed
to multiplicative) error bound can be obtained even with the more general A with only small updates
to the analysis. This bound would necessarily depend on the scale of A. The choice of the regularizer
1
2∥ · −x0∥2Λ is also crucial here.

6.3 Omitted Proofs from Section 3: Growth of Scalar Sequences

In this section, we use the properties of {ai} and {aki } to obtain our claimed rate of growth of Ak.
Note that in any iteration k ≥ 2 of Algorithm 1, there are two possible updates to ak, which we name
as follows.

Type I update: ak+1 =
nak
n− 1

(43)

Type II update: ak+1 =

√
Ak

2n
(44)

Obtaining a handle on the growth rate of Ak requires controlling the number of updates of both types
specified above. At a high level, the idea behind obtaining such a bound is that if the algorithm had
only Type II updates, we would have Ak ≥ Ω(k

2

n2); we then go on to show that we cannot have more
than 5

2n log n Type I updates since those make ak grow too fast. We formalize this intuition in the
following lemmas.

Lemma 6.4. In Algorithm 1, we have, for k ≥ 2, that ak+1 ≥ ak and Ak+1 > Ak.

Proof. Notice that for all k, we have ak > 0, which implies that Ak+1
def
= Ak + ak+1 satisfies

Ak+1 > Ak. To check the non-decreasing nature of ak, we recall that ak+1 = min
(

nak

n−1 ,
√
Ak

2n

)
.

In the case that
√
Ak

2n ≥ nak

n−1 , we have ak+1 = nak

n−1 > ak, as claimed. Consider the other case

with ak+1 =
√
Ak

2n , and suppose, for the sake of contradiction, that ak+1 < ak. Chaining this
inequality with the assumed expression for ak+1, scaling appropriately, and squaring both sides gives
Ak < 4n2a2k. Plugging this into Ak = Ak−1 + ak and solving for ak from this quadratic inequality

(and further invoking the nonnegativity of ak), yields ak >
1+
√

1+16n2Ak−1

8n2 >

√
Ak−1

2n . However,

this contradicts ak = min

(
nak−1

n−1 ,

√
Ak−1

2n

)
≤
√

Ak−1

2n .

Lemma 6.5. Consider the iterations {sk} in which Algorithm 1 performs a Type II update ask+1 =√
Ask

2n . Then we have Ask ≥ k2

c1n2 and ask ≥ k−1
2
√
c1n2 for c1 = 36.

Proof. We prove this claim by induction. First, notice that sk ≥ k + 1 for any k. Recall our
initialization a1 = A1 = 1√

2n1.5
. By combining this with the monotonicity property stated in

Lemma 6.4, we have as1 ≥ a2 = 1√
2n2.5

≥ 0. By using Lemma 6.4 again, we have, in a similar
fashion, that As1 ≥ A2 = 1√

2n2.5
+ 1√

2n1.5
≥ 1

c1n2 , which proves the base case for induction.

Assume that for some k > 1, we have the induction hypothesis Ask ≥ k2

c1n2 and ask ≥ k−1
2
√
c1n2 . Then,

combining the monotonicity of Ak from Lemma 6.4 with the fact that the algorithm performs a Type

II update on ask , we have ask+1
=

√
Ask+1−1

2n ≥
√

Ask

2n ≥ k
2
√
c1n2 . By again applying monotonicity

of Ak and the induction hypothesis about ak, we have Ask+1
= Ask+1−1 + ask+1

≥ Ask + ask+1
≥

2k2+
√
c1k

2c1n2 > (k+1)2

c1n2 .

Lemma 6.6. If at some kth0 iteration of Algorithm 1, we have that

ak0 >
n− 1

2
√
c1n2

; Ak0 ≥
1

c1
(45)

22

then for all k ≥ k0, we have that

ak ≥
k − 1− k0 + n

2
√
c1n2

; Ak ≥
(k − k0 + n)2

c1n2
(46)

for c1 = 36.

Proof. We prove the claim by induction. First, the base case is true for k = k0 by our assumption on
ak0

and Ak0
. Assume the induction hypothesis ak ≥ k−1−k0+n

2
√
c1n2 and Ak ≥ (k−k0+n)2

c1n2 for k ≥ k0.
We now discuss how ak changes with the two types of updates.

If the algorithm performs a Type I update on ak, then, by definition, ak+1 = nak

n−1 . Now applying the
assumed lower bound on ak, we have, when k > k0, that

ak+1 =
nak
n− 1

≥ k − 1− k0 + n

2
√
c1n(n− 1)

≥ k − k0 + n

2
√
c1n2

.

Similarly, given that Ak ≥ (k−k0+n)2

c1n2 , we have,

Ak+1 = Ak + ak+1 ≥
(k − k0 + n)2

c1n2
+
k − k0 + n

2
√
c1n2

≥ (k + 1− k0 + n)2

c1n2
.

If, on the other hand, the algorithm performs a Type II update on ak, then we have

ak+1 =

√
Ak

2n
≥ k − k0 + n

2
√
c1n2

.

This completes the induction.

As we saw in Lemma 6.6, after the kth0 iteration - starting at which Inequality (45) holds - Ak grows
fast. We therefore need to estimate the number of Type I updates before the kth0 iteration.

Lemma 6.7. There are at most 3
2n log n Type I updates (Equation (43)) performed before the kth0

iteration (the first iteration at which Inequality (45) holds).

Proof. Suppose there are n1 Type I updates performed by Algorithm 1 before the kth0 iteration, when
Inequality (45) starts to hold. Further, by Lemma 6.4, ak is monotonically increasing (for both types

of updates). Then, when considering Type I updates (Equation (43)), we have ak0
≥
(

n
n−1

)n1

a2 =(
n

n−1

)n1

· 1√
2n2.5

. In order for ak0
> n−1

12n2 , we only need to have n1 > log n
n−1

(√
n(n−1)

6
√
2

)
. In a

similar fashion, combining the monotonicity of Ak from Lemma 6.4 with the Type I update rule, we
have

Ak0
≥ a2

(
1 +

n

n− 1
+

(
n

n− 1

)2

+ · · ·+
(

n

n− 1

)n1
)
>

(n
n−1)

n1

√
2n2.5

.

So, in order to have Ak0 > 1
36 per Inequality (45), we only need to have n1 ≥ log n

n−1
(n2.5

18
√
2
).

By using the approximation 1 + x ≤ ex and combining the above two bounds, we get as soon as
n1 ≥ 3

2n log n, the inequality (45) holds.

Proposition 6.8. [Rate of change of Ak] When k ≥ 5
2n log n, we have Ak ≥

(k− 5
2n logn)2

36n2 .

Proof. Let there be t1 Type I updates and t2 Type II updates before the first iteration at which
Inequality (45) holds, and let us call this iteration k0. By the result of Lemma 6.7, we have
t1 ≤ 3

2n log n. By the result of Lemma 6.5, we must have Ak0 ≥
t22

c1n2 and ak0 ≥ t2−1
2
√
c1n2 . To

meet the requirement in Inequality (45) then, we can see that t2 ≤ n. Therefore, k0 = t1 + t2 ≤
3
2n log n+ n ≤ 5

2n log n. Having reached the kth0 iteration, the result of Lemma 6.6 applies, and we

have Ak ≥ (k−k0)
2

c1n2 .

23

6.4 Omitted Proofs from Section 4: Restart Strategy

To establish local error bounds, we start with the observation that (P) is equivalent to a linear
complementarity problem.

Proposition 6.9. Problem (P) is equivalent to the following linear complementarity problem, denoted
by LCP(M,q).

Mx+ q ≥ 0, x ≥ 0, ⟨x,Mx+ q⟩ = 0, (47)

where Λ−1M = A⊤A and q = −Λ−11.

Proof. Observe first that, as Λ−1 is a diagonal matrix with positive elements on the diagonal, the
stated linear complementarity problem is equivalent to

∇f(x) ≥ 0, x ≥ 0, ⟨∇f(x),x⟩ = 0. (48)

By Proposition 2.1, these conditions hold for any solution of (P). In the opposite direction, suppose
that the conditions from Eq. (48) hold for some x. Then applying these conditions for any u ≥ 0
gives

⟨∇f(x),u− x⟩ = ⟨∇f(x),u⟩ ≥ 0.

But ⟨∇f(x),u− x⟩ ≥ 0 is the first-order optimality condition for (P), and so x solves (P).

For r(x) = ∥R(x)∥Λ, a quantity termed natural residual [31], local error bound is obtained as a
corollary of the following theorem.

Theorem 6.10 ([31], Theorem 2.1). Let M ∈ Rn×n be such that LCP(M,0) has 0 as its unique
solution. Then there exists µ > 0 such that for each x ∈ Rn, we have r(x) ≥ µ∥x− x⋆∥, where x⋆

is a solution to LCP(M,q) that is closest to x under the norm ∥ · ∥.

Theorem 6.10 applies to our problem due to the nonnegativity (and nondegeneracy) of A and
choosing ∥ · ∥ = ∥ · ∥Λ. By arguing that Theorem 3.5 provides an upper bound on r(x̃K), in
expectation, we then obtain our final result below.

Proposition 6.11. For any x ∈ Rn
+, r(x) ≤

√
2n(f(x)− f(x⋆)), where x⋆ ∈ argminu∈Rn

+
f(u).

Proof. Given x ∈ Rn
+, consider x̂ defined as x̂j⋆ = xj⋆ − Rj⋆(x), where j⋆ =

argmax1≤j≤n |Rj(x)| · ∥A:j∥2, and x̂j = xj for j ̸= j⋆. Then observing that

f(x̂)− f(x) = ∇j⋆f(x)([x̂]j⋆ − [x]j⋆) +
∥A:j⋆∥22

2
|[x̂]j⋆ − [x]j⋆ |2

≤ − 1

2
|Rj⋆(x)|2∥A:j⋆∥22 ≤ −

1

2n
∥R(x)∥2Λ,

and combining with f(x̂) ≥ f(x⋆), r(x) = ∥R(x)∥Λ, the claimed bound follows after a simple
rearrangement.

Theorem 4.1. Given an error parameter ε > 0 and x0 = 0, consider the following algorithm A :

A : SI-NNLS+ with Restarts
Initialize: k = 1.
Initialize Lazy SI-NNLS+ at xk−1.
Run Lazy SI-NNLS+ until the output x̃k

K satisfies r(x̃k
K) ≤ 1

2r(xk−1).
Restart Lazy SI-NNLS+ initializing at xk = x̃k

K .
Increment k.
Repeat until r(x̃k

K) ≤ ε.

Then, the expected number of arithmetic operations of A is O
(
nnz(A)

(
log n+

√
n
µ

)
log
(r(x0)

ε

))
.

As a consequence, given ε̄ > 0, the total expected number of arithmetic operations until a point with
f(x)− f(x⋆) ≤ ε̄|f(x⋆)| can be constructed by A is O

(
nnz(A)

(
log n+

√
n
µ

)
log
(

n
µε̄

))
.

24

Proof. Because each restart halves the natural residual r(x), it is immediate that the total number
of restarts until r(x̃k

K) ≤ ε is bounded by log(r(x0)
ε). Thus, to prove the first (and main) part of

the theorem, we only need to bound the number of iterations (and the overall number of arithmetic
operations) of (Lazy) SI-NNLS+ in expectation. Hence, in the following, we only consider one run
of SI-NNLS+ until the natural residual is halved. To keep the notation simple, we let x0 denote the
initial point of SI-NNLS+ and x̃k denote the output of SI-NNLS+ at iteration k. If r(x0) = 0, A
halts immediately and the bound on the number of iterations holds trivially, so assume r(x0) > 0.
Using Theorem 3.5, we have that ∀k ≥ 2,

E[Akr
2(x̃k)] ≤ n∥x0 − x⋆∥2Λ ≤

n

µ2
r2(x0). (49)

As r2(·) is nonnegative, we can use Markov’s inequality to bound the total number of iterations K
until r(x̃K) ≤ r(x0)

2 . In particular, using Eq. (49), we get by Markov’s inequality that Pr[K > k] ≤
Pr[r2(x̃k) ≥ r2(x0)

4] ≤ 4n
µ2Ak

. As K is nonnegative, we can estimate its expectation using

E[K] =

∞∑
i=0

Pr[K > i] ≤
∞∑
i=0

min
{
1,

4n

µ2Ai

}

≤
⌈12n

√
n/µ+ 5

2n logn⌉∑
i=0

1 +
∞∑

⌈12n
√
n/µ+ 5

2n logn⌉+1

4n

µ2Ai

≤ 24n
√
n/µ+

5

2
n log n+ 2,

where in the last inequality we use the rate of Ak from Proposition 6.8.

In the lazy implementation of SI-NNLS+, as argued in Appendix 7, the expected cost of an iteration
is nnz(A)

n , which leads to the claimed bound on the number of arithmetic operations until r(x) ≤ ε.

By using that r(x0) ≤
√

2n(f(x0)− f(x⋆)) =
√
2n|f(x⋆)|, f

(
x̃K1 −R(x̃K1)

)
−f(x⋆) ≤

(
(n−

1)+ n+1
µ

)
r2(x̃K1) (argued below), the bound on the number of iterations until f

(
x̃K1 −R(x̃K1)

)
−

f(x⋆) ≤ ε̄|f(x⋆)| have

f
(
x̃K1 −R(x̃K1)

)
− f(x⋆) ≤

(
(n− 1) +

n+ 1

µ

)
r2(x̃K1)

≤
(
(n− 1) +

n+ 1

µ

) 1

22K1
r2(x0)

≤
(
(n− 1) +

n+ 1

µ

) 1

22K1
2n|f(x⋆)|

and by setting K1 = 1
2 log2

2n
(
(n−1)+n+1

µ

)
ε̄ , we have this bound.

Finally, it remains to argue that f
(
x̃K1 −R(x̃K1)

)
− f(x⋆) ≤

(
(n− 1) + n+1

µ

)
r2(x̃K1). Observe

that the definition of R(x) is equivalent to x− x̄, where

x̄ = argmin
u∈Rn

+

{
⟨∇f(x),u− x⟩+ 1

2
∥u− x∥2Λ

}
.

By the first-order optimality of x̄ based on the equivalent definition of R(x) above, we have ⟨∇f(x)+
Λ(x̄− x),x⋆ − x̄⟩ ≥ 0. Rearranging, and using the definition of convexity of f, we have

f(x̄)− f(x⋆) ≤ ⟨∇f(x̄), x̄− x⋆⟩
≤ ⟨∇f(x)−∇f(x̄) +Λ(x̄− x),x⋆ − x̄⟩
= ⟨(A⊤A−Λ)(x− x̄),x⋆ − x̄⟩
= ⟨(A⊤A−Λ)R(x),R(x)⟩+ ⟨(A⊤A−Λ)R(x),x⋆ − x⟩
= ⟨(A⊤A−Λ)R(x),R(x)⟩+ ⟨A⊤AR(x),x⋆ − x⟩ − ⟨ΛR(x),x⋆ − x⟩
≤ (n− 1)∥R(x)∥2Λ + (n+ 1)∥R(x)∥Λ∥x− x⋆∥Λ

≤
(
(n− 1) +

n+ 1

µ

)
r2(x),

25

where in the last inequality we have used the error bound from Theorem 6.10.

7 Implementation Version of SI-NNLS+

Since Algorithm 1 explicitly updates x̃k and ỹk (of lengths n and m respectively), the per iteration
cost is O(m+ n), which is unnecessarily high when the matrix A is sparse. In this section, we show
that by using a lazy update strategy, we can efficiently implement Algorithm 1 with overall complexity
independent of the ambient dimension. To attain this result, we maintain implicit representations for
x̃k, yk, and ȳk by introducing two auxiliary variables that are amenable to efficient updates.

Efficiently Updating the Primal Variable. In Lemma 7.1, we show that we can work with an
implicit representation of x̃k by introducing rk.

Lemma 7.1. For {x̃k} defined in Eq. (8) (and simplified in Algorithm 1), we have, for k ≥ 1,

x̃k = xk +
1

Ak
rk, (50)

where xk evolves as per Algorithm 1, r1 = 0 and, when k ≥ 1, rk = rk−1 + ((n − 1)ak −
Ak−1)(xk − xk−1).

Proof. We prove the lemma by induction. Using the facts that x0 = 0, x1 = x̃1, s1 = 0, a1 = A1,
and A0 = 0, we have

x̃1 =
1

A1

(
A0x̃0 + a1

(
nx1 − (n− 1)x0

))
=

1

A1
(a1x1 + (n− 1)a1(x1 − x0))

= x1 + ((n− 1)a1 −A0)(x1 − x0). (51)

Assume for certain k ≥ 2, that Eq. (50) holds for k− 1. Then, using the recursion of x̃k in Algorithm
1, we have that for k ≥ 3,

Akx̃k = Ak−1x̃k−1 + akxk + (n− 1)ak(xk − xk−1)

= Ak−1xk−1 + rk−1 + akxk + (n− 1)ak(xk − xk−1)

= Ak−1(xk−1 − xk + xk) + rk−1 + akxk + (n− 1)ak(xk − xk−1)

= Ak−1(xk−1 − xk) +Ak−1xk + rk−1 + akxk + (n− 1)ak(xk − xk−1)

= Akxk + rk−1 + ((n− 1)ak −Ak−1)(xk − xk−1)

= Akxk + rk,

as required.

The expression for rk in Lemma 7.1 shows that it can be updated at cost O(1) as xk differs from
xk−1 only at one coordinate. Therefore, by Eq. (50) we need not compute x̃k in all iterations and can
instead maintain rk. Along the same lines, we give an efficient implementation strategy for yk and
ȳk in the following discussion.

Efficiently Updating the Dual Variable. We now show how to update the dual variable efficiently.

Lemma 7.2. Consider {yk} and {xk} evolving as per Algorithm 1. Then, for k = 1, we have
y1 = Ax1; for k ≥ 2, we have

yk =
Ak−1

Ak
yk−1 +

ak
Ak

Axk +
(n− 1)ak

Ak
A(xk − xk−1), (52)

(53)

Proof. The proof is directly from the definition of yk in Algorithm 1.

26

Lemma 7.3. Consider {yk} and {xk} evolving as per Algorithm 1. Then for all k ≥ 1, we have

yk = Axk +
1

Ak
sk, (54)

where s1 = 0 and sk = sk−1 + ((n− 1)ak −Ak−1)A(xk − xk−1) when k ≥ 2.

Proof. We prove the lemma by induction. For the base case of k = 1, we have, by the choice of
s1 = 0, that y1 = Ax1 = Ax1 +

1
A1

s1. Then for some k ≥ 2, assume Eq. (54) holds for k − 1,
then we have,

Akyk = Ak−1yk−1 + akAxk + (n− 1)akA(xk − xk−1)

= Ak−1Axk−1 + sk−1 + akAxk + (n− 1)akA(xk − xk−1)

= Ak−1A(xk−1 − xk + xk) + sk−1 + akAxk + (n− 1)akA(xk − xk−1)

= AkAxk + sk−1 + ((n− 1)ak −Ak−1)A(xk − xk−1)

= AkAxk + sk, (55)

where the first step is by Lemma 7.2, second step is by the induction hypothesis, third step is by
adding and subtracting Ak−1Axk, fourth step is by rearranging terms appropriately, and the final
step uses the recursive definition of sk stated in the lemma. Dividing throughout by Ak then finishes
the proof.

Algorithm 2 SI-NNLS+ (Implementation)

1: Input: Matrix A ∈ Rm×n
+ with n ≥ 4, accuracy ε

2: Output: Vector x̃K ∈ Rn
+ such that f(x̃K) ≤ (1− ε)f(x⋆).

3: Initialize: a1 = 1
n−1 , a2 = n

n−1 , A1 = a1, ϕ0(x) = 1
2∥x − x0∥2Λ, y0 = y0 = Ax0,

p0 = 0,q0 = Ax0, t0 = 0, s1 = 0, r1 = 0.
4: for k = 1, 2, . . . ,K do
5: Sample jk uniformly at random from {1, 2, . . . , n}
6: if k = 1 then
7: ȳ0 = q0

8: else if k = 2 then
9: ȳ1 = q1 +

a1

a2
t1

10: else if k ≥ 3 then
11: ȳk−1 = qk−1 +

1
Ak−1

(
1− a2

k−1

akAk−2

)
sk−1 +

(n−1)a2
k−1

akAk−2
tk−1

12: end if

13: pk,i =

{
pk−1,i, i ̸= jk
pk−1,i + nak

(
AT

:i ȳk−1 − 1
)
, i = jk.

14: xk,i =

{
xk−1,i, i ̸= jk
max

{
0,min

{
x0,i − 1

∥A:i∥2 · pk,i, 1
∥A:i∥2

}}
, i = jk

15: tk = A(xk − xk−1)
16: if k ≥ 2 then
17: rk = rk−1 + ((n− 1)ak −Ak−1)(xk − xk−1)
18: sk = sk−1 + ((n− 1)ak −Ak−1)tk
19: end if
20: qk = qk−1 + tk
21: Ak+1 = Ak + ak+1

22: ak+2 = min{nak+1

n−1 ,

√
Ak+1

2n }
23: end for
24: return xK + 1

AK
rK

Lemma 7.4. Consider {xk}, {yk}, and {yk} evolving as per Algorithm 1. Then we have that

ȳ1 = Ax1 +
a1
a2

A(x1 − x0). (56)

27

and

ȳk = Axk +
1

Ak

(
1− a2k

ak+1Ak−1

)
sk +

(n− 1)a2k
ak+1Ak−1

A(xk − xk−1). (57)

Proof. From the definition of ȳk, the initializations for x0,y0, and y0, and Lemma 7.2, we have

ȳ1 = y1 +
a1
a2

(y1 − y0) = Ax1 +
a1
a2

A(x1 − x0).

For k ≥ 2, by Lemma 7.2, we have

Akyk −Ak−1yk−1 = akAxk + (n− 1)akA(xk − xk−1).

As a result,

Ak−1(yk − yk−1) = akAxk + (n− 1)akA(xk − xk−1)− akyk. (58)

So for k ≥ 2, it follows that

ȳk = yk +
ak
ak+1

(yk − yk−1)

= yk +
ak
ak+1

(ak
Ak−1

Axk +
(n− 1)ak
Ak−1

A(xk − xk−1)−
ak
Ak−1

yk

)
=
(
1− a2k

ak+1Ak−1

)
yk +

a2k
ak+1Ak−1

Axk +
(n− 1)a2k
ak+1Ak−1

A(xk − xk−1)

= Axk +
1

Ak

(
1− a2k

ak+1Ak−1

)
sk +

(n− 1)a2k
ak+1Ak−1

A(xk − xk−1),

where the first step is by the definition of yk in Algorithm 1, the second step is by Eq. (58), the third
step is by rearranging, and the final step is by Lemma 7.3.

Based on the above lemmas, we give our efficient lazy implementation version of Algorithm 1 in
Algorithm 2. In Algorithm 2, we also introduce other auxiliary variables pk,qk and tk. Based
on Lemmas 7.1-7.4, it is easy to verify the equivalence between Algorithms 1 and 2. With this
implementation, by updating only the dual coordinates corresponding to the nonzero coordinates of
the selected column of A, the per-iteration cost is proportional to the number of nonzero elements of
the selected row in the iteration. As a result, the overall complexity result will depend only on the
number of nonzero elements of A.

28

