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1 Qualitative Navigation Video Results1

We have included a Powerpoint slide deck as well as raw videos demonstrating our algorithm in2

action. Please have a look at the slides and the associated README.txt for details on how to view3

these videos and the slides.4

Below, we provide a brief overview of the included videos. Note that the raw videos will need VLC5

player to hear the audio properly. Following are the video names in the raw video set from five6

example episodes, utilizing our proposed AVLEN approach:7

• pa4otMbVnkk_22608_cushion_spl0.88.mp48

• pa4otMbVnkk_15330_picture_spl1.00.mp49

• pa4otMbVnkk_14394_picture_spl0.14.mp410

• jtcxE69GiFV_2648_cabinet_spl1.00.mp411

• fzynW3qQPVF_22767_cabinet_spl0.31.mp412

Working and Failure Cases: Among the five episodes, jtcxE69GiFV_2648_cabinet_spl1.00.mp413

completes the episode without querying any language instruction. In all other videos, agent queries14

and utilizes language instructions for navigation.15

Comparison With Alternatives: We have also provided videos corresponding to scene pa4otMbVnkk16

and episode 15330, where17

• pa4otMbVnkk_15330_picture_spl0.00_savi.mp4: uses only audio goal policy πg .18

• pa4otMbVnkk_15330_picture_spl0.00_jask.mp4: utilizes Model Uncertainty to decide when-to-19

query.20

2 Model Architecture21

Model architecture for query policy πq . Our policy network for πq follows an architecture similar22

to [1], consisting of a Transformer encoder-decoder model [5]. The encoder sub-module takes in the23

embedded features et from the current observation as well as such features from history stored in the24

memory M , while the decoder module takes in the output of the encoder concatenated with the goal25

descriptor g to produce a fixed dimensional feature vector, characterizing the current belief state b.26

An actor-critic network (consisting of a linear layer) then predicts an action distribution (here, action27

is selection of lower-level policy) πq(b, .) and the value of this state corresponding to selecting the28

option policy. Then the agent selects lower-level policy by πq(b, .).29
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Figure 1: Network architecture for option selection/ query policy πq

Model architecture for goal-based navigation policy πg. Our policy network for πg follows an30

architecture similar to [1], consisting of a Transformer encoder-decoder model [5]. The encoder31
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sub-module takes in the embedded features et from the current observation as well as such features32

from history stored in the memory M , while the decoder module takes in the output of the encoder33

concatenated with the goal descriptor g to produce a fixed dimensional feature vector, characterizing34

the current belief state b. An actor-critic network (consisting of a linear layer) then predicts an action35

distribution πg(b, .) and the value of this state. The agent then takes step by action a ∼ πg(b, .).36
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Figure 2: Network architecture for goal-based navigation policy πg . The model architecture is similar
to option selection/query policy πq . However, the action space is different for these two policies.

Model architecture for language-based navigation policy πℓ. When an agent queries, it receives37

natural language instruction instr ∈ VN from the oracle. Using instr and the current observation et,38

our language-based navigation policy performs a sequence of actions ⟨at, at+1, . . . , at+ν⟩, where39

each ai ∈ A. Specifically, for any step τ ∈ ⟨t, . . . , t+ ν − 1⟩, πℓ first encodes {eτ , gτ} using a40

Transformer encoder-decoder network T1 (Observation state encoder), the output of this Transformer41

is then concatenated with CLIP [4] embeddings of the instruction, and fused using a fully-connected42

layer FC1. The output of this layer is then concatenated with previous belief embeddings (history of43

belief information) using a second multi-layer Transformer encoder-decoder T2 to produce the new44

belief state bτ , i.e.,45

bτ = T2

(
FC1

(
T1(eτ , gτ ),CLIP(instr)

)
,
{
bτ ′ : t < τ ′ < τ

})
and πℓ(bτ , .) = softmax(FC2(bτ )).

RGB & Depth

Sound

Pose Sensor

Previous Action 
𝑎

Image 
Encoder

Audio 
Encoder

𝑒

𝑒

𝑒

Observation
State

Encoder

Action
Predictor

Memory 
Storage

𝑔

𝑎

Goal 
Descriptor

𝐿

𝐶
Language 
Instruction

CLIP

Fusion

𝑏

Encoder Decoder

𝑏𝑏

Figure 3: Network architecture for language-based navigation policy πℓ

3 Implementation Details46

Training query policy πq . Similar to prior works, we use RGB and depth images, center-cropped to47

64×64. The agent receives binaural audio clip as 65×26 spectrograms. The memory size for πg and48

πq is SM = 150. All the experiments consider maximum K = 3 allowed queries (unless otherwise49
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specified). For each query, the agent will take ν = 3 navigation steps in the environment using the50

natural language instruction. πq policy training uses ADAM [3] with learning rate 2.5× 10−4. Goal51

descriptor network uses 1× 10−3 learning rate. The policy was rolled out for 150 steps and updated52

with each collected experience for two epochs. We use ∼ 22M steps to train πq .53

Training goal-based navigation policy πℓ. Similar to πq, we use RGB and depth images, center-54

cropped to 64× 64. The agent receives binaural audio clip as 65× 26 spectrograms. The memory55

size for πℓ is SV = 3. Agent is allowed to take ν = 3 navigation steps in the environment using the56

natural language instruction. πℓ policy training uses ADAM [3] with learning rate 1× 10−4. The57

policy was (pre-)trained using repurposed vision-language dataset for ∼ 8 epochs.58

4 Performance Error Analysis59

To check the consistency of performance of our proposed AVLEN, we consider running the experiment60

with four different random seeds. Figure 4 illustrates the standard deviation error bars for the61

experiments. We observe that the variance of performance for different experiments are insignificant.62

Standard deviation for success rate is 0.50, 0.53 and 0.26 respectively for heard sound, unheard sound63

and distractor sound. For all other metrics, the variance os also low.64

(a) Heard sound (b) Unheard sound (c) Distractor sound

Figure 4: Performance error analysis

5 Sensitivity to Allowed Number of Queries65

To check the sensitivity AVLEN for different number of allowed queries, we consider a set of allowed66

query number ν = {2, 3, 4, 5} and evaluate performance. Figure 5 shows the success rate, SNA and67

SWS metric for allowed queries ∈ {2, 3, 4, 5} in presence of unheard sound. For the the metrics,68

AVLEN retains an advantage over other approaches.69

(a) Query sensitivity (SR) (b) Query sensitivity (SNA) (c) Query sensitivity (SWS)

Figure 5: Sensitivity to the number of queries ν to the oracle that AVLEN can make. The results are
for the unheard sound sceneario. Please see the main paper for plots on the success rate.
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6 Robustness to Silence Duration70

Figure 6 shows the cumulative success of different approaches. The x axis represents the silent ratio71

(ratio of the minimum number of actions required to reach the goal to the duration of audio). A point72

(x, y) on this plot means the fraction of successful episodes with ratios up to x among all episodes is73

y. When this ratio is greater than 1, no agent can reach the goal before the audio stops. The greater74

this ratio is, the longer the fraction of silence, and hence the harder the episode. We observe that75

AVLEN results in higher cumulative success when sound is silent for longer period.76

(a) Heard sound (b) Unheard sound (c) Distractor sound

Figure 6: Robustness to silence duration analysis

7 Vision-Language Navigation Performance77

In our setting, an agent receives natural language instruction when it queries. It needs to “comprehend”78

this instruction properly and should take navigation steps grounded on this instruction. To analyze79

if πℓ (the language policy) takes navigation steps well-grounded on the instruction, we created a80

VLN test-set of 7, 031 short instruction-trajectory pairs. These short trajectories aligns/overlaps with81

segments of test-set trajectories from semantic audio-visual navigation dataset. We analyzed the82

performance of VLN-b: trained on repurposed fine-grained instruction from [2], VLN-f: fine-tuned83

πℓ with collected trajectory-instruction pairs in AVLEN training, and VLN-b (w/o instruction)84

(language instruction masked) in the VLN test-set. In Table 1, evaluation metric step− n reflects the85

percentage of episodes that took n sequential steps correctly. Table 1 shows that there is a significant86

drop in performance if the language is masked out (removed), which indicates πℓ predictions are87

grounded on the instruction. Also, fine-tuning πℓ policy with collected trajectory-instruction pairs in88

an online manner helps improve the performance.89

Step− 1 Step− 2 Step− 3
VLN-b (w/o instruction) 51.3 22.2 17.0
VLN-b 62.8 47.3 37.8
VLN-f 65.9 55.5 45.3

Table 1: Vision-language navigation performance.
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