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A Additional Related Literature and Comparison

In the first category, where the commmunication complexities are measured by rounds of communi-
cations (where in each round real-valued vectors get exchanged), recent works [Kovalev et al., 2021,
2022] provides lower bounds for a sum of smooth and strongly convex functions over time-varying
networks, and for strongly monotone variational inequality problems in a stochastic (finite-sum)
setting. Other related works include [Scaman et al., 2017, 2018, Arjevani and Shamir, 2015]. In
addition, lower bounds for non-convex problems are considered in [Sun and Hong, 2019, Lu and
De Sa, 2021]. Further, there are many works that derive rounds of communication upper bounds for
decentralized and federated learning algorithms, see, e.g.,[Stich and Karimireddy, 2019, Stich et al.,
2018, Patel and Dieuleveut, 2019, Yu et al., 2019, Wang and Joshi, 2018, Gorbunov et al., 2021].

A recent work [Gorbunov et al., 2021] has analyzed the communication efficient algorithm to solve
functions that satisfy PL conditions. However, it has been focused on analyzing the number of
communication rounds needed to achieve certain ✏ optimal solution, while the current paper is
focused on finding the minimum bits to be communicated. Therefore, although the two works are
both about developing communication efficient algorithms for PL functions, the bounds obtained in
these works represent different physical quantities, thus cannot be directly compared.

B Communication Complexity Lower Bounds

Let us introduce the so-called equality problem Vempala et al. [2020], denoted as EQUAL.
Definition 5 (Equality Problem). Consider a set of K agents, each is given an input ck 2 {0, 1}m;

m is the length of the binary input. Then, the EQUAL problem is defined as follows:

EQUALm(c1, . . . , cK) =

⇢
1, if c1 = . . . = cK
0, otherwise

For any deterministic algorithms, the communication complexity lower bound of

EQUALm(c1, . . . , cK) is ⌦(Km) [Vempala et al., 2020, Thm 3.5].

Further, the intermediate steps required to derive the lower bounds involve packing arguments.
Therefore, we provide below a lower bound for the maximum number of points that we can pack into
a compact set [0, 1]n, such that the distance between each pair of points is at least �.
Definition 6 (Packing Problem). We define the following:

• For a given � > 0 we define the set S(�) ✓ [0, 1]n such that kx� yk > �, 8x, y 2 S(�).

• Assuming that |S(�)| � 2m, we define a function h : {0, 1}m ! S(�). For u, v 2 {0, 1}m

it holds that u 6= v , h(u) 6= h(v).

Lemma B.1. ([Korhonen and Alistarh, 2021, Lemma 2]) For a set S(�) ✓ [0, 1]n defined in Def. 6,

it holds that |S(�)| �
⇣ p

2np
⇡e�

⌘n
.

Next, we repeat here for completeness the Assumptions that the local functions in the Distributed PL
problem class satisfy (Def. 1).
Assumption 6. The local objective functions satisfy:

2µk · (fk(✓)� fk(✓
⇤
(k)))  krfk(✓)k

2, 8 ✓, 8 k,

where ✓⇤(k) is a global minimum of fk(·); µk’s some positive constants.

Assumption 7. There exists positive constants Lk’s and L such that:

krfk(✓)�rfk (✓
0)k  Lk k✓ � ✓0k , krf(✓)�rf (✓0)k  L k✓ � ✓0k , 8 ✓, ✓0, 8 k.

In the Lemma below we show that the function instance we are going to use in Theorem 3.1 satisfies
the PL condition and both Assumptions 6 and 7.
Lemma B.2. The function fk(✓) = 1

2k✓ � ck22 + sin2 (✓k � ck) , c 2 RD
(where with ck, ✓k we

denote the kth component of vectors c, ✓, respectively) satisfies the PL condition with µ = 1
8 . That is,

it holds that fk(✓)� fk(✓⇤) 
1
2µkrfk(✓)k2, 8✓ 2 RD

, where ✓⇤ is the global minimum of fk(·).
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Remark 1. The constructed function fk(✓) and the respective sum across nodes
PK

k=1 fk(✓) satisfy

Assumptions 6, 7. Specifically, Assumption 6 follows trivially from Lemma B.2. In addition, it can

be shown that fk(✓) and
PK

k=1 fk(✓) have bounded Hessians, which implies the Lipschitz gradient

property of Assumption 7.

Proof of Lemma B.2. To begin with we are going to show that the (one dimensional) function

efk(✓k) =
1

2
(✓k � ck)

2 + sin2 (✓k � ck) ,

where ✓k, ck 2 R, satisfies the PL condition with µ = 1
8 ; notice that efk(✓k) has a unique minimum

with value 0 attained at ✓k = ck, and we have that ef 0
k(✓k) = ✓k � ck + sin (2(✓k � ck)). Then, we

are going to use this result to prove the PL condition for the function fk(✓).

So, let us define the function

g(✓k) = 4 [✓k � ck + sin (2(✓k � ck))]
2
�

1

2
(✓k � ck)

2
� sin2 (✓k � ck) .

The gradient of the above function is given by

g0(✓k) = 8 [✓k � ck + sin (2(✓k � ck))] [1 + 2 cos (2(✓k � ck))]� (✓k � ck)� sin (2(✓k � ck))

= [✓k � ck + sin (2(✓k � ck))] [7 + 16 cos (2(✓k � ck))] .

In order to show that efk(✓k) satisfies the PL property it suffices to prove that g(✓k) � 0, 8✓k 2 R.
Then, it will hold that

4 [✓k � ck + sin (2(✓k � ck))]
2
�

1

2
(✓k � ck)

2
� sin2 (✓k � ck) , 8✓k 2 R,

that is the PL condition of efk(✓k) will be satisfied.

First, notice that

g(✓k) = 4 (✓k � ck)
2 + 8 (✓k � ck) sin (2(✓k � ck)) + 4 sin2 (2(✓k � ck))�

1

2
(✓k � ck)

2
� sin2 (✓k � ck)

�
7

2
(✓k � ck)

2 + 8 (✓k � ck) sin (2(✓k � ck))� 1.

It is clear from the above expression that the term 7
2 (✓k � ck)

2 dominates the value of the objective
for large values of |✓k � ck|. Therefore, the objective does not become unbounded below.

Secondly, consider the stationary points of g(✓k). Since the objective does not become unbounded
below the only possible global minima of g(✓k) are its stationary points. We are going to show that the
values of the objective at those points is non-negative, effectively proving that g(✓k) � 0, 8✓k 2 R.
The stationary points of g are defined by the following expressions:

• sin (2(✓k � ck)) = � (✓k � ck)

Notice that in the interval ✓k 2 (ck,
⇡
2 + ck

⇤
it holds that sin [2(✓k � ck)] � 0 but

� (✓k � ck) < 0. Similarly, for ✓k 2
⇥
�

⇡
2 + ck, ck) it holds that sin [2(✓k � ck)]  0

but � (✓k � ck) > 0. Also, for ✓k /2
⇥
�

⇡
2 + ck, ck) [ (ck,

⇡
2 + ck

⇤
[ {ck} it holds that

|✓k � ck| �
⇡
2 > 1. Therefore, in all the above cases the equation of the stationary points

does not have a solution (and thus there are no stationary points). Finally, note that the
equation has a trivial solution at ✓k = ck, which corresponds to the only stationary point we
can get from this equation. For that point it holds that g(ck) = 0.

• cos (2(✓k � ck)) = �
7
16

From the above equations, and by using the proper trigonometric identities it follows that
sin2 (2(✓k � ck)) = 207

256 , sin2 (✓k � ck) = 23
32 and ✓k � ck = ⇡ ±

1
2 arccos

�
�

7
16

�
⇡

⇡ ±
2.02
2 . Then if we plug the above values into g(✓k) we get

g(✓k) ⇡
7

2
(⇡ ± 1.01)2 + 8 (⇡ ± 1.01) sin [2⇡ ± 2.02] + 4

207

256
�

23

32
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=
7

2
(⇡ ± 1.01)2 + 8 (⇡ ± 1.01) sin [±2.02] +

644

256

= (⇡ ± 1.01)


7

2
(⇡ ± 1.01) + 8 · (±0.9)

�
+

161

64
.

It can be easily verified that (⇡ ± 1.01)
⇥
7
2 (⇡ ± 1.01) + 8 · (±0.9)

⇤
+ 161

64 > 0 for all
 2 Z.

In conclusion for all the stationary points ✓̂k it holds that g(✓̂k) � 0. As a result, we can claim that
g(✓k) � 0, 8✓k 2 R, and the function ef(✓k) satisfies the PL property.

Next, consider the PL property (with µ = 1
8 ) for the function fk(✓), that is

1

2
k✓ � ck22 + sin2 (✓k � ck)  4 k✓ � c+ sin (2(✓k � ck)) ekk

2 , (9)

where ek is a vector of all zeros except at index k.

We have shown above that

1

2
(✓k � ck)

2 + sin2 (✓k � ck)  4 [✓k � ck + sin (2(✓k � ck))]
2 . (10)

Also, it trivially holds that

1

2

DX

i=1,i 6=k

(✓i � ci)
2
 4

DX

i=1,i 6=k

(✓i � ci)
2 . (11)

Adding inequalities (10) and (11) we obtain condition (9), which ensures the PL property for the
objective fk(✓), with µ = 1

8 . This completes the proof.

Proof of Theorem 3.1. To begin with, let ⇡ 2 ⇧(✏) be an arbitrary protocol that solves the problems
in Cpl. Then, for any input (i.e., for any specific problem within the class Cpl) the protocol returns an
✏-approximate minimum ✓̃ as given in Def. 3.

Moreover, consider the set S(�) ✓ [0, 1]D introduced in Def. 6 (where in place of n we have D) with
� = 2

p
2✏. Then, Lemma B.1 implies that

|S(�)| �

 p
2D

2
p
2⇡e✏

!D

=

✓
1

2
p
⇡e

◆D ✓
D

✏

◆D/2

.

Then, we set m = ⇥ (log2 |S(�)|) = ⇥
�
D log

�
D
✏

��
, where the exact value of m is selected such

that |S(�)| > 2m holds. As a result, under the assumption that D
✏ = ⌦(1), it holds that |S(�)| � 2,

and m � 1.

Next, we will show that protocol ⇡ also solves the EQUAL problem. That is, we will reduce every
instance of EQUALm(u1, . . . , uK) to a problem in Cpl. Towards this end, for an arbitrary input
(u1, . . . , uK) 2 {0, 1}Km we select the following function from Cpl,

f(✓) =
KX

k=1

fk(✓) with fk(✓) =
1

2
k✓ � h(uk)k

2
2 + sin2 (✓k � (h(uk))k) , (12)

where h(·) is introduced in Def. 6, and h(uk) 2 S(�) ✓ [0, 1]D; (h(uk))k , ✓k denote the kth
component of h(uk) and ✓, respectively. It is shown in Lemma B.2 that the functions fk’s that
correspond to each node satisfy the PL condition, with µk = 1

8 , for all k. We can also easily verify
that the rest of the conditions in Assumption 6 – 7 are satisfied.

Then, we have the following cases:
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• Case 1 (equal inputs): It holds that u1 = . . . = uK := u. Thus, we have that h(u1) =
. . . = h(uK) = h(u) and the minimum of (12) is 0, attained at some point ✓⇤ such that
✓⇤ = h(u).

Also, protocol ⇡ returns an approximate minimum f(✓̃) of (12), for which it holds that

f(✓̃)
(a)
 f(✓⇤) + ✏ =

1

2

KX

k=1

k✓⇤ � h(u)k22 + sin2 (✓⇤k � (h(u))k) + ✏
(b)
= ✏,

where in (a) we used (3); and in (b) we exploited the fact that the minimum is 0.

• Case 2 (inputs not equal): There exists a pair of nodes (i, j) such that ui 6= uj . As a result,
h(ui) 6= h(uj). Then, protocol ⇡ returns an approximate minimum f(✓̃) of (12) for which
it holds that

f(✓̃)
(a)
� f(✓⇤)

= fi(✓
⇤) + fj(✓

⇤) +
KX

k=1,k 6=i,j

fk(✓
⇤)

�
1

2
k✓⇤ � hi(ui)k

2
2 +

1

2
k✓⇤ � hj(uj)k

2
2

(b)
>

1

2

✓
�

2

◆2

=
�2

8

(c)
= ✏,

where in (a) we used (3), in (b) we used the characteristic property (i.e., the minimum
distance between two points is kx� yk > �, 8x, y 2 S(�)) of set |S(�)| (from Def. 6), and
in (c) we use the quantity � = 2

p
2✏.

From the above analysis we see that if f(✓̃)  ✏ then EQUALm(u1, . . . , uK) = 1. Otherwise, if
we assume that EQUALm(u1, . . . , uK) = 0, then the analysis of case 2 implies that f(✓̃) > ✏, a
contradiction. Similarly, we can claim that if f(✓̃) > ✏, then EQUALm(u1, . . . , uK) = 0. In the
opposite case (i.e., if f(✓̃) > ✏ =) EQUALm(u1, . . . , uK) = 1) we see from case 1 that f(✓̃)  ✏,
that is we reach a contradiction. In summary, we have that

EQUALm(u1, . . . , uK) =

⇢
1, if f(✓̃)  ✏
0, if f(✓̃) > ✏.

Finally, the fact that the communication complexity of EQUALm(u1, . . . , uK) is ⌦(Km), and the
above reduction imply that ⌦(Km) = ⌦(KD log

�
D
✏

�
) is a lower bound for the communication

complexity of Cpl.

Proof of Theorem 3.2. To begin with, let ⇡ 2 ⇧(✏) be an arbitrary protocol that solves the problems
in Cop. Then, for any input (i.e., for any specific problem within the class Cop) the protocol returns an
✏-approximate minimum ✓̃, as described in Def. 3.

Moreover, consider the set S(�) ✓ [0, 1]N introduced in Def. 6 (where in place of n we have N )
with � = 2

p
2✏. Then, Lemma B.1 implies that

|S(�)| �

 p
2N

2
p
2⇡e✏

!N

=

✓
1

2
p
⇡e

◆N ✓
N

✏

◆N/2

.

Then, we set m = ⇥ (log2 |S(�)|) = ⇥
�
N log

�
N
✏

��
, where the exact value of m is selected such

that |S(�)| > 2m holds. As a result, under the assumption that N
✏ = ⌦(1), it holds that |S(�)| � 2,

and m � 1.

Now, we are going to show that protocol ⇡ also solves the EQUAL problem. That is, we are going
to reduce every instance of EQUALm(u1, . . . , uK) to a problem in Cop. To be more precise, for an
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arbitrary input (u1, . . . , uK) 2 {0, 1}Km we select the following instance from Cop,

f(✓) =
KX

k=1

fk(✓) with fk(✓) =
1

2
kG(✓)� h(uk)k

2
2, (13)

where h(·) is introduced in Def. 6; and with h(uk) 2 S ✓ [0, 1]N .

Then, we have the following cases:

• Case 1 (equal inputs): It holds that u1 = . . . = uK := u. Thus, we have that h(u1) =
. . . = h(uK) = h(u) and the minimum of (13) is 0, attained at some point ✓⇤ such that
G(✓⇤) = h(u).

Also, protocol ⇡ returns an approximate minimum f(✓̃) of (13) for which it holds that

f(✓̃)
(a)
 f(✓⇤) + ✏ =

1

2

KX

k=1

kG(✓⇤)� h(u)k22 + ✏
(b)
= ✏,

where in (a) we used (3), and (b) follows from the fact that the minimum of (13) is 0 in this
case (i.e., equal inputs).

• Case 2 (inputs not equal): There exists a pair of nodes (i, j) such that ui 6= uj . As a result,
h(ui) 6= h(uj). Then, protocol ⇡ returns an approximate minimum f(✓̃) of (13) for which
it holds that:

f(✓̃)
(a)
� f(✓⇤)

=
1

2
kG(✓⇤)� h(ui)k

2
2 +

1

2
kG(✓⇤)� h(uj)k

2
2 +

1

2

KX

k=1,k 6=i,j

kG(✓⇤)� h(uk)k
2
2

�
1

2
kG(✓⇤)� h(ui)k

2
2 +

1

2
kG(✓⇤)� h(uj)k

2
2

(b)
>

1

2

✓
�

2

◆2

=
�2

8

(c)
= ✏,

where in (a) expression (3) is used, in (b) we used the characteristic property (i.e., the
minimum distance between two points is kx � yk > �, 8x, y 2 S(�)) of set |S(�)| (from
Def. 6), and in (c) we use the quantity � = 2

p
2✏.

From the above analysis we see that if f(✓̃)  ✏ then EQUALm(u1, . . . , uK) = 1. Otherwise, if
EQUALm(u1, . . . , uK) = 0, then the analysis of case 2 implies that f(✓̃) > ✏, a contradiction.
Similarly, we can claim that if f(✓̃) > ✏, then EQUALm(u1, . . . , uK) = 0. In the opposite case (i.e.,
if f(✓̃) > ✏ =) EQUALm(u1, . . . , uK) = 1) we see from case 1 that f(✓̃)  ✏, that is we reach a
contradiction. In summary, we have that

EQUALm(u1, . . . , uK) =

⇢
1, if f(✓̃)  ✏
0, if f(✓̃) > ✏.

Finally, the fact that the communication complexity of EQUALm(u1, . . . , uK) is ⌦(Km), and the
above reduction imply that ⌦(Km) = ⌦(KN log

�
N
✏

�
) is a lower bound for the communication

complexity of Cop.

C Proof for Theorem 4.1

C.1 Proof of Lemma 4.2

Let us consider the function
�(✓) = f(✓)� hrf (✓⇤) , ✓i .
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Since rf(✓⇤) = 0, it is easy to see �(✓) > 0. It can be derived directly that �(✓⇤) = 0, which means
�(·) can achieve the minimum at ✓⇤. So we know ✓⇤ 2 argmin �(✓). Then we have the following
inequality holds:

�(✓⇤) 6 �

✓
✓ �

1

L
r�(✓)

◆

(i)
= f(✓ �

1

L
r�(✓))

(ii)
= f(✓ �

1

L
rf(✓))

(iii)
6 f(✓)�

1

2L
krf(✓)k2,

where (i) performed one step of gradient decent; (ii) uses the fact that rf(✓⇤) = 0; (iii) is because
the Lipshcitz gradient assumption. Then it follows directly

krf(✓)k2 6 2L · f(✓).

C.2 Proof for Theorem 4.1

First, let us state the sketch of the proof. Denote gt :=
KP

k=1
gtk, q

t :=
KP

k=1
qtk.

Step1: We show that the loss function decreases linearly if all the agents update the averaged gradient
in one step. That is, the following holds true.

f(✓t � ⌘gt)  (1� ⌘µ)f(✓t).

Step2: We show by induction that for t = 1, · · · , the following inequalities hold true:

(1)f(✓t) 6 (↵)tf(✓0),where 0 < ↵ < 1, (14)

(2)kgt � qtk1 6 �t�1

2b � 1
= ⌧�t�1, for some �t�1 > 0, (15)

where {�t
}
1
t=1 is a sequence of positive numbers.

The proof of Step 1 is straightforward:

f(✓t � ⌘gt) = f(✓t � ⌘
KX

k=1

gtk)

(i)
6 f(✓t)� hrf(✓t), ⌘

KX

k=1

gtki+
⌘2L

2

�����

KX

k=1

gtk

�����

2

(ii)
= f(✓t)� ⌘kgtk2 +

⌘2L

2
kgtk2

(iii)
= f(✓t)� ⌘kgtk2 +

⌘

4L2
kgtk2 (⌘ =

1

2L
3
2

)

(iv)
6 f(✓t)�

1

2
⌘kgtk2

(v)
6 f(✓t)� ⌘µf(✓t)

= (1� ⌘µ)f(✓t), (16)

where (i) is by Decent Lemma; (ii) uses the definition of gt; (iii) uses the choice of ⌘; (iv) is because
L > 1; (v) uses Assumption 1.

Now we prove Step 2. To begin with, let us set ⌘ = 1

2L
3
2

, and set:

↵ = 1�
µ

8L
3
2

, �t =
p
(↵)t+1f(✓0), ⌧ =

1
p
CD

, (17)

C = max
�
s

16L

µ2
+

L
3
2

µ
, 100

�
, b = max

�
log(

1

⌧
+ 1), b0

�
.
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First, let us verify that (14) holds true when t = 1. We have the following series of inequalities:
f(✓1) = f(✓0 � ⌘q0)� f(✓0 � ⌘g0) + f(✓0 � ⌘g0)

(i)
6 ⌘hrf(✓0 � ⌘g0), q0 � g0i+

⌘2L

2
kq0 � g0k2 + f(✓0 � ⌘g0)

(ii)
6 ⌘

2�
krf(✓0 � ⌘g0)k2 + 2⌘�kq0 � g0k2 +

⌘2L

2
kq0 � g0k2 + f(✓0 � ⌘g0)

(iii)
6 ⌘L

�
f(✓0 � ⌘g0) + (2⌘� +

⌘2L

2
)kq0 � g0k2 + f(✓0 � ⌘g0)

(iv)
= (

⌘L

�
+ 1)(1� ⌘µ)f(✓0) + (2⌘� +

⌘2L

2
)kq0 � g0k2

(v)
6 (

⌘L

�
+ 1)(1� ⌘µ)f(✓0) + (2⌘� +

⌘2L

2
)D2

kq0 � g0k21

(vi)
6 (

⌘L

�
+ 1)(1� ⌘µ)f(✓0) + (2⌘� +

⌘2L

2
)D2(

KX

k=1

kq0k � g0kk1)2

(vii)
6 (

⌘L

�
+ 1)(1� ⌘µ)f(✓0) + (2⌘� +

⌘2L

2
)D2

KX

k=1

Kkq0k � g0kk
2
1

(viii)
6 (

⌘L

�
+ 1)(1� ⌘µ)f(✓0) + (2⌘� +

⌘2L

2
)
f(✓0)

C2D4

(ix)
= (1�

1

2
⌘µ)f(✓0) +

�4⌘(1� ⌘µ)L

µ
+

⌘2L

2

� f(✓0)
C2D4

� =
2(1� ⌘µ)L

µ

=
�
1�

1

2
⌘µ+ (

4⌘(1� ⌘µ)L

µ
+

⌘2L

2
)/C2D4

�
f(✓0)

where (i) comes from the Decent Lemma; (ii) uses the Young’s inequality with constant �; (iii) uses
Assumption 1; (iv) is from (16); (v) uses the relationship between `2 and `1 norm; (vi) uses the
triangle inequality; (vii) uses the Cauchy-Schwartz inequality; (viii) uses the initialization condition

kq0k � g0kk1 6
p

fk(✓0)

CD3
p
K

; (ix) uses the choice of �.

Now let us define the quantization at initialization. For each entry in q0k, denoted as (g0k)j , we consider
the interval

⇥
b(g0k)jc, d(g

0
k)je

⇤
, which is constructed by the closest integers. We use b0 bits to make

the grid, and quantize each element of the vector by the closest point on the grid. It is clear that the
quantization error for each element is at most 1

2b0�1
. So we set

1

2b0 � 1
=

p
f(✓0)

CD3
p
K

,

or equivalently, b0 = log
�
CD3

p
Kp

f(✓0)
+ 1

�
.

Now since we have chosen C > 16L
µ2 + L

3
2

µ , we can bound the coefficient in front of f(✓0) as:

1�
1

2
⌘µ+

�4⌘(1� ⌘µ)L

µ
+

⌘2L

2

�
/C2D4

(i)
6 1�

1

2
⌘µ+

�2(1� ⌘µ)
p
Lµ

+
1

8L2

�
/C2

(ii)
6 1�

1

2
⌘µ+ (

2
p
Lµ

+
1

8
)/C2

(iii)
6 1�

1

4
⌘µ (18)

where in (i) we plugged in the choice of ⌘ and D > 1; (ii) is because we have assumed that L > 1
and D > 1; (iii) uses the choice of C in (17). It follows f(✓1) 6 (1� µ

8L
3
2
)f(✓0). Thus, (14) holds

for t = 1.
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Second, let us analyze (15) for t = 1. Observe that:

kg1 � q0k1 6 kg1 � g0k+ kg0 � q0k1
(i)
6 ⌘Lkq0k+ kg0 � q0k1

(ii)
6 ⌘Lkg0k+ ⌘Lkq0 � g0k+ kq0 � g0k1
(iii)
6 ⌘Lkg0k+ (1 + ⌘LD)kq0 � g0k1

(iv)
6 ⌘Lkg0k+ (1 + ⌘LD)

KX

k=1

p
fk(✓0)

CD3
p
K

(v)
6 ⌘L

p
2L · f(✓0) + (1 + ⌘LD)

p
f(✓0)

CD3

(vi)
6

p
2

2

p
f(✓0) + 2 ·

p
f(✓0)

100

(vii)
6

p
↵f(✓0),

where (i) uses Assumption 2; (ii) is from triangle inequality; (iii) uses the relationship between

`2 and `1 norm; (iv) uses the condition kq0k � g0kk1 6
p

fk(✓0)

CD3
p
K

; (v) uses Assumption 1 and the
Cauchy-Schwartz inequality; (vi) plugs in the choice of stepsize and the fact that C > 100; (v)
compares the left side with definition of ↵ in (17). By Lemma 4.1, it follows that:

kq1 � g1k1 = kquant(g1, q0, r, b)� g1k1 6 �0

2b � 1
.

Next, let us use induction to prove (14) and (15). First, we analyze the decent of f(✓t):

f(✓t+1) = f(✓t � ⌘qt)� f(✓t � ⌘gt) + f(✓t � ⌘gt)

(i)
6 ⌘hrf(✓t � ⌘gt), qt � gti+

⌘2L

2
kqt � gtk2 + f(✓t � ⌘gt)

(ii)
6 ⌘

2�
krf(✓t � ⌘gt)k2 + 2⌘�kqt � gtk2 +

⌘2L

2
kqt � gtk2 + f(✓t � ⌘gt)

(iii)
6 ⌘L

�
f(✓t � ⌘gt) + (2⌘� +

⌘2L

2
)kqt � gtk2 + f(✓t � ⌘gt)

(iv)
= (

⌘L

�
+ 1)(1� ⌘µ)f(✓t) + (2⌘� +

⌘2L

2
)⌧2(�t�1)2

(v)
6 (

⌘L

�
+ 1)(1� ⌘µ)(↵)tf(✓0) + (2⌘� +

⌘2L

2
)⌧2(�t�1)2

(vi)
6 (

⌘L

�
+ 1)(1� ⌘µ)(↵)tf(✓0) + (2⌘� +

⌘2L

2
)⌧2(↵)tf(✓0)

=

✓
1�

1

2
⌘µ+

�4⌘(1� ⌘µ)L

µ
+

⌘2L

2

�
⌧2
◆
(↵)tf(✓0), (19)

where (i) comes from the Decent Lemma; (ii) uses the Young’s inequality with constant �; (iii) uses
Assumption 1; (iv) is from (16) and induction assumption (15); (v) uses the induction assumption
(14); (vi) uses the definition of �t�1. Finally, set � = 2(1�⌘µ)L

µ , we will get the last equality. Next,
let us analyze the coefficient in the expression (19):

1�
1

2
⌘µ+

�4⌘(1� ⌘µ)L

µ
+

⌘2L

2

�
⌧2

(i)
= 1�

1

2
⌘µ+

�2(1� ⌘µ)
p
Lµ

+
1

8L2

�
⌧2

(ii)
6 1�

1

2
⌘µ+ (

2
p
Lµ

+
1

8
)⌧2

(iii)
= 1�

µ

4L
3
2

+ (
2

p
Lµ

+
1

8
)⌧2

(iv)
6 1�

µ

8L
3
2

= ↵, (20)
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where in (i) we plugged in the choice of ⌘; (ii) is because we have assumed that L > 1 ; (iii) plugged
in the choice of stepsize; (iv) uses the definition of ⌧ in (17); and the last equality comes from the
definition of ↵ in (17). Plugging (20) to (19), we obtain f(✓t+1) 6 (↵)t+1f(✓0).

Second, we show that (15) holds for t+ 1. We have:
��gt+1

� qt
��
1 6 kgt+1

� gtk+
��gt � qt

��
(i)
6 L⌘kqtk+ ⌧�t�1

(ii)
6 L⌘(kgtk+Dkgt � qtk1) + ⌧�t�1

(iii)
6 L⌘

p

2L
p
f(✓t) + (1 +DL⌘)⌧�t�1

(iv)
6 L⌘

p

L
p

(↵)tf(✓0) + (1 +DL⌘)⌧�t�1

(v)
= (L⌘

p

2L+ (1 +DL⌘)⌧)�t�1

= (

p
2

2
+ (1 +

D

2
)⌧)�t�1

(vi)
6 (

p
2

2
+

3

2
D⌧)�t�1

(vii)
6 9

10
�t�1

(viii)
6

p
↵�t = �t+1

where (i) uses Assumption 2 and the induction assumption; (ii) uses the triangle inequality to
decompose kqtk and uses the relationship between `1 and `2 ; (iii) is from Assumption 1 and
induction assumption (15); (iv) uses the induction assumption (14); (v) uses the definition of �t; (vi)
is because µ < 1; (vii) comes from the fact that ⌧ < 1

10D in (17); (viii) compares the choice of ↵
in (17). Thus, we obtain

��gt+1
� qt

��
1 6

p
(↵)t+1f(✓0) = �t. Then by Lemma 4.1, we have (15)

holds for t+ 1.

Now we have proved by induction that (14) and (15) hold. So for t > 0, there is

f(✓t) 6 (↵)tf(✓0),where ↵ = 1�
µ

8L
3
2

.

Thus, to compute an ✏-optimal solution, the total number of iterations required is
log(f(✓0)/✏)/ log(1�µ/8L

3
2 ). Since in each iteration, each agent k transmits a length-D vector qtk, it

follows that the total number of bits each agent needs to communicate is D log(f(✓0)/✏)/ log(1/(1�
µ/8L

3
2 ))bits. Notice that log(1/(1�µ/8L

3
2 ) = � log(1�µ/8L

3
2 ) ⇠ 8L

3
2 /µ, so we can derive the

simplified total number of bits as bD ·
8L

3
2

µ log
�
f
�
✓0
�
/✏
�
.

D The Proof of Theorem 4.2

First, let us provide the sketch of the proof. Denote

gt :=
KX

k=1

gtk, qt :=
KX

k=1

qtk, g̃t := B>gt.

Using the above notation, the agents’ local update step (i.e., the ‘Update’ step in Alg. 1) can be
expressed as:

✓t+1
k = ✓tk � ⌘B>qt, 8 k. (21)

Step 1: We show that the loss function decreases linearly if all the agents update parameters using
the direction g̃t, as follows:

f(✓t � ⌘g̃t) 

✓
1�

1

2

◆
f(✓t).

Step 2: Let ⌧ = 1
2b�1 , we show by induction that for t = 1, · · · , the following inequalities hold true:

(1) f(✓t) 6 (↵)tf(✓0), for some 0 < ↵ < 1. (22)

24



(2) kgt � qtk1 6 ⌧�t�1, kg̃t �B>qtk1 6 ⌧HkB>
k1�t�1, for some �t�1 > 0, (23)

where {�t
}
1
t=1 is a sequence of positive numbers.

We prove Step 1 first. At t-the iteration, Let us first expand the objective function as:

f
�
✓t � ⌘g̃t

�
=

1

2
kA(✓t � ⌘g̃t)� bk2 = f

�
✓t
�
�
⌦
A✓t � b, ⌘Ag̃t

↵
+

1

2
⌘2
��Ag̃t

��2 . (24)

To proceed, let us provide explicit expressions for gt and g̃t:

gt = Brf(✓t) = BA>(A✓t � b) (25)

g̃t = B>Brf(✓t) = B>BA>(A✓t � b). (26)

By using the above, the inner product in (24) can be bounded as follows

�
⌦
A✓t � b, ⌘Ag̃t

↵
= �⌘hA✓t � b, AB>BA>(A✓t � b)i 6 �⌘�min(Z)

��A✓t � b
��2 . (27)

Using the above relations, we can further bound the descent of the objective function as

f
�
✓t � ⌘g̃t

� (i)
6 f(✓t)� ⌘�min(Z)

��A✓t � b
��2 + 1

2
⌘2
��AB>BA> �

A✓t � b
���2

(ii)
6 f(✓t)� ⌘�min(Z)

��A✓t � b
��2 + 1

2
⌘2�2

max(Z)
��A✓t � b

��2

(iii)
= f(✓t)� 2⌘�min(Z)f(✓t) + ⌘2�2

max(Z)f(✓t)

= (1� ⌘�min(Z))f(✓t)

= (1�
1

2
)f(✓t), (28)

where (i) comes from plugging (27) and (26) into (24); (ii) extracts the largest eigenvalue of Z; (iii)
is due to the definition of the objective function; the last two equalities hold due to the definition
⌘ = �min(Z)

�2
max(Z) .

Next, we prove Step 2. To begin with, let us define:

↵ := 1�
1

24
, � := 6

p
2 ·

�min(Z)p
�max(Z)

, �t := �
p
(↵)t+1f(✓0). (29)

Further let us set

b = max

✓
log2

✓
1

⌧
+ 1

◆
, b0

◆
, C = max(

1

�2⌧2D2
,
12

�
) with ⌧ given by (30)

⌧ := min

0

BB@
1r

24�2D2H2kB>k21s2max(A)
⇣

�2
min(Z)

2�4
max(Z) +

1
�2
max(Z)

⌘ ,
1

6(1 + H
 )

1

CCA .

First, we analyze (22) for t = 1. We have the following relations:

f(✓1) = f(✓0 � ⌘B>q0)� f(✓0 � ⌘g̃0) + f(✓0 � ⌘g̃0)

(i)
6 1

2
k⌘A(B>q0 � g̃0)k2 + h⌘A(B>q0 � g̃0), A(✓0 � ⌘g̃0)� bi+ (1� ⌘�min(Z))f(✓0)

(ii)
6 1

2
k⌘A(B>q0 � g̃0)k2 + ⌘

✓
�kA(B>q0 � g̃0)k2 +

1

2�
kA(✓0 � ⌘g̃0)� bk2

◆
+ (1� ⌘�min(Z))f(✓0)

(iii)
6 (

1

2
⌘2 + �⌘)s2max(A)kB>q0 � g̃0k2 +

⌘

�
(1� ⌘�min(Z))f(✓0) + (1� ⌘�min(Z))f(✓0)

= (
1

2
⌘2 + �⌘)s2max(A)kB>q0 � g̃0k2 + (1 +

⌘

�
)(1� ⌘�min(Z))f(✓0)

(iv)
= (

1

2
⌘2 +

⌘

�min(Z)
)s2max(A)kB>qt � g̃0k2 + (1� ⌘2�2

min(Z))f(✓0)

25



(v)
6 D2(

1

2
⌘2 +

⌘

�min(Z)
)s2max(A)kB>q0 � g̃0k21 + (1� ⌘2�2

min(Z))f(✓0)

(vi)
6 D2H2

kB>
k
2
1(

1

2
⌘2 +

⌘

�min(Z)
)s2max(A)kq0 � g0k21 + (1� ⌘2�2

min(Z))f(✓0)

(vii)
6 KD2H2

kB>
k
2
1(

1

2
⌘2 +

⌘

�min(Z)
)s2max(A)

KX

k=1

kq0k � g0kk
2
1 + (1� ⌘2�2

min(Z))f(✓0)

(viii)
6 H2

kB>
k
2
1(

1

2
⌘2 +

⌘

�min(Z)
)s2max(A)

f(✓0)

C2D4
+ (1� ⌘2�2

min(Z))f(✓0)

=

✓
1� ⌘2�2

min(Z) +H2
kB>

k
2
1(

1

2
⌘2 +

⌘

�min(Z)
)
s2max(A)

C2D4

◆
f(✓0)

(ix)
=

✓
1�

1

4
+H2

kB>
k
2
1

✓
�2
min(Z)

2�4
max(Z)

+
1

�2
max(Z)

◆
s2max(A)�2⌧2/D2

◆
f(✓0)

(x)
6 (1�

1

24
)f(✓0) = ↵f(✓0),

where (i) explicitly expands the f(·) function, and uses (28); (ii) applies the Young inequality with
constant �; (iii) extracts the largest singular value of A, and uses (28); (iv) set � = 1

�min(Z) ; (v) uses
the relationship between `2 and `1 norm; (vi) uses the fact that kB>q0�g̃0k 6 H2

kB̃k1kq0�g0k1;

(vii) uses the Cauchy-Schwartz inequality; (viii) uses the condition
��q0k � g0k

��
1 6

p
f(✓0)

CD
p
K

in
Algorithm 1; (vii) uses the induction assumption (22) and the definition of �t�1 in (29); (viii) plug
in the choice of stepsize; (ix) comes from the choice of � and ⌧ . So we have showed (22) holds for
t = 1; (ix) plug in the choice of stepsize and constant C > 1

�2⌧2 ; (x) uses the choice of � and ⌧ .

Next, let us analyze (23) for t = 1. The idea is that, if we can show that kg1 � q0k1 6 �0, then we
will be able to use Lemma 4.1 to show (23). More specifically, we have:

kq1 � g1k
(i)
= kquant(g1, q0, �0, b)� g1k1

(ii)
6 ⌧�0,

kB>q1 � g̃1k1
(iii)
= kB>quant(g1, q0, �0, b)�B>g1k1

(iv)
6 ⌧HkB>

k1�0,

where (i) and (iii) come from the ‘Quantize’ step in Algorithm 1; (ii) and (iv) are from the two
inequalities in Lemma 4.1 (assuming that kg1 � q0k1 6 �0 holds).

Next, we show kg1 � q0k1  �0. We observe that:

kg1 � q0k1
(i)
6 kg1 � g0k1 + kg0 � q0k1
(ii)
6 ⌘kBA>AB>q0k+ kg0 � q0k1
(iii)
6 ⌘�max(Z)kq0k+ kg0 � q0k1
(iv)
6 ⌘�max(Z)(kg0k+ kq0 � g0k) + kg0 � q0k1
(v)
6 ⌘�max(Z)(kBA>(A✓0 � b)k+Hkq0 � g0k1) + kg0 � q0k1
(vi)
6 ⌘�

3
2
max(Z)kA✓0 � bk+ (1 + ⌘H�max(Z))kg0 � q0k1

(vii)
6 ⌘�

3
2
max(Z)kA✓0 � bk+ (1 + ⌘H�max(Z))

KX

k=1

kg0k � q0kk1

(viii)
6 ⌘�

3
2
max(Z)

p
2f(✓0) + (1 + ⌘H�max(Z))

KX

k=1

p
fk(✓0)

CD3
p
K

(ix)
6 ⌘�

3
2
max(Z)

p
2f(✓0) + (1 + ⌘H�max(Z))

p
f(✓0)

CD3

26



(x)
=

p
f(✓0)(

1

CD3
+

H

CD3
+

p
2�min(Z)p
�max(Z)

)

(xi)
6 �

p
f(✓0)(

2

�C
+

1

6
)
(xii)
6 1

3
�
p

f(✓0) 6 �
p
↵f(✓0) = �0

where (i) is due to the triangle inequality; (ii) expands the expression of g1 and g0 in (25), uses
the relation between `2 norm and `1 norm and uses the update rule (21); (iii) uses the fact that
non-zero eigen values of BA>AB> and Z are the same and extracts the largest eigen value of Z;
(iv) uses triangle inequality ; (v) uses the relationship between `2 and `1 norm; (vi) is because
s2max(BA>) = �max(Z) and extract the largest singular value of BA>; (vii) uses triangle inequality;

(viii) uses the initial condition kq0k � g0kk1 6
p

fk(✓0)

C·D
p
K

in Algorithm 1; (ix) uses Cauchy-Schwartz
inequality; (x) plug in the choice of stepsize; (xi) is because  > 1, H 6 D,D > 1 and the choice of
�; (xii) is from C > 12

� ; the last inequality comes from
p
↵ >

p
2
2 > 1

3 since  > 1. So we can show��g1 � q0
��
1  �0.

Next, we will show (22) holds for t + 1 by induction, based on the base assumption that (22) and
(23) holds for t. We have the following series of relations:

f(✓t+1) = f(✓t � ⌘B>qt)� f(✓t � ⌘g̃t) + f(✓t � ⌘g̃t)

(i)
6 1

2
k⌘A(B>qt � g̃t)k2 + h⌘A(B>qt � g̃t), A(✓t � ⌘g̃t)� bi+ (1� ⌘�min(Z))f(✓t)

(ii)
6 1

2
k⌘A(B>qt � g̃t)k2 + ⌘

✓
�kA(B>qt � g̃t)k2 +

1

2�
kA(✓t � ⌘g̃t)� bk2

◆
+ (1� ⌘�min(Z))f(✓t)

(iii)
6 (

1

2
⌘2 + �⌘)s2max(A)kB>qt � g̃tk2 +

⌘

�
(1� ⌘�min(Z))f(✓t) + (1� ⌘�min(Z))f(✓t)

= (
1

2
⌘2 + �⌘)s2max(A)kB>qt � g̃tk2 + (1 +

⌘

�
)(1� ⌘�min(Z))f(✓t)

(iv)
= (

1

2
⌘2 +

⌘

�min(Z)
)s2max(A)kB>qt � g̃tk2 + (1� ⌘2�2

min(Z))f(✓t)

(v)
6 D2(

1

2
⌘2 +

⌘

�min(Z)
)s2max(A)kB>qt � g̃tk21 + (1� ⌘2�2

min(Z))f(✓t)

(vi)
6 D2H2

kB>
k
2
1(

1

2
⌘2 +

⌘

�min(Z)
)s2max(A)(⌧�t�1)2 + (1� ⌘2�2

min(Z))f(✓t)

(vii)
6

✓
1� ⌘2�2

min(Z) +D2H2
kB>

k
2
1

✓
1

2
⌘2 +

⌘

�min(Z)

◆
s2max(A)�2⌧2

◆
(↵)tf(✓0)

(viii)
=

✓
1�

1

4
+D2H2

kB>
k
2
1

✓
�2
min(Z)

2�4
max(Z)

+
1

�2
max(Z)

◆
s2max(A)�2⌧2

◆
(↵)tf(✓0)

(ix)
6 (1�

1

24
)(↵)tf(✓0) = (↵)t+1f(✓0),

where (i) we have explicitly expands the f(·) function, and have used (28); (ii) applies the Young
inequality with constant �; (iii) extracts the largest singular value of A, and uses (28); (iv) set
� = 1

�min(Z) ; (v) uses the relationship between `2 and `1 norm; (vi) uses the second inequality in
induction assumption (23); (vii) uses the induction assumption (22) and the definition of �t�1 in (29);
(viii) plug in the choice of stepsize; (ix) comes from the choice of � and ⌧ .

Finally, we will show (23) holds for t+ 1 by induction, again base assumptions (22) holds for t and
(23) holds for t. We have:

��gt+1
� qt

��
1

(i)
6 kgt+1

� gtk1 + kgt � qtk1
(ii)
6 kBA>A(✓t+1

� ✓t)k+ ⌧�t�1

(iii)
= ⌘kBA>AB>qtk+ ⌧�t�1
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(iv)
6 ⌘�max(Z)kqtk+ ⌧�t�1

(v)
6 ⌘�max(Z)(kqt � gtk+ kgtk) + ⌧�t�1

(vi)
6 ⌘�max(Z)(Hkqt � gtk1 + kgtk) + ⌧�t�1

(vii)
6 ⌧�t�1(1 + ⌘H�max(Z)) + ⌘�max(Z)kgtk

= ⌧�t�1(1 + ⌘H�max(Z)) + ⌘�max(Z)kBA>(A✓t � b)k

(viii)
6 ⌧�t�1(1 + ⌘H�max(Z)) + ⌘�

3
2
max(Z)

p
2f(✓t)

(ix)
= ⌧�t�1(1 +

H


) +

p
2�min(Z)p
�max(Z)

p
f(✓t)

(x)
6

 
⌧�(1 +

H


) +

p
2�min(Z)p
�max(Z)

!
p

(↵)tf(✓0)

= �

 
⌧(1 +

H


) +

p
2�min(Z)

�
p

�max(Z)
)

!
p
(↵)tf(✓0)

(xi)
6 1

3
�
p
(↵)tf(✓0)

(xii)
6 �

p
(↵)t+1f(✓0) = �t,

where (i) uses the triangle inequality; (ii) expands the first term by (25), uses the relationship between
`2 and `1 norm, and and uses the first inequality in induction assumption (23); (iii) plug in the update
of parameter: ✓t+1 = ✓t � ⌘B>qt; (iv) comes from the fact that non-zero singular values of Z and
BA>AB> are the same and extracts the largest singular value of Z; (v) uses the triangle inequality;
(vi) is due to the relationship between `2 and `1 norm; (vii) uses the first inequality in induction
assumption (23); (viii) uses the fact that s2max(BA>) = �max(Z) and extracts smax(BA>); (ix) plug
in the choice of stepsize; (x) uses the definition of �t�1 in (29) and induction assumption in (22); (xi)
is because the choice of ⌧ and �; (xii) is because

p
↵ =

q
1� 1

22 >
p
2
2 > 1

3 since  > 1. Thus,

we obtain
��gt+1

� qt
��
1 6 �

p
(↵)t+1f(✓0) = �t. Then by Lemma 4.1, with the correspondence

that c = gt+1, p = qt, r = �t, we can obtain

kqt+1
� gt+1

k
(i)
= kquant(gt+1, qt, �t, b)� gt+1

k1
(ii)
6 ⌧�t,

kB>qt+1
� g̃t+1

k1
(iii)
= kB>quant(gt+1, qt, �0, b)�B>gt+1

k1
(iv)
6 ⌧DkB>

k1�t,

where (i) and (iii) come from the ‘Quantize’ step in Algorithm 1; (ii) and (iv) are from the two
relations in Lemma 4.1 (since we have proved that kgt+1

� qtk1 6 �t holds).

Now we have proved that (14) and (15) hold. So for t > 0, there is

f(✓t) 6 (↵)tf(✓0), where ↵ = 1�
1

24
.

Thus, if we want the objective function to compute an ✏-optimal solution, the total number of
iterations is log(f(✓0)/✏)/ log(1/(1 �

1
24 )). Since in each iteration, each agent k transmits a

length-H vector qtk, so we conclude that the total number of bits each node needs to communicate is
log(f(✓0)/✏)/ log(1/(1� 1

24 )) bits. Notice that log(1/(1� 1
24 )) = � log(1� 1

24 ) ⇠ 24, so
we can derive the simplified total number of bits as 24

· log(f(✓0)/✏).

E Proof for Proposition 1

Now we prove Proposition 1. We first state two lemmas that will be used.
Lemma E.1. Rudelson and Vershynin [2010] Let X be a H⇥N matrix whose entries are independent

standard normal random variables. Then

P
⇣p

H �

p

N � t  smin(X)  smax(X) 
p

H +
p

N + t
⌘
� 1� 2e�t2/2, t � 0.
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Lemma E.2. Suppose A>
i 2 RD

follows N(µ,⌃). If ⌃ is a diagonal matrix, then each element of

Ai is independent.

We first write down the SVD decomposition of A>:

A> = V ⌃W,

where V 2 RD⇥N ,⌃ 2 RN⇥N ,W 2 RN⇥N . Since A is full rank, denote ̂ := smax(A
>)

smin(A>) >

0. Consider each entry in BA> = BV ⌃W . It is clear that each entry of BV follows normal
distribution because (BV )hi is linear combination of variables that are standard normal. Then we
aim to show that each entry in BV follows standard normal distribution. Notice that vec(BV ) =
(B1V,B2V, · · · , BHV )> 2 RHN , where Bh is each row of B. Denote Uij = Cov(BiV,BjV ) 2
RN⇥N , we can obtain that

E[vec(BV )] = (E[B1]V ;E[B2]V ; · · · ,E[BH ]V )> = 0,

Cov(vec(BV )) =

0

BB@

U11 U12 U13 · · · U1N

U21 U22 U23 · · · U2N
...

...
...

. . .
...

UN1 UN2 UN3 · · · UNN

1

CCA

Notice that Uij = Cov(X>B>
i , X>B>

j ) = X>Cov(B>
i , B>

j )X . Since B>
i and B>

j are in-
dependent, so Vij = 0, i 6= j. Since X>X = IN , we have Uij = Cov(B>

i , B>
i ) = IN for

i = 1, 2, · · · , N. Then we obtain Cov(vec(BV )) = IHN . From Lemma E.2, each entry in BV are
independent. By Lemma E.1, we know the condition number of BV , which is (BV ) is independent
of D, and we have

P
 
(BV ) 6

p
H +

p
N + t

p
H �

p
N � t

!
> 1� 2e�t2/2, t > 0.

Now we consider Z = AB>BA>. Notice the non-zero eigen values of Z are the same as BA>AB>,
then we consider BA>AB>,

BA>AB> = BV ⌃WW>⌃>V >B> = BV ⌃2V >B>.

Notice the non-zero eigen values of BV ⌃2V >B> are the same as ⌃2BV V >B>, we can derive

(Z) = (⌃2BV V >B>) 6 ̂2
· 2(BV ),

where ̂ is condition number of A and the inequality is because the property of square and invertible
matrix. So we have with probability at least 1� 2e�t2/2,

(Z) 6 ̂2

 p
H +

p
N + t

p
H �

p
N � t

!2

.
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F The Proof of Theorem 4.3 and Details about Algorithm 2

F.1 The CHOCO-GOSSIP Protocol

For completeness, we describe the CHOCO-GOSSIP protocol [Koloskova et al., 2019] for decentralized
average consensus with compressed communication as follows. Notice the number of gossip rounds
Tg is dependent to the error ✏ as discussed in Fact 1. Note that the protocol uses the compressor Q(·)
for compressed communication, for example, this can be the randomized quantizer, see [Koloskova
et al., 2019] for other examples. The protocol is summarized below:

Algorithm 3 CHOCO-GOSSIP
Input: step size �; initial vectors g01 , . . . , g0K ; gossip rounds Tg; compressor Q(.); mixing matrix
W ; neighbor sets N1, . . . ,NK .
Initialize: ĝ0i = 0, 8i 2 [K].
for t in 0, . . . , Tg � 1 do
Compress: Each agent i compress the difference, qti = Q(gti � ĝti)
Communicate: Each agent i receives qtj from neighbor j 2 Ni and update ĝt+1

j = ĝtj + qtj
Aggregation: Each agent i combines received vectors, i.e.,

gt+1
i = gti + �

X

j2Ni

wij(ĝ
t+1
j � ĝt+1

i )

end for
Output: gTg

i at each agent i.

To derive the number of bits required in Theorem 4.3, we focus on using the random quantizer for
Q(.), i.e., for x 2 Rd, s 2 N+ and ⌧ = (1 +min{d/s2,

p
d/s}), we have

Q(x) =
sign(x) · kxk

s⌧
·

�
s
|x|

kxk
+ ⇠

⌫
,

where ⇠ s Uniform[0, 1]d and sending Q(x) across the network requires d log(s+ 1) + d+ 64 bits
of communication.

F.2 The Proof of Theorem 4.3

Since F (x) = Bx, F̃ (y) = B>y, the consensus error can be expressed as Et
i := ḡti �

1
n

Pn
j=1 Brfj(✓tj). We also denote the deviation of locally computed gradient as �Gt

i :=
1
n

Pn
j=1 B(rfj(✓tj) � rfj(✓ti)). Note that kEt

ik  ✏̄/(t + 1). We first observe the updated it-
erate,

✓t+1
i = ✓ti � ⌘B>ḡti �

1

n

nX

j=1

B>Brfj(✓
t
j) +

1

n

nX

j=1

B>Brfj(✓
t
j)

= ✓ti � ⌘

2

4B>Et
i +

1

n
B>B

nX

j=1

�
rfj(✓

t
j) +rfj(✓

t
i)�rfj(✓

t
i)
�
3

5

= ✓ti � ⌘
⇥
B>Et

i +B>�Gt
i +B>Brf(✓ti)

⇤

Next, we observe that the objective function value evolves as,

f(✓t+1
i ) =

1

2

nX

j=1

kAj✓
t+1
i � bjk

2

=
1

2

nX

j=1

⇢
kAj✓

t
i � bjk

2
� 2⌘

⌦
A>

j (Aj✓
t
i � bj)

�� B>Et
i +B>�Gt

i +B>Brf(✓ti)
↵
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+ ⌘2kAj

⇥
B>Et

i +B>�Gt
i +B>Brf(✓ti)

⇤
k
2

�

 f(✓ti)� ⌘
⌦
rf(✓ti)

�� B>Brf(✓ti)
↵
+

1

2

nX

j=1

2⌘2kAjB
>Brf(✓ti)k

2

+
1

2

nX

j=1

⇢
� 2⌘

⌦
Aj✓

t
i � bj

�� AjB
>(Et

i +�Gt
i)
↵
+ 2⌘2kAjB

>(Et
i +�Gt

i)k
2

�

 (1� 2�min(Z)⌘ + 2�2
max(Z)⌘2)f(✓ti)

+
nX

j=1

⇢
� ⌘

⌦
Aj✓

t
i � bj

�� AjB
>(Et

i +�Gt
i)
↵
+ ⌘2kAjB

>(Et
i +�Gt

i)k
2

�
(31)

where the last inequality requires the observations

⌘2
nX

j=1

kAjB
>Brf(✓ti)k

2 = ⌘2(A✓ti � b)>(AB>BA>)>AB>BA>(A✓ti � b)  2�2
max(Z)⌘2f(✓ti),

⌦
rf(✓ti)

�� B>Brf(✓ti)
↵
� �min(Z)f(✓ti).

It remains to deal with the error terms separately. Observe that
nX

j=1

⌘
⌦
Aj✓

t
i � bj

�� AjB
>(Et

i +�Gt
i)
↵

 ⌘
nX

j=1

⇢
�min(Z)

2
kAj✓

t
i � bjk

2 +
1

2�min(Z)
kAjB

>(Et
i +�Gt

i)k
2

�

= �min(Z)⌘f(✓ti) +
⌘

2�min(Z)

nX

j=1

kAjB
>(Et

i +�Gt
i)k

2,

and
nX

j=1

kAjB
>(Et

i +�Gt
i)k

2

= kAB>(Et
i +�Gt

i)k
2 = (Et

i +�Gt
i)

>BA>AB>(Et
i +�Gt

i)

 �max(Z)kEt
i +�Gt

ik
2
 2�max(Z)(kEt

ik
2 + k�Gt

ik
2)

Putting together into (31) and setting ⌘ = �min(Z)
4�2

max(Z) yields

f(✓t+1
i ) 

✓
1�

�min(Z)

8�max(Z)

◆
f(✓ti) + (⌘2 +

⌘

2�min(Z)
) · 2�max(Z)(kEt

ik
2 + k�Gt

ik
2). (32)

To bound k�Gt
ik

2, we observe that by the algorithm and the initial condition ✓0i = ✓0j , for any t � 0,

✓t+1
j � ✓t+1

i = ✓tj � ✓ti � ⌘(Et
j � Et

i ) = �⌘
tX

s=0

(Es
j � Es

i )

k✓t+1
j � ✓t+1

i k
2
 2⌘2

tX

s=0

[kEs
j k

2 + kEs
i k

2]  4⌘2
tX

s=0

(
✏̄

s+ 1
)2 

2⌘2⇡2✏̄2

3
, (33)

where the last inequality applied
P1

s=1 s
�2 = ⇡2/6, together with Fact 1 and the assumption

✏t = ✏̄/(t+ 1). Then, the error �Gt
i can be bounded by

k�Gt
ik

2 =
1

n2
k

nX

j=1

BA>
j Aj(✓

t
j � ✓ti)k

2


1

n2

nX

j=1

kBA>
j Ajk

2
k✓tj � ✓tik

2
(33)


2⌘2⇡2✏̄2

3n2

nX

j=1

kBA>
j Ajk

2. (34)
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With the notation �BA>A := 1
n

Pn
j=1 kBA>

j Ajk
2, (32) gives us

f(✓t+1
i )

(34)
 (1�

1

82
)f(✓ti) +

✓
⌘2 +

⌘

2�min(Z)

◆
· 2�2

max(Z)

✓
✏2t +

2⌘2⇡2✏̄2

3n
�BA>A

◆

 (1�
1

82
)t+1f(✓0i ) +

tX

s=0

✓
1�

�min(Z)⌘

2

◆t�s✓
⌘2 +

⌘

2�min(Z)

◆
· 2�2

max(Z)

✓
✏2s +

2⌘2⇡2✏̄2

3n
�BA>A

◆

 (1�
1

82
)t+1f(✓0i ) +

1

6�2
min(Z)

✓
1 +

�2
min(Z)

4n�4
max(Z)

�BA>A

◆
(�2

min(Z) + 2�2
max(Z))⇡2✏̄2,

where we have simplified notations by setting  = �max(Z)
�min(Z) . By adjusting ✏̄, we can achieve

dimension-independent linear convergence.

Communication Complexity Let ⇠t =
Pn

i=1 kg
t
i �

1
n

Pn
j=1 g

t
jk

2. We recall from Fact 1 that
achieving a consensus error of ✏̄/(t+ 1) at iteration t via CHOCO-GOSSIP requires

82

�2!
log

(t+ 1)⇠t
✏̄

rounds of communication.

Applying b-bits random quantization to our projected H-dimensional vector, we have

1

!
= 1 +min{H/(2b � 1)2,

p

H/(2b � 1)}.

Fix ✏ > 0, to find an ✏-optimal solution, we set

✏̄ :=

s

✏
3

⇡2(1 + 2)

✓
1 +

1

4n2�2
max(Z)

�BA>A

◆�1

and t � T✏ := 82 log(2f(✓0i )/✏). Altogether, the number of communication rounds for achieving
an ✏ optimal solution is bounded by:

82

�2!

T✏X

t=1

log
(t+ 1)⇠t

✏̄


82T✏

�2!

✓
max
t2[T✏]

log(⇠t) + log(T✏ + 1) + log(1/✏̄)

◆

= O

✓
2

�2!

�
log

1

✏
+ log(1 +

1

n�2
max(Z)

�BA>A)
�
log

1

✏

◆

where we have assumed that maxt2[T✏] log(⇠t) is dominated by max{log(1/✏̄), log(T✏)}.

Each communication round requires to send O((b+ 1)H) bits per agent. We can optimize the choice
of b by

b? = argmin
b

bH!�1 = argmin
b

n
min

�
bH + bH2/(2b � 1)2, bH + bH3/2/(2b � 1)

 o

) b?H!�1 = O(H logH), with b? = log(H1/2 + 1)

Under the properties of A,B described in Proposition 1, by Lemma E.1, simplifying kBA>
j Ajk

shows that with probability 1� ⇣,

kBA>
j Ajk  kAjk

2
kBk 

✓
p

H +
p

D +

r
2 log

2

⇣

◆3

As such, we have �BA>A 

⇣p
H +

p
D +

q
2 log 2

⇣

⌘6
. Putting together gives the communication

complexity upper bound of Cop and the proof is completed.
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Figure 2: Overparameterized Kernel Regression
with Alg. 2. Testing MSE against the number of bit
transmitted on the whole network, averaged over 5
random seeded runs.

D H Compression Ratio
1557 1557 1.099
6217 3000 0.529
6217 6000 1.057
24849 3000 0.132
24849 6000 0.264

Table 1: Communication Compression
Ratio of Alg. 2 against vanilla DGD
with double precision. 8-bits quantiza-
tion is applied in CHOCO-GOSSIP and the
average rounds of gossip Tg is 7.78.

Figure 3: Overparameterized Kernel Regression with Alg. 2. (Left) Additional simulation results
for large scale overparameterization (19⇥). (Right) Additional simulation results of Alg. 2 combining
with local updates, compared to when no local updates are applied.

F.3 Additional Numerical Result

Fig. 2 shows the test MSE against communication cost for the cases of N = 2500 and N = 5000.
The models are evaluated on the testing dataset of 23175 samples. Our result indicates that increasing
the dimension of kernel features decreases the testing MSE. It suggests that overparameterization
improves generalization on unseen data. The communication budget limits the number of training
samples, thus bottlenecks the generalization accuracy. In the scenario where both computation and
communication budgets are limited, Fig. 2 shows that the generalization power of Alg. 2 benefits more
from spending into communication budget (thus more training samples) than from overparametrizing,
under the situation where H ⌧ D and more training samples are available with no cost. Table 1
shows the compression ratio for the schemes used in our experiments.

Lastly, Fig. 3 (left) provides additional results for the large-scale overparameterized scenario, where
D
N is as large as 19 which is close to the degree of over-parameterization in practice. Comparing the
two cases with D = 24, 849, D = 97, 111 where the latter case uses 4 times more parameters, we
observe that the bit complexity to reach an MSE of 10�5 only increases by 1.4 times. Fig. 3 (right)
examines empirically the effects of running Llocal = 2 local steps on the train MSE performance
against the number of transmitted bits.
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G The Proof of Theorem 4.4

G.1 Additional Notations

Let us further define some notations before we go into the details of the proof. Denote the parameter
in t-th iteration as ✓t = (W t

l )
L
l=1; Pl = vec(Ol) as the vectorized output from layer l; the pre-

activation output from layer l as Ql. Similarly, we can define Pl,k, Ql,k for each agent. Specifically,
OL = PL = QL. Further, let us define some notations related to the singular values of the weight
matrices.

�̄l =

(
2
3

�
1 + smax(W

0
l )

�
, for l 2 {1, 2}

smax(W
0
l ), for l 2 {3, . . . , L} , �

l
= smin

�
W 0

l

�
, �

i!j
=

jY

l=i

�
l
, �̄i!j =

jY

l=i

�̄l.

(35)

Specifically, �̄l represents the quantity related to the largest singular value of weight matrices for
different layers; �l represents smallest singular value of weight matrices for different layers.

Further, denote �O = smin

⇣
B̃ · a

�
XW 0

1

�⌘
as the smallest singular value of the output from

first hidden layer at initialization multiplied by B̃. Let us define some notations related to gra-
dient. Recall we have defined ul = vec(rWlf(✓)). Let us define the per iteration gradient
as: gtk = (But

2,k, u
t
3,k; · · · ;u

t
L,k) that collects all the (compressed) gradient of each layer. Fur-

ther, let us denote ũt
2,k = B>But

2,k, g̃tk = (ũt
2,k;u

t
3,k; · · · ;u

t
L,k), q

t
k = (zt2,k; z

t
3,k · · · ; z

t
L,k),

q̃tk = (B>zt2,k; z
t
3,k · · · ; z

t
L,k), where zt2,k quantizes But

2,k and ztl,k quantizes ut
l,k for l > 3; denote

z̃t2,k = B>zt2,k. Note, that in the above notation, both quantities with ·̃ has the original dimension
D. Further, q̃tk is the actual vector that gets used at k-th agent, while g̃tk represents a “virtual" vector
which has not been quantized.

Now let us define:

ut
l :=

KX

k=1

ut
l,k, ut = (ut

2, u
t
3, · · · , u

t
L),

gt :=
KX

k=1

gtk = (But
2;u

t
3; · · · ;u

t
L), g̃

t :=
KX

k=1

g̃tk = (ũt
2;u

t
3; · · · ;u

t
L),

qt :=
KX

k=1

qtk = (zt2; z
t
3; · · · ; z

t
L), q̃

t :=
KX

k=1

q̃tk = (z̃t2; z
t
3; · · · , z

t
L).

Further, we define �W t
l , �̃W t

l , which are the unvectorized ũt
2 and q̃t2 for l = 2 and unvectorized ũt

l
and q̃tl for l > 3:

vec(�W t
l ) =

⇢
ũt
2 l = 2

ut
l l > 3,

vec(�̃W t
l ) =

⇢
z̃t2 l = 2
ztl l > 3.

(36)

That is, �W t
l , �̃W t

l 2 Rnl�1⇥nl .

Using the above notation, the ‘Update’ step in Algorithm 1, it can be expressed as

✓t+1 = ✓t � ⌘q̃t. (37)

Denote ⌃t
l = diag [vec (a0 (Qt

l))] 2 RNnl⇥Nnl , which is a diagonal matrix, whose diagonal entries
are the vectorized gradient of the activation function in each layer. Recall that we have defined
B = In2 ⌦ B̃ in Section 4.2, where B̃ is a Gaussian random matrix of size H ⇥ n1. For convenience,
let us assume smax(B) = smax(B̃) > 1.

G.2 Useful Lemma

Now we first state a collection of results from [Nguyen and Mondelli, 2020] that will be used in our
proof. Notice that in the aforementioned work, the same pyramidal neural network structure and the
l2 loss function are used, so the loss function is the same as (6). It follows that all the properties of
the loss function can be reused.
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Lemma G.1. Suppose Assumption 4 and 5 hold, for each ✓t, we have the following relations:

1. ut
l =

⇣
Inl ⌦Ot>

l�1

⌘ LY

p=l+1

⌃t
p�1

�
W t

p ⌦ IN
�
(Ot

L � y), (38)

2.
@Ot

L

@ vec(Wl)
=

L�l�1Y

p=0

⇣
W t>

L�p ⌦ IN
⌘
⌃t

L�p�1

�
Inl ⌦ F t

l�1

�
, (39)

3.
��ut

2

�� > smin

⇣
Ot

1
>
⌘ LY

p=3

smin

�
⌃t

p�1

�
smin

�
W t

p

� ��Ot
L � y

�� , (40)

4.
��ut

l

�� 6 kXkF

LY

p=1
p 6=l

smax(W
t
p)
��Ot

L � y
�� , (41)

5. kgtk 6 smax(B̃)LkXkF

LQ
l=1

smax(W t
l )

min
l2[L]

smax(W t
l )
kOt

L � yk. (42)

Furthermore, given with ✓a and ✓b, if ⇤̄l � max
�
smax (W a

l ) , smax

�
W b

l

��
for some scalars ⇤̄l. Let

R̃ :=
LQ

p=1
max

�
1, ⇤̄p

�
. Then, for l 2 [L],

6.
��Oa

L �Ob
L

��
F
6

p

LkXkF

LQ
l=1

⇤̄l

min
l2[L]

⇤̄l

��✓a � ✓b
�� , (43)

7.

�����
@ vec (OL(✓a))

@ vec (W a
l )

�
@ vec(OL

�
✓b
�
)

@ vec
�
W b

l

�
�����
2



p

LkXkF R̃
⇣
1 + L⇢kXkF R̃

⌘��✓a � ✓b
�� . (44)

8.
��vec

�
rf(✓a)

�
� vec

�
rf(✓b)

���

6

0

BBB@
L
p

LkXk
2
F

LQ
l=1

⇤̄2
l

min
l2[L]

⇤̄2
l

+ L
p

LkXkF R̃(1 + L⇢kXkF R̃)

1

CCCA
k✓a � ✓bk, (45)

Now let us discuss the properties above one by one. The relations (38) and (39) show how the
vectorized gradients of each layer, as well as the vectorized gradients of the output over each layer
are computed, which are true regardless of the algorithm; see the first and the second equalities in
[Nguyen and Mondelli, 2020, Lemma 4.1], respectively; (40) is the lower bound of the norm of the
vectorized gradient over W2, which is true as long as the network has the pyramidal structure (and
regardless of the algorithm); see the third relation in [Nguyen and Mondelli, 2020, Lemma 4.1];
(41) is the upper bound of the norm of vectorized gradient over Wl, which is true regardless of the
algorithm; see the third relation in [Nguyen and Mondelli, 2020, Lemma 4.2]; (42) can be derived by
summing over l in (41). To be specific, we have

kgtk 6 kBut
2k+

LX

l=3

kut
lk 6 smax(B̃)kut

2k+
LX

l=3

kut
lk

6 smax(B̃)
LX

l=2

kut
lk

6 smax(B̃)
LX

l=2

kXkF

LY

p=1
p 6=l

smax(Wp) kOL � yk
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6 smax(B̃)LkXkF

LQ
l=1

smax(W t
l )

min
l2[L]

smax(W t
l )
kOt

L � yk.

The relation in (43) gives the upper bound of the gap between output layer with two sets of parameters
✓a and ✓b, and it is regardless of the algorithm; see [Nguyen and Mondelli, 2020, Eq. (19)]; Similarly,
(44) states the gap between the vectorized Jacobian matrix over Wl; see [Nguyen and Mondelli, 2020,
Eq. (20)]; Finally, (45) computes the Lipschitz constants for the gradient, it is independent of the
algorithm, and comes from plugging in (42), (43) and (44) into [Nguyen and Mondelli, 2020, Eq.
(22)].

G.3 Initialization Strategy

As stated in Theorem 4.4, special initialization strategy is required. Now let us describe the initializa-
tion in detail. Recall the definition of �̄l and �l in (35) and �O = smin

�
B̃ · a(XW 0

1 )
�
. Initialize ✓0

such that the following holds:

�2
O > 48 · 6L�2

kXkF �̄1!Ls2max(B̃)kO0
L � yk

(⌫2)L�2�2
3!L

max

✓
1

�̄2
,max

l>3

2

�̄l�l

◆
. (46)

To satisfy the above relation, it requires that kO0
L � yk cannot be large, which means the ✓0 should

not be far from the optimal solution so that the initial loss is small. Further, it requires the gap
between �̄l and �l is small. From (45), we know that small �̄l induces small Lipschitz constant for
gradient, so the condition requires that the Lipschitz constant is not very large, which further implies
that the optimization landscape is smooth. On the other hand, from (40), we know the lower bound
of the norm of ut

2 is related to �l. So the initialization condition guarantees the lower bound of kut
2k

is not too small, which avoids vanished gradient.

The initialization can be realized by using the procedure suggested [Nguyen and Mondelli, 2020,
Sec. 3.1]. The idea is that we can scale up W 0

1 to make �O not too small, and then randomly choose
W 0

2 with small entries. Then for all l > 3, set W 0
l as scaled identity matrices (top block as scaled

identities) with large entries.

G.4 Formal Statement and Proof of Theorem 4.4

First, let us state the formal Theorem 4.4:

Theorem 4.4 Consider using Alg. 1 to solve the problem (6), with X being full row rank. Suppose

✓0 is initialized as (46). Choose B̃ such as rank(B̃O0
1
>
) = N ; choose F̃ (·) and F (·) as in (7). Set

stepsize ⌘ and bits number b as following:

⌘ =
�

Q0⇤2
, b = max

�
log(

1

⌧
+ 1), b0

�
,

where � is defined in (47), ⌧ is defined in (50), ⇤ is defined in (48), Q0 is defined in (49). The

following hold true:

f(✓t+1) 6 (1�
1

4
⌘ · �)f(✓t).

To compute an ✏-optimal solution (6), each agent is required to transmit:

4b

⌘�
· (Hn2 +

L�1X

l=2

nlnl+1) log(f(✓
0)/✏) bits/agent.

Proof. To begin with, let us set the following constants:

↵ = 1�
1

4
⌘�, �t = �

p
(↵)t+1f(✓0), ⌘ =

�

Q0⇤2
, � = 6

p
2smax(B̃)⌘Q0⇤, (47)
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C1 :=
�

16
p
2Hn1n2

2kB̃k1�kO0
L � yk

, C2 :=
�min

l>3
�l

32
p
2�n2n3kO0

L � yk
,

C3 :=
1

p
2⌘Hn1n2

2kB̃k1�kO0
L � yk

, C4 :=
min
l>3

�l

2
p
2⌘�n2n3kO0

L � yk

C5 :=

vuuut
�

4⌘
⇣

1
2 + 1

�

⌘✓
Hn1n2

2kB̃k21 +
LP

l=3
n2
l�1n

2
l

◆
⇤2�2

,

C6 :=

q
1� 1

4⌘��
1
6

1 + ⌘smax(B̃)Q0

✓
Hn2 +

LP
l=3

nl�1nl

◆ ,

where

� =

✓
1

2
⌫

◆L�2

�2
O�

2
3!L, ⇤ =

✓
3

2

◆L�1

· Ls2max(B̃)kXkF
�̄1!L

min
l>2

�̄l
(48)

Q0 = L
p

L

✓
3

2

◆2(L�1)

kXk
2
F

QL
l=1 �̄

2
l

min
l2[L]

�̄2
l

+ L
p

LkXkFR (1 + L⇢kXkFR) , (49)

R = s2max(B̃)
LY

p=1

max

✓
1,

3

2
�̄p

◆
.

Define

⌧ := min(C1, C2, C3, C4, C5, C6). (50)

Further, let us define

⇤l :=

✓
3

2

◆L�1

kXkF
�̄1!L

�̄l
. (51)

For convenience, let us assume Q0 > 1. Let us explain the above constants: ↵ is the constants based
on which the objective function contracts; ⌘ is the stepsize; � is related to the lower bound of kut

2k;
⇤ is related to the upper bound of kg̃tk; Q0 is the Lipschitz constant for the full gradient; ⌧ is the
parameter related to quantization; ⇤l is related to the upper bound for kut

lk.

The majority of the proof consists of showing the following relations by induction:
8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

smax (W t
l )

(i)
6 3

2 �̄l, l = {2, 3, · · · , L},

smin (W t
l )

(ii)
> 1

2�l, l 2 {3, . . . , L},

smax(W t
2 + ⌘�̃W t�1

2 � ⌘�W t�1
2 )

(iii)
6 3

2 �̄l, l = {2, 3, · · · , L},

smin(W t
2 + ⌘�̃W t�1

2 � ⌘�W t�1
2 )

(iv)
> 1

2�l, l = {3, · · · , L},

f(✓t�1
� ⌘g̃t�1)

(v)
6 (1� ⌘�)f(✓t�1),

f(✓t)
(vi)
6 (↵)tf(✓0),

kBut
2 � zt2k1

(vii)
6 ⌧�t�1 = ⌧�

p
(↵)tf(✓0),

kut
l � ztlk1

(viii)
6 ⌧�t�1 = ⌧�

p
(↵)tf(✓0).

(52)

Let us explain the meanings of the above relations. Relations (i) and (ii) provide the upper and lower
bounds of the singular values of weight matrices in each iteration; (iii) and (iv) give the upper and
lower bound of the singular values of weight matrices after one step update without quantization;
(v) shows the decrease of loss function after one step of update without quantization; (vi) shows the
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linear decrease of loss function in each iteration; (vii) and (viii) provide the error bound of gradient
after quantization.

Compared to the induction proof in [Nguyen and Mondelli, 2020], the key challenges are: (1) Our
analysis includes the quantization of gradient; (2) The update of parameter is not the simple gradient
but a function of gradient.

Our proof consists of two steps:

Step 1: We show the above relations hold for t = 1.

Step 2: We show that if the above relations hold for t, then they hold for t+ 1.

We show Step 1 first. For simplicity, we set g0 = q0, it is easy to verify the relations hold if we
choose q0 in Algorithm 1 with large enough C. Step 1 will be shown in the following five substeps:
(a) Show (i) and (ii) in (52); (b) Show (iii) and (iv) in (52); (c) Show (v) in (52); (d) Show (vi) in
(52); (e) Show (vii) and (viii) in (52).

(Step 1.a) We will show
⇢
smax

�
W 1

l

�
6 3

2 �̄l l 2 [L], l 2 {2, 3, . . . , L}
smin

�
W 1

l

�
> 1

2�l, l 2 {3, . . . , L}.

We will use the fact that, according to the update rule in (37), we have q0 = g0.

For l = 2, we have:

kW 1
2 �W 0

2 kF
(i)
= ⌘kz̃02k = ⌘kB>Bu0

2k
(ii)
6 ⌘s2max(B̃)ku0

2k

(iii)
6 ⌘s2max(B̃)⇤2kO

0
L � yk

(iv)
6

1X

t=0

⌘s2max(B̃)⇤2kO
0
L � yk ·

p
↵
t

6 ⌘s2max(B̃)⇤2kO
0
L � yk

1

1� ↵
(1 + ↵

1
2 )

(v)
6 8s2max(B̃)⇤2

�
kO0

L � yk

(vi)
6 1

2
,

where (i) is from the update rule in (37); (ii) extracts the largest singular value of B; (iii) uses the
upper bound of the gradient norm in (41) and the definition of ⇤2 in (51) ; (iv) uses the fact that
1P
t=0

p
↵ > 1; (v) plugs in the definition of ↵ and 1+↵

1
2 < 2; (vi) is because the initialization strategy

in (46).

Next, we show the case where l > 3. We have

kW 1
l �W 0

l kF
(i)
= ⌘ku0

l k
(ii)
6 ⌘⇤lku

0
l k

(iii)
6

1X

t=0

⌘⇤lkO
0
L � yk ·

p
↵
t

= ⌘⇤lkO
0
L � yk

1

1� ↵
1
2

6 ⌘⇤lkO
0
L � yk

1

1� ↵
(1 + ↵

1
2 )

(iv)
6 8⇤l

�
kO0

L � yk

(v)
6 1

4
�l <

1

2
�l,
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where (i) is because the update of parameter in (37); (ii) uses the upper bound of the gradient norm in

(41) and definition of ⇤l in (51); (iii) uses the fact that
1P
t=0

p
↵ > 1; (iv) plugs in the choice of ↵ and

1 + ↵
1
2 < 2; (v) comes from the initialization strategy in (46).

Applying Weyl’ inequality to the matrices W 0
l and (W 1

l �W 0
l ), we have

8
<

:

smax(W 1
l ) 6 �̄l +

1
2 �̄l =

3
2 �̄l, l 2 {3, · · · , L},

smax(W 1
l ) 6 �̄l + 1 = 3

2 �̄l, l = 2,
smin(W 1

l ) > �l �
1
2 �̄l =

1
2�l, l 2 {3, . . . , L}.

This concludes the proof of this substep.

(Step 1.b) We will show
⇢
smax(W 1

l + ⌘�̃W 0
l � ⌘�W 0

l ) 6 3
2 �̄l, l = {2, 3, · · · , L},

smin(W 1
l + ⌘�̃W 0

l � ⌘�W 0
l ) > 1

2�l, l = {3, · · · , L}.

Since we have q̃0 = g̃0, it is easy to derive that

k⌘�̃W 0
l � ⌘�W 0

l kF = ⌘k�̃W 0
l � ⌘�W 0

l k = ⌘kq̃0 � g̃0k = 0.

Thus we can conclude
⇢
smax(W 1

l + ⌘�̃W 0
l � ⌘�W 0

l ) = smax(W 1
l ) 6 3

2 �̄l, l = {2, 3, · · · , L}
smin(W 1

l + ⌘�̃W 0
l � ⌘�W 0

l ) = smax(W 1
l ) > 1

2�l, l = {3, · · · , L}

This concludes the proof for this substep.

(Step 1.c) We will show
f(✓0 � ⌘g̃0) 6 (1� ⌘↵0)f(✓

0).

From (Step 1.a) and (Step 1.b) we know

max
�
smax(W

0
l ), smax(W

1
l )
�
6 3

2
�̄l.

Using the above relation, we can upper bound the differences of the gradients by using (45). More
specifically, using the the definition of Q0 in (49), we have

kvec(rf(✓1))� vec(rf(✓0))k 6 Q0k✓
1
� ✓0k, (53)

where we repeat the definition of Q0 below (where R is defined in (49)):

Q0 = L
p

L

✓
3

2

◆2(L�1)

kXk
2
F

LQ
l=1

�̄2
l

min
l2[L]

�̄2
l

+ L
p

LkXkFR (1 + L⇢kXkFR) ,

Further, it is easy to verify that for any ✓̂0 between ✓0 and ✓1, we still have smax(Wl(✓̂0)) 6 3
2 �̄l. So

we can apply the same argument leading to (53), and obtain:

kvec(rf(✓̂0))� vec(rf(✓0))k 6 Q0k✓̂
0
� ✓0k, 8✓̂0 = ✓0 + �(✓1 � ✓0), � 2 [0, 1]. (54)

As long as for any ✓̂0 (54) holds, we can apply Decent Lemma. More specifically, we have

f(✓0 � ⌘g̃0)
(i)
6 f(✓0)� ⌘hu0, g̃0i+

Q0

2
⌘2kg̃0k2

(ii)
= f(✓0)� ⌘hu0

2, ũ
0
2i � ⌘

LX

l=3

ku0
l k

2 +
Q0

2
⌘2kg̃0k2

6 f(✓0)� ⌘hu0
2, ũ

0
2i+

Q0

2
⌘2kg̃0k2, (55)

where (i) uses Decent Lemma, (ii) uses the fact that u0 is the stacked version of {u0
i }i�2, and g̃0 are

stacked versions of {u0
i }i�3 and ũ0

2.
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Next, we will bound the inner product on the right hand side of the above relation:
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�
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�
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> (
1
2
⌫)2(L�2)�2
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2
3!L

kO0
L � yk2, (56)

where (i) uses the expression of u0
2 by (38) and ũ0

2 = B>Bu0
2; (ii) and (iii) are from the property of

Kronecker product; (iv) is from Assumption 5 and fact that smax(W 0
l ) > 1

2�l.

Next, we upper bound the term kg̃0k2 in (55). We have

kg̃0k2
(i)
= kB>Bu0

2k
2 +

LX

l=3

ku0
l k

2
(ii)
6 s4max(B̃)ku0

2k
2 +

LX

l=3

ku0
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2

(iii)
6 s2max(B̃)(kBu0

2k
2 +

LX

l=3

ku0
l k

2) = s2max(B̃)kg0k2

(iv)
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(v)
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)2(L�1)L2s4max

⇣
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⌘
kXk
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�̄2
1!L

min
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�̄2
l

kO0
L � yk2,

(vi)
= ⇤2

kO0
L � yk2 (57)

where (i) uses the definition of g̃0; (ii) extracts the largest singular value of B; (iii) is because we
assume smax(B̃) > 1; (iv) uses the upper bound of gradient in (42), (v) comes from the fact that
smax(W 0

l ) > 1
2 �̄l; (iii) is because the definition of ⇤ in (48).

Recall that we have defined

� := (
1

2
⌫)2(L�2)�2

O�
2
3!L.

If we choose ⌘ = �
Q0⇤2 , then plug (56) and (57) into (55), we obtain

f(✓0 � ⌘g̃0) = f(✓0)� 2⌘�f(✓0) + ⌘�f(✓0) = (1� ⌘�)f(✓0). (58)

(Step 1.d) We will show

f(✓1) 6 ↵f(✓0).

Since g̃0 = q̃0, we have f(✓1) = f(✓0 � ⌘g̃0)
(i)
6 (1 � ⌘�)f(✓0) < ↵f(✓0), where (i) is because

(58). This completes the proof of this step.

(Step 1.e) We will show that:
⇢
kBu1

l � v1l k1 6 ⌧�0, l = 2
ku1

l � v1l k1 6 ⌧�0, l = {3, · · · , L}.
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Notice that for l = 2, we have

kBu1
2 � z02k1

(i)
6 kBu1

2 �Bu0
2k+ kBu0

2 � z02k1
(ii)
6 smax(B̃)ku1

2 � u0
2k

(iii)
6 smax(B̃)kvec(rf(✓1))� vec(rf(✓0))k

(iv)
6 smax(B̃)Q0k✓

1
� ✓0k

(v)
= ⌘smax(B̃)Q0kq̃

0
k

(vi)
= ⌘smax(B̃)Q0kg̃

0
k

(vii)
6 ⌘smax(B̃)Q0⇤kO

0
L � yk

(viii)
6 �

p
↵f(✓0) = �0,

where (i) uses triangle inequality; (ii) extracts the largest singular value of B and uses g0 = q0; (iii)
is because ku1

2 � u0
2k 6 ku1

� u0
k; (iv) is from (53), which uses (45) and definition of Q0 in (49);

(v) uses the update rule in (37); (vi) is because g0 = q0; (vii) uses the definition of ⇤ in (48); (viii)
uses the definition of � in (47) and the fact ↵ = 1� �2

4Q0⇤2 > 1� 1
4 = 3

4 .

Then by Lemma 4.1, with the correspondence that c = Bu1
2, p = z02 , r = �0, we can obtain

kz12 �Bu1
2k

(i)
= kquant(Bu1

2, z
0
2 , �

0, b)�Bu1
2k1

(ii)
6 ⌧�0,

where (i) comes from the ‘Quantize’ step in Algorithm 1; (ii) is from the first relation in Lemma 4.1.

For l > 3, we have

ku1
l � v0l k1

(i)
6 ku1

l � u0
l k+ ku0

l � z0l k1
(ii)
6 kvec(rf(✓1))� vec(rf(✓0))k

(iii)
6 Q0k✓

1
� ✓0k

(iv)
= ⌘Q0kq̃

0
k

(v)
= ⌘Q0kg̃

0
k

(vi)
6 ⌘Q0⇤kO

0
L � yk

(vii)
6 �

p
↵f(✓0) = �0,

where (i) uses triangle inequality; (ii) is because g0 = q0 and uses the fact ku0
l � z0l k 6 kg0 � q0k;

(iii) is from (53); (iv) uses the update rule in (37); (v) is because g̃0 = q̃0; (vi) uses the upper bound
of kg̃0k in (42) and the definition of ⇤ in (48); (vii) comes from the choice of � in (47) and the fact
↵ = 1� �2

4Q0⇤2 > 1� 1
4 = 3

4 .

Then by Lemma 4.1, with the correspondence that c = u1
l , p = z0l , r = �0, we can obtain

kzt+1
l � ut+1

l k
(i)
= kquant(u1

l , z
0
l , �

0, b)� u1
l k1

(ii)
6 ⌧�0.

where (i) comes from the ‘Quantize’ step in Algorithm 1; (ii) is from the first relation in Lemma 4.1.
Now we have showed all the induction assumptions hold for t = 1.

Next, we show Step 2. Given these inequalities in (52) hold for iteration t, we aim to show that they
hold for t+ 1. We prove Step 2 in five substeps similarly as in the proof of Step 1.

(Step 2.a) We will show that
⇢
smax

�
W t+1

l

�


3
2 �̄l l 2 [L], l 2 {2, 3, . . . , L}

smin

�
W t+1

l

�
> 1

2�l, l 2 {3, . . . , L}.

For l = 2, we have:

kW t+1
2 �W 0

2 kF

(i)
6

tX

r=0

kW r+1
2 �W r

2 kF

(ii)
6

tX

r=0

kz̃r2k

(iii)
6 ⌘

tX

r=0

(kũr
2k+ kũr

2 � z̃r2k)

(iv)
6 ⌘

tX

r=0

(s2max(B̃)⇤2kO
r
L � yk+ n1n2kB

>(Bur
2 � zr2)k1)
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(v)
6 ⌘

tX

r=0

(s2max(B̃)⇤2kO
r
L � yk+Hn1n

2
2kB̃

>
k1kBur

2 � zr2k1)

(vi)
6 ⌘

tX

r=0

�
s2max(B̃)⇤2kO

r
L � yk+Hn1n

2
2kB̃

>
k1⌧�

p
(↵)rf(✓0)

�

(vii)
= (⌘s2max(B̃)⇤2 +

p
2

2
⌘Hn1n

2
2kB̃

>
k1⌧�)kO0

L � yk
tX

r=0

↵
r
2

= (⌘s2max(B̃)⇤2 +

p
2

2
⌘Hn1n

2
2kB̃

>
k1⌧�)kO0

L � yk
1� ↵

r+1
2

1� ↵
1
2

(viii)
6 (⌘s2max(B̃)⇤2 +

p
2

2
⌘Hn1n

2
2kB̃

>
k1⌧�)kO0

L � yk
1

1� ↵
(1 + ↵

1
2 )

(ix)
6 8(s2max(B̃)⇤2 +

p
2
2 Hn1n2

2kB̃
>
k1⌧�)

�
kO0

L � yk

(x)
6 1

4
+

1

4
=

1

2
< 1, (59)

where (i) uses triangle inequality; (ii) uses the update rule in (37); (iii) uses triangle inequality;
(iv) extracts the largest singular value of B>B, the upper bound of kut

2k in (41), definition of ⇤2

in (51) and the relationship between l2 and l1 norm; (v) uses the fact that kB>(Bur
2 � zr2)k1 6

Hn2kB̃k1kBur
2� zr2k1; (vi) uses the induction assumption kBur

2� zr2k1 6 ⌧�r�1 and definition
of �r�1; (vii) reorganizes the terms; (viii) is because 0 < ↵ < 1; (ix) uses 1 + ↵

1
2 < 2 and plugs in

the choice of ↵; (x) is because the initialization strategy in (46) and choice of ⌧ in (50).

So Applying Weyl’ inequality to the matrices W t
2 and (W t+1

2 �W t
2) and (59), we have

smax(W
t+1
2 ) 6 �̄2 + 1 =

3

2
�̄2.

For l > 3, we have the following relation:

kW t+1
l �W 0

l kF

(i)
6

tX

r=0

kW r+1
l �W r

l kF

(ii)
6

tX

r=0

kzrl k

(iii)
6 ⌘

tX

r=0

(kur
l k+ kur

l � zrl k)

(iv)
6 ⌘

tX

r=0

(⇤lkO
r
L � yk+ nl�1nlku

r
l � zrl k1)

(v)
6 ⌘

tX

r=0

�
⇤lkO

r
L � yk+ nl�1nl⌧�

p
(↵)rf(✓0)

�

(vi)
6 (⌘⇤l +

p
2

2
⌘⌧�nl�1nl)kO

0
L � yk

tX

r=0

↵
r
2

(vii)
6 (⌘⇤l +

p
2

2
⌘⌧�nl�1nl)kO

0
L � yk

1

1� ↵

= (⌘⇤l +

p
2

2
⌘⌧�nl�1nl)kO

0
L � yk

1

1� ↵
(1 + ↵

1
2 )

(viii)
6 8(⇤l +

p
2
2 ⌧�nl�1nl)

�
kO0

L � yk

(ix)
6 1

8
�l +

1

8
�l =

1

4
�l <

1

2
�̄l, (60)

where (i) uses triangle inequality; (ii) uses the update rule in (37); (iii) uses triangle inequality; (iv)
uses the upper bound of kut

lk in (41), the definition of ⇤l in (51) and the relationship between l2 and
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l1 norm; (v) uses the induction assumption kur
l � zrl k 6 ⌧�r�1; (vi) uses reorganizes the terms;

(vii) is because 0 < ↵ < 1; (viii) uses the fact 1 + ↵
1
2 < 2 and plugs in the choice of ↵; (ix) is from

the initialization strategy in (46) and the choice of ⌧ in (50).

Applying Weyl’ inequality to the matrices W t+1
l and (W t+1

l �W t
l ), we have

smax(W
t+1
l ) 6 �̄l +

1

4
�̄l =

5

4
�̄l <

3

2
�̄l, smin(W

t+1
l ) > �̄l �

1

2
�l =

1

2
�̄l. (61)

(Step 2.b) We will show that
⇢
smax(W

t+1
l + ⌘�̃W t

l � ⌘�W t
l ) 6 3

2 �̄l, l = {2, 3, · · · , L}
smin(W

t+1
l + ⌘�̃W t

l � ⌘�W t
l ) > 1

2�l, l = {3, · · · , L}.

For l = 2, we have

smax(W
t+1
2 + ⌘�̃W t

2 � ⌘�W t
2)

(i)
6 smax(W

t+1
2 ) + ⌘k�̃W t

2 ��W t
2kF

(ii)
= smax(W

t+1
2 ) + ⌘kz̃t2 � ũt

2k

(iii)
6 smax(W

t+1
2 ) + ⌘n1n2kB

>(Bur
2 � zr2)k1

(iv)
6 smax(W

t+1
2 ) +Hn1n

2
2kB̃

>
k1kBur

2 � zr2k1
(v)
6 smax(W

t+1
2 ) +Hn1n

2
2kB̃

>
k1⌘⌧�

p
(↵)rf(✓0)

(vi)
6 smax(W

t+1
2 ) +Hn1n

2
2kB̃

>
k1⌘⌧�

p
f(✓0)

(v)
6 �̄l +

1

2
+

1

2
=

3

2
�̄2,

where (i) uses Weyl’s inequality and the relationship between the Frobenius norm and l2 norm of
matrix; (ii) uses the definition in (36); (iii) uses the relationship between l2 and l1 norm and the
definition of ũt

2 and z̃t2; (iv) uses the fact that kB>(Bur
2 � zr2)k1 6 Hn2kB̃k1kBur

2 � zr2k1 and
the definition of �r�1; (v) is from the induction assumption kBur

2 � zr2k1 6 ⌧�r�1; (vi) is from the
fact that ↵ 6 1; (v) is from the (59) and choice of ⌧ and � in (50) and (47).

For l > 3, by Weyl’s inequality, we have

smax(W
t+1
l + ⌘�̃W t

l � ⌘�W t
l )

(i)
6 smax(W

t+1
l ) + ⌘k�̃W t

l ��W t
l kF

(ii)
= smax(W

t+1
l ) + ⌘kztl � ut

lk
(iii)
6 smax(W

t+1
l ) + ⌘nl�1nl⌧�

p
(↵)tf(✓0)

(iv)
6 smax(W

t+1
l ) + ⌘nl�1nl⌧�

p
f(✓0)

(v)
6 �̄l +

1

4
�l +

1

4
�l 6

3

2
�̄l, (62)

where (i) uses the Weyl’s inequality on W t+1
l and ⌘(�̃W t

l ��W t
l ); (ii) uses the update rule in (37);

(iii) uses the relationship between l2 and l1 norm and the induction assumption; (iv) is because
↵ < 1; (v) uses (60) and choice of ⌧ and � in (50) and (47).

Similarly,

smin(W
t+1
l + ⌘�̃W t

l � ⌘�W t
l )

(i)
> smin(W

t+1
l )� ⌘k�̃W t

l ��W t
l kF

(ii)
= smin(W

t+1
l )� ⌘kztl � ut

lk
(iii)
> smin(W

t+1
l )� ⌘nl�1nl⌧�

p
(↵)tf(✓0)

(iv)
> smin(W

t+1
l )� ⌘nl�1nl⌧�

p
f(✓0)

(v)
> 3

4
�l �

1

4
�l =

1

2
�l,

where (i) uses Weyl’s inequality on W t+1
l and ⌘(�̃W t

l ��W t
l ); (ii) plugs in the update rule in (37);

(iii) uses the relationship between l2 and l1 norm and the induction assumption; (iv) is because
↵ < 1; (v) comes from (60) and choice of ⌧ and � in (50) and (47).

(Step 2.c) We will show that:

f(✓t � ⌘g̃t) 6 (1� ⌘�)f(✓t).
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From (1) and (2) we know

max
�
smax(W

t
l ), smax(W

t
l )
�
6 3

2
�̄l.

Using the above relation, we can upper bound the differences of the gradients by using (45). More
specifically, using the the definition of Q0 in (49), we have

kvec(rf(✓t+1))� vec(rf(✓t))k 6 Q0k✓
t+1

� ✓tk,

where Q0 is defined in (49).

Further, it is easy to verify that for any ✓̂t between ✓t and ✓t+1, we still have smax(Wl(✓̂t)) 6 3
2 �̄l.

So we can apply the same argument leading to (53), and obtain:

kvec(rf(✓̂t))� vec(rf(✓t))k 6 Q0k✓̂
t
� ✓tk, 8✓̂t = ✓t + �(✓t+1

� ✓t), � 2 [0, 1].

So we have

f(✓t � ⌘g̃t)
(i)
6 f(✓t)� ⌘hut, g̃ti+

Q0

2
⌘2kg̃tk2

(ii)
= f(✓t)� ⌘hut

2, ũ
t
2i � ⌘

LX

l=3

kut
lk

2 +
Q0

2
⌘2kg̃tk2

6 f(✓t)� ⌘hut
2, ũ

t
2i+

Q0

2
⌘2kg̃tk2,

where (i) uses Decent Lemma; (ii) expands hut, g̃ti by utilizing the stacked structure. Similar to (56),
with the induction assumption smin(W t

l ) > 1
2�l, l > 3, we have the following relation:

hut
2, ũ

t
2i > �kOt

L � yk2.

Similar to (57), with the induction assumption smax(W t
l ) 6 3

2 �̄l, l > 2, we have

kg̃tk2 6 ⇤2
kOt

L � yk2.

If we choose ⌘ 6 �
Q0⇤2 , we obtain

f(✓t � ⌘g̃t) 6 f(✓t)� 2⌘�f(✓t) + ⌘�f(✓t) = (1� ⌘�)f(✓t).

(Step 2.d) We will show that:

f(✓t+1) 6 ↵f(✓t).

We have the following relation:

f(✓t+1) = f(✓t+1)� f(✓t � ⌘g̃t) + f(✓t � ⌘g̃t)

(i)
6 1

2
kG(✓t+1)�G(✓t � ⌘g̃t)k2 +

⌦
G(✓t+1)�G(✓t � ⌘g̃t), G(✓t � ⌘g̃t)� y

↵

+ f(✓t + ⌘q̃t � ⌘g̃t)

(ii)
6 1

2
kG(✓t+1)�G(✓t � ⌘g̃t)k2 +

1

�
kG(✓t+1)�G(✓t � ⌘g̃t)k2 +

�

2
kG(✓tt� ⌘g̃t)� yk2

+ f(✓tt� ⌘g̃t)

(iii)
6 (

1

2
+

1

�
)kG(✓t+1)�G(✓t � ⌘g̃t)k2 + (1 + �)(1� ⌘�)f(✓t)

(iv)
= (

1

2
+

1

�
)hvec(rG(✓̂t)),�⌘q̃t + ⌘g̃ti2 + (1 + �)(1� ⌘�)f(✓t)

(v)
6 ⌘2(

1

2
+

1

�
)kvec(rG(✓̂t))k2kq̃t � g̃tk2 + (1 + �)(1� ⌘�)f(✓t),

where (i) expands and reorganizes the loss function; (ii) uses Young’s inequality with constant �; (iii)
uses the induction assumption f(✓t+1) 6 (1� ⌘�)f(✓t); (iv) uses the mean value Theorem where ✓̂t
will be discussed in the next paragraph, the update rule in (37); (v) uses Cauchy-Schwartz inequality.
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Now we discuss ✓̂t and derive a bound for kvec(rG(✓̂t))k. By the Mean Value Theorem we have

✓̂t = ✓t+1 + �(⌘g̃t � ⌘q̃t),

for some � 2 [0, 1]. By (61) and (62), we know that

smax(Wl(✓
t+1)) 6 5

4
�̄l, smax(Wl(✓

t
� ⌘g̃t)) 6 3

2
�̄l.

So it is easy to conclude that for l > 3,

smax(Wl(✓̂
t))

(i)
6 smax(Wl(✓

t+1)) + �⌘kztl � ut
lk

(ii)
6 smax(W

t+1
l ) + ⌘kztl � ut

lk
(iii)
6 3

2
�̄l,

where (i) uses Wely’s inequality on W t+1
l and �⌘

�
�̃W t

l ��W t
l

�
; (ii) is because � 2 [0, 1]; (iii) uses

(62). We can derive the similar result for l = 2. By (42) without kOt
L � yk, it is clear that

kvec(rG(✓̂t))k 6 ⇤.

So we have

⌘2(
1

2
+

1

�
)kvec(rG(✓̂t))k2kq̃t � g̃tk2 + (1 + �)(1� ⌘�)f(✓t)

(i)
6 ⌘2(

1

2
+

1

�
)⇤2(kũt

2 � ṽt2k
2 +

LX

l=3

kut
l � ztlk

2) + (1 + �)(1� ⌘�)f(✓t)

(ii)
6 ⌘2(

1

2
+

1

�
)⇤2(n2

1n
2
2kũ

t
2 � z̃t2k

2
1 +

LX

l=3

n2
l�1n

2
l ku

t
l � ztlk

2
1) + (1 + �)(1� ⌘�)f(✓t)

(iii)
6 ⌘2(

1

2
+

1

�
)⇤2(H2n4

1n
2
2kB̃

>
k
2
1kBut

2 � zt2k
2
1 +

LX

l=3

n2
l�1n

2
l ku

t
l � ztlk

2
1) + (1 + �)(1� ⌘�)f(✓t)

(iv)
6 ⌘2(

1

2
+

1

�
)⇤2

 
H2n4

1n
2
2kB̃

>
k
2
1⌧2�2(↵)tf(✓0) +

LX

l=3

n2
l�1n

2
l ⌧

2�2(↵)tf(✓0)

!
+ (1 + �)(1� ⌘�)f(✓t)

=

 
(1 + �)(1� ⌘�) + ⌘2(

1

2
+

1

�
)(H2n4

1n
2
2kB̃

>
k
2
1 +

LX

l=3

n2
l�1n

2
l )⇤

2⌧2�2

!
(↵)tf(✓0),

(i) uses (42) with the fact that smax(Wl(✓̂t)) 6 3
2 �̄l, and expands kq̃t� g̃tk2; (ii) uses the relationship

between l2 and l1 norm; (iii) uses the fact that kB>(Bur
2 � zr2)k1 6 Hn2kB̃k1kBur

2 � zr2k1;
(iv) uses the induction assumption kBut

2 � zt2k 6 ⌧�t�1, f(✓t) 6 (↵)tf(✓0) and the definition of
�t�1.

Let � =
1
2⌘�
1�⌘� , we have

 
(1 + �)(1� ⌘�) + ⌘2(

1

2
+

1

�
)(Hn1n

2
2kB̃

>
k
2
1 +

LX

l=3

n2
l�1n

2
l )⇤

2⌧2�2

!
(↵)tf(✓0)

(i)
6
 
1�

1

2
⌘�+ ⌘2(

1

2
+

2(1� ⌘�)

⌘�
)(Hn1n

2
2kB̃

>
k
2
1 +

LX

l=3

n2
l�1n

2
l )⇤

2⌧2�2

!
(↵)tf(✓0)

(ii)
6 (1�

1

4
⌘�)(↵)tf(✓0) = (↵)t+1f(✓0),

where (i) plugs in the choice of �; (ii) is because the choice of ⌧ and � in (50) and (47).

(Step 2.e) We will show that:
⇢
kBut+1

l � zt+1
l k1 6 ⌧�t, l = 2

kut+1
l � zt+1

l k1 6 ⌧�t, l = {3, · · · , L}.
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For l = 2, we have

kBut+1
2 � zt2k1

(i)
6 kBut+1

2 �But
2k+ kBut

2 � zt2k1
(ii)
6 smax(B̃)kut+1

2 � ut
2k+ kBut

2 � zt2k1
(iii)
6 smax(B̃)kut+1

� ut
k+ kBut

2 � zt2k1
(iv)
6 smax(B̃)kvec(rf(✓t+1))� vec(rf(✓t))k+ kBut

2 � zt2k1
(v)
6 smax(B̃)Q0k✓

t+1
� ✓tk+ kBut

2 � zt2k1
(vi)
= ⌘smax(B̃)Q0kq̃

t
k+ kBut

2 � zt2k1
(vii)
6 ⌘smax(B̃)Q0(kg̃

t
k+ kg̃t � q̃tk) + kBut

2 � zt2k1
(viii)
6 ⌘smax(B̃)Q0⇤kO

t
L � yk+ ⌘s2max(B̃)Q0kg

t
� qtk+ kBut

2 � zt2k1

(ix)
6 ⌘smax(B̃)Q0⇤kO

t
L � yk+ ⌘s2max(B̃)Q0

LX

l=3

kut
l � ztlk+ ⌘s2max(B̃)Q0kBut

2 � zt2k+ kBut
2 � zt2k1

(x)
6 ⌘smax(B̃)Q0⇤kO

t
L � yk+ ⌘s2max(B̃)Q0Hn2ku

t
2 � zt2k1 + ⌘s2max(B̃)Q0

LX

l=3

nl�1nlku
t
l � ztlk1 + kBut

2 � zt2k1

(xi)
6

✓
1 + ⌘s2max(B̃)Q0

�
Hn2 +

LX

l=3

nl�1nl

�◆
⌧�t�1 + ⌘smax(B̃)Q0⇤kO

t
L � yk

(xii)
6 �

p
(↵)tf(✓0)

✓
⌧ + ⌧⌘s2max(B̃)Q0

�
Hn2 +

LX

l=3

nl�1nl

�
+

p
2⌘smax(B̃)Q0⇤

�

◆

(xiii)
6 �

p
↵
p
(↵)tf(✓0) = ��t,

where (i) uses triangle inequality; (ii) extracts the largest singular value of B, (iii) uses the fact
kut+1

� ut
k > kut+1

2 � ut
2k; (iv) uses the definition of ut; (v) upper bounds the differences of the

gradients by using (45) (vi) uses the update rule in (37); (vii) uses triangle inequality; (viii) uses the
upper bound of gradient norm in (42), and it extracts the largest singular value of B and definition of
⇤ in (48); (ix) uses the stacked structure of gt and qt to expand kgt � qtk; (x) uses the relationship
between l2 and l1 norm; (xi) reorganizes the terms and uses induction assumption; (xii) uses the
definition of �t�1; (xiii) is from the choice of ⌧ and � in (50) and (47).

Then by Lemma 4.1, with the correspondence that c = But+1
2 , p = zt2, r = �t, we can obtain

kzt+1
2 �But+1

2 k
(i)
= kquant(But+1

2 , zt2, �
t, b)�But+1

2 k1
(ii)
6 ⌧�t.

where (i) comes from the ‘Quantize’ step in Algorithm 1; (ii) is from the first relation in Lemma 4.1.

For l > 3, we have

kut+1
l � ztlk1

(i)
6 kut+1

l � ut
lk+ kut

l � ztlk1
(ii)
6 kut+1

� ut
k+ kut

l � ztlk1
(iii)
= kvec(rf(✓t+1))� vec(rf(✓t))k+ kut

l � ztlk1
(iv)
6 ⌘Q0kq̃

t
k+ kut

l � ztlk1
(v)
6 ⌘Q0(kg̃

t
k+ kg̃t � q̃tk) + kut

l � ztlk1
(vi)
6 ⌘Q0⇤kO

t
L � yk+ ⌘smax(B̃)Q0kg

t
� qtk+ kut

l � ztlk1

(vii)
6 ⌘Q0⇤kO

t
L � yk+ ⌘smax(B̃)Q0

LX

l=3

kut
l � ztlk+ ⌘smax(B̃)Q0kBut

2 � zt2k+ kut
2 � zt2k1
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(viii)
6 ⌘Q0⇤kO

t
L � yk+ ⌘smax(B̃)Q0Hn2kBut

2 � zt2k1 + ⌘smax(B̃)Q0

LX

l=3

nl�1nlku
t
l � ztlk1 + kut

2 � zt2k1

(ix)
6

✓
1 + ⌘smax(B̃)Q0

�
Hn2 +

LX

l=3

nl�1nl

�◆
⌧�t�1 + ⌘Q0⇤kO

t
L � yk

(x)
6 �

p
f(✓t)

✓
⌧ + ⌧⌘smax(B̃)Q0

�
Hn2 +

LX

l=3

nl�1nl

�
+

p
2⌘Q0⇤

�

◆

(xi)
6 �

p
↵
p
f(✓t) = ��t,

where (i) uses triangle inequality; (ii) uses the fact kut+1
� ut

k > kut+1
2 � ut

2k; (iii) uses the
definition of ut;(iv) uses the update rule in (37); (v) uses triangle inequality; (vi) uses the upper bound
of gradient norm in (42), extracts the largest singular value of B and uses the definition of ⇤ in (48);
(vii) uses the stacked structure of gt and qt to expand kgt � qtk; (viii) uses the relationship between
l2 and l1 norm; (ix) uses the induction assumption; (x) uses the definition of �t�1; (xi) is because
the choice of ⌧ and � in (50) and (47).

Then by Lemma 4.1, with the correspondence that c = But+1
2 , p = zt2, r = �t, we can obtain

kzt+1
l � ut+1

l k
(i)
= kquant(ut+1

l , ztl , �
t, b)�But+1

l k1
(ii)
6 ⌧�t,

where (i) comes from the ‘Quantize’ step in Algorithm 1; (ii) is from the first relation in Lemma 4.1.

Now we have proved that (52) holds. So for t > 0, there is

f(✓t) 6 (↵)tf(✓0), where ↵ = 1�
1

4
⌘� = 1�

�2

4Q0⇤2
.

Thus, if we want the objective function to compute an ✏-optimal solution, the total number of
iterations is log(f(✓0)/✏)/ log(1/(1 �

�2

4Q0⇤2 )). Since in each iteration, each agent k transmits a
length-H vector qtk, so we conclude that the total number of bits each node needs to communicate is
log(f(✓0)/✏)/ log(1/(1� �2

4Q0⇤2 )) bits. Notice that log(1/(1� �2

4Q0⇤2 )) = � log(1� �2

4Q0⇤2 ) ⇠
4Q0⇤

2

�2 , so we can derive the simplified total number of bits as b · 4Q0⇤
2

�2 · log(f(✓0)/✏).
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