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Abstract

Decentralized optimization are playing an important role in applications such
as training large machine learning models, among others. Despite its superior
practical performance, there has been some lack of fundamental understanding
about its theoretical properties. In this work, we address the following open research
question: To train an overparameterized model over a set of distributed nodes, what
is the minimum communication overhead (in terms of the bits got exchanged) that
the system needs to sustain, while still achieving (near) zero training loss? We
show that for a class of overparameterized models where the number of parameters
D is much larger than the total data samples N , the best possible communication
complexity is ⌦(N), which is independent of the problem dimension D. Further,
for a few specific overparameterized models (i.e., the linear regression, and certain
multi-layer neural network with one wide layer), we develop a set of algorithms
which uses certain linear compression followed by adaptive quantization, and show
that they achieve dimension independent, near-optimal communication complexity.
To our knowledge, this is the first time that dimension independent communication
complexity has been shown for distributed optimization.

1 Introduction
The research of decentralized/distributed optimization has recently gained tremendous momentum,
partly due to the fact that a well-designed decentralized/distributed algorithm is capble of training
large-scale machine learning models, by utilizing massively distributed computation and data re-
sources. In a typical decentralized optimization setting, multiple local agents hold small to moderately
sized datasets, and they collaborate by iteratively solving their local problems while sharing some
information with other agents. The majority of the state-of-the-art distributed/decentralized optimiza-
tion algorithms are deeply rooted in classical consensus-based approaches [Tsitsiklis, 1984, Tsitsiklis
and Luo, 1987], where the agents repetitively share the local optimization variables, or the gradients
of local functions, so to reach an optimal consensual solution.
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It is important to note that in those classical settings, the agents typically solve small-scale problems
where the problem dimension (i.e., the dimension of the optimization variable, and the gradients)
is relatively small (e.g., in the order of hundreds or thousands). Therefore, it is reasonable that
the agents should iteratively share their local parameters/gradients to improve the quality of the
models. However, many modern learning models are in the overparameterized regime with very
high-dimensional parameters [He et al., 2016, Vaswani et al., 2017], such as deep and/or wide
neural networks. This practice poses some significant challenges to the classical consensus-based
approaches, because by directly sharing the model parameters and/or gradients, the communication
burden increases as problem size increases.

A line of recent works have been developed, which adopt strategies such as gradient/model compres-
sion, lazy communication, etc, and they are able to significantly reduce the overall communication
complexities [Xu et al., 2020, Sun et al., 2020, Li et al., 2019, Karimireddy et al., 2019]. A few
works focus on designing compressors [Safaryan et al., 2020, Horváth et al., 2019, Beznosikov et al.,
2020, Konečnỳ et al., 2016, Safaryan et al., 2021]. Although the majority of these works are able
to reduce per round communication burden, it is by no means clear if, to achieve certain solution
quality, the total amount of communication can be saved. In fact, it has been shown in [Arjevani
and Shamir, 2015], that the total communication achievable is dependent on the problem dimension,
which could be huge. More importantly, there is a general lack of fundamental understanding about
the performance limits for decentralized and distributed optimization, when the models are ‘large’.
Without such characterization, it is by no means clear if the existing algorithms are optimal in
reducing the communication complexities.

In this work, we focus on distributed optimization for ‘large’ machine learning models (i.e., overpa-
rameterized problems, to be defined shortly), and we ask the following question:

(Q) What is the best possible communication complexity (in terms of number of bits needed to
obtain certain solution accuracy), achievable by any distributed algorithms for a class of

overparameterized problems? Which class of algorithms achieves such complexity bounds?

Related Works. A number of recent works are devoted to reducing the communication cost in
distributed/decentralized optimization by combining the optimization algorithms with compression,
e.g., sparsification, quantization, etc. For the distributed setting with the server-worker architecture,
relevant works include [Alistarh et al., 2017, Wen et al., 2017, Wang et al., 2018, Bernstein et al.,
2018, Haddadpour et al., 2021, Mishchenko et al., 2019, Gorbunov et al., 2021]; see [Richtárik et al.,
2021] for a recent survey. For the decentralized setting without a central server, recent works such as
[Koloskova et al., 2019, Reisizadeh et al., 2019, Tang et al., 2018, Vogels et al., 2020, Magnússon
et al., 2020] proposed algorithms that utilize error compensation, low-rank compression, etc. While
they have demonstrated appealing performance in practice, the theoretical guarantees do not scale for
overparameterized problems. For instance, [Koloskova et al., 2019] showed an O(1/T + 1/(!T )2)
iteration complexity upper bound for their algorithm. The quantity 1/! is the compressor parameter
which is at least ⌦(

p
D), where D is the problem dimension.

Lower communication complexity bounds for distributed optimization problems have been studied
since the 1980s. There are two major categories of lower bound results in literature depending on how
we count the “communication” required to reach a solution of given accuracy, i.e., 1) in terms of the
number of communication rounds, or 2) in terms of the number of bits got communicated. The first
category is not directly related to the current work; we refer to readers to Appendix A for discussions.
In second category, the first lower bound is given in [Tsitsiklis and Luo, 1987] where the authors
consider a distributed setting with two nodes and provide a ⌦ (D log (D/✏)) bound for the class of
quadratic objectives, where ✏ is the solution accuracy, and D is the variable dimension. In [Zhang
et al., 2013] lower communication bounds are derived for certain statistical estimation tasks, such
as linear and probit regression. Moreover, in [Vempala et al., 2020] the communication complexity
of several distributed optimization tasks is studied, including `p regression, linear, semidefinite and
convex optimization. In [Korhonen and Alistarh, 2021], an ⌦ (KD log (D/✏)) bound is derived for
quadratic problems on a multi-node setting, for both deterministic and randomized protocols, where
K is the number of clients.

Recently, overparameterized problem has drawn great research interests. It has been showed that re-
markable performance can be achieved with overparameterized networks [Jacot et al., 2018, Du et al.,
2019, Allen-Zhu et al., 2019]. Some recent works study the overparameterization of decentralized
problems, which guarantee the global convergence [Huang et al., 2021, Deng et al., 2022]. However,
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the high communication cost caused by the large model is a key problem in decentralized algorithm.
For example, the ReLU fully connected networks designed in the aforementioned two works are of
widths ⌦(N4) and ⌦(N18) respectively, where N is the number of data samples available.

Contributions. This work addresses both questions in (Q). The contributions are highlighted below:

(i) Regarding to the best possible communication complexity (i.e., the communication complexity
lower bound), we first show that for a class of Polyak-Lojasiewicz (PL) problems, the communication
lower bound is ⌦(KD log(D/✏)), which is similar to the known results for strongly convex problems.
Further, we show that for a class of overparameterized models where the loss function is a composition
of a quadratic problem and some nonlinear functions, and that the number of parameters D is
much larger than the total data samples N , the communication complexity lower bound becomes
⌦(KN log(K/✏)), which is independent of the problem dimension D.

(ii) We develop a distributed algorithm which can be used to optimize both classes of problems, in
the setting where multiple clients are coordinated by a server. We show that the lower bound for
the PL problem can be matched; while by using certain linear random compression/decompression
scheme, followed by adaptive quantization, the lower bound for the overparameterized problem can
be matched (up to a log(D) factor) for two of its important special cases, i.e., linear regression, and
certain multi-layer neural network with one wide layer. Further, we show that the proposed algorithm
can be extended to a fully decentralized setting without the coordination of a server.

To our knowledge, these are the first set of results that attempt to comprehensively address the issue
of optimal communication complexities for overparameterized problems. We expect that results
provided in this work will open doors for understanding more complex communication-efficient
distributed algorithms, as well as larger classes of overparameterized problems.

2 The System Model
Consider a system having K distributed agents, and a total of N samples {(Xi, yi)}Ni=1. Suppose
each agent has Nk data samples, with

PK
k=1 Nk = N ; let set Xk (resp. Yk) collect agent k’s data

samples (resp. labels). They cooperatively solve an optimization problem of the following form:

min
✓2⇥

f(✓;X ,Y) :=
KX

k=1

fk(✓;Xk,Yk) (1)

where fk : ⇥ ! R is the local loss function for agent k; ✓ is the optimization variable, whose domain
is ⇥ ✓ RD. For notational simplicity, we will ignore the reference for the data samples X ,Y and
Xk,Yk whenever possible, i.e., we will write f(✓) and fk(✓) as the global and local loss functions.

Throughout the paper, we will consider a few special cases of (1), where the local function fk’s are
overparameterized. The first of such problem class is referred to as the distributed PL problems. To
introduce this class, let us provide a few assumptions.
Assumption 1. The local objective functions satisfy:

2µk · (fk(✓)� fk(✓
⇤
(k)))  krfk(✓)k

2, 8 ✓, 8 k, (2)

where ✓⇤(k) is a global minimum of fk(·); µk’s some positive constants.

Assumption 2. There exists positive constants Lk’s and L � 1 such that:

krfk(✓)�rfk (✓
0)k  Lk k✓ � ✓0k , krf(✓)�rf (✓0)k  L k✓ � ✓0k , 8 ✓, ✓0, 8 k.

Note that (2) is the so-called PL assumption, which was introduced in [Polyak, 1963]. It is weaker
than strong convexity, while it can still be used to ensure the linear convergence of gradient descent.
It is also less restrictive than several other related conditions under which linear global convergence
can be derived, such as the restricted secant inequality [Karimi et al., 2016]. The second inequality in
(2) has also been used in the literature; see, e.g., [Oymak and Soltanolkotabi, 2019], in which such
a bound for overparameterized network has been showed. Assumption 2 is the standard Lipschitz
gradient condition.
Definition 1 (Distributed PL problems). Consider problems of the form (1). Define:

Cpl :=

⇢
f(✓) =

KX

k=1

fk(✓) : fk(✓) satisfies Assumptions 1 – 2, 8 k 2 [K]

�
.
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The second class of problems is referred to as the distributed overparameterized problem, where
the loss function is a composition of least square loss and a non-linear function. This form of loss
function often appears in analyzing neural networks, see, e.g., [Oymak and Soltanolkotabi, 2019].
Definition 2 (Distributed overparameterized problems). Consider problems of the form (1). Define

functions Gk(·) : ⇥ ! RNk and constants bk 2 RNk , for all k. We call Gk(·) overparameterized if

for every bk 2 RNk , there exists ✓ 2 ⇥ such that Gk(✓) = bk. Define the following class of problems:

Cop :=

⇢
f(✓) =

KX

k=1

fk(✓), fk(✓) =
1
2
kGk(✓)� bkk22 : Gk(·) : ⇥ ! RNk overparameterized.

�

3 Communication Complexity Lower Bounds for Deterministic Algorithms

In this section we derive the communication complexity lower bounds for classes Cop and Cpl.
Throughout this section and the paper, our focus is given to deterministic algorithms where no
randomness is involved. All the proofs for results presented in this section are given in Appendix B.

We start with a description of the coordinator model (also see [Braverman et al., 2013, Korhonen
and Alistarh, 2021]), which will be used later as the basis of our derivation. Consider a set of K
distinct nodes/agents, and a single coordinator node. Each node and the coordinator have a two-way
communication channel, over which binary messages are exchanged. Consider a class of problems C

of the form (1), that is f(✓) =
PK

k=1 fk(✓), where each node k has access only to objective fk(✓).
Moreover, let ⇧ be a set of protocols that are executed over the coordinator model. Then, given a
problem class C, a protocol ⇡ 2 ⇧(✏) takes as input a problem c 2 C, performs a number of message
exchanges (over the coordinator model), and outputs an ✏-approximate solution ✓̃ 2 ⇥ of problem
(1). That is, the output ✓̃ satisfies (where ✓⇤ is a point where the exact minimum is attained):

f(✓⇤)  f(✓̃)  f(✓⇤) + ✏, (3)

Next, let us look at ⇡ in more detail. We assume that for ⇡ 2 ⇧(✏), it performs T (✏) rounds of
communication and computation, where during each round the following steps are carried out:

• At round t = 0, each agent/node k is given as input the local objective fk (e.g., the data samples
Xk,Yk assigned to each node);

• At round 1  t < T (✏),

– The coordinator sends a message m(t)
c!k 2 {0, 1} to some node k.

– Node k sends message m(t)
k!c 2 {0, 1} to the coordinator.

• At the final round t = T (✏) the coordinator outputs an ✏-approximate solution.
Next, we define the communication complexity of the distributed protocol. Let us denote the total
number of bits exchanged under protocol ⇡, for problem c 2 C, as M(c,⇡, ✏); Use the following
definition, which has been used extensively in related works such as [Tsitsiklis and Luo, 1987].
Definition 3 (Communication complexity). The communication complexity of protocol ⇡ over

problem class C is defined as the maximum number of bits exchanged across the problems in C, i.e.,

M(C,⇡, ✏) := maxc2C M(c,⇡, ✏). Also, the communication complexity of problem class C is the

minimum communication complexity across all protocols that solve C, i.e.,

M(C, ✏) := min
⇡2⇧(✏)

M(C,⇡, ✏) = min
⇡2⇧(✏)

max
c2C

M(c,⇡, ✏).

Next, we derive communication complexity lower bounds for certain problem classes C. Our
construction strategies follow those from [Korhonen and Alistarh, 2021], that is, we will reduce
a problem with known communication complexity, to hard problem instances within classes of
our interest. The main difference from the aforementioned work (which only deals with quadratic
problems) is that, we need to construct hard PL and overparameterized problems instances.

Below we derive communication complexity lower bounds for the class of deterministic distributed
problems where the local loss functions belong to the class of PL functions defined in Def. 1.
Theorem 3.1. Consider the problem class Cpl with given parameters K,D, ✏, for which it holds that

D
✏ = ⌦(1). Then we have M(Cpl, ✏) = ⌦(KD log

�
D
✏

�
).

4



Note that the condition D/✏ = ⌦(1) is reasonable since we will mainly focus on the regime where D
is large. Next we consider Cop. We have the following communication complexity lower bound.

Theorem 3.2. Consider the problem class Cop, with given parameters K,N,D, ✏, for which it holds

that
N
✏ = ⌦(1). Then we have that M(Cop, ✏) = ⌦(KN log

�
N
✏

�
).

Clearly, the lower bound for class Cop does not explicitly depend on the problem dimension D, while
that for the Cpl does. This appears to be reasonable, partly because in the class of Cpl the number
of data samples N has not been explicitly modeled. Nevertheless, at this point it is not clear if such
a dimension-independent lower bound is tight or not, because we are yet to find an algorithm to
match such a lower bound. To our knowledge, these are the first set of results that characterize the
communication complexity for the classes Cpl and Cop, and they will serve to guide our subsequent
algorithm development and analysis.

4 Algorithms Achieving the Optimal Communication Complexities

In this section, we design algorithms and analyze the achievable communication complexities, for
the PL and the overparameterized problems in Def. 1 and 2. We will begin with the simple setting
where all the agents are connected to a coordinator, and then extend to the case where the agents are
decentralized. Throughout this section, for simplicity of exposition, we will assume that ⇥ ⌘ RD.

Let us begin with a generic algorithm to deal with the server-agent setting. The algorithm is an
adaptation of the classical quantize-then-communicate strategy [Tsitsiklis and Luo, 1987, Magnússon
et al., 2020]. At each iteration, each agent first computes its gradient, followed by certain adaptive

quantization scheme, before getting transmitted to the collaborating agents.

Specifically, at t-th iteration, each agent uses a function F : RD
! RH to compress the local

gradient; Then the output is quantized as qtk 2 RH (use the method in Def. 4). Each agent then
shares qtk to the server, and the aggregated qt is broadcast to all agents. Each agent then uses a
function F̃ : RH

! RD to process the received vector, and updates the local parameters. One key
difference compared with [Tsitsiklis and Luo, 1987, Magnússon et al., 2020] is that, the algorithm
uses a pair of compression and decompression functions F (·) and F̃ (·) to process the gradients
transmitted/received. We will see shortly that such a pair plays an important role in matching the
lower bound. For the detailed steps, see Algorithm 1 below.

Algorithm 1 Limited Communication Distributed Optimization Algorithm
1: Initialize: Fix F (·) and F̃ (·), ⌘ > 0, �t

2 R+, b 2 Z+; set ✓0k = ✓0, choose q0k which can be

represented by b0 bits for each entry, such thatkq0k � F (rfk(✓0))k1 6
p

fk(✓0)

C·D3
p
K

, where C is
some constant independent of D.

2: for t = 0, 1, . . . , T � 1 do

3: Update: Each agent updates ✓t+1
k = ✓t � ⌘F̃ (

KP
k=1

qtk); set ✓t+1 = ✓t+1
k .

4: Compute: The function of gradient of each agent gt+1
k = F (rfk(✓t+1));

5: Quantize: Each agent quantizes qt+1
k = quant(gt+1

k , qtk, �
t, b), defined in Def. 4;

6: Communicate: Each agent sends qt+1
k to the server;

7: Aggregation: The server collects qt+1 = (qt+1
1 , qt+1

2 , · · · , qt+1
K );

8: Broadcast: The server broadcasts qt+1 = (qt+1
1 , qt+1

2 , · · · , qt+1
K ) to each agent;

9: end for
10: Return: Parameters ✓T .

In Algorithm 1, we note that as long as the initial solution ✓0 is the same among all the agents, then
✓t+1
k computed in the ‘Update’ step will always be the same across the agents. This is the reason that

we can directly set ✓t+1
k as ✓t+1. Subsequently we will extend this algorithm to a fully decentralized

setting, where precise consensus is no longer required. We choose the quantization method for the
first iteration defined in Appendix C. In the subsequent iterations, we use the following adaptive
quantization scheme; also see [Magnússon et al., 2020].
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Definition 4. Fix r 2 R+ and let b 2 N be an positive integer. Let quant: RH
⇥RH

⇥R+⇥N ! RH

be the quantization function defined component-wise as follows, where �(r, b) := r/
�
2b � 1

�
,

[quant(c, p, r, b)]j =

8
><

>:

pj � r if pj  cj � r + �(r, b)
pj + r if pj � cj + r � �(r, b)

pj � r + 2�(r, b)
j
cj�pj+r+�(r,b)

2�(r,b)

k
otherwise.

Essentially, the quantization scheme searches for a closest point on the grid (which has a width 2r
and is centered at p = (p1, . . . , pH). The distance between the neighbor points on the grid is �(r, b).
Lemma 4.1. Fix p 2 RH

, then for all c 2 RH , Q 2 RD⇥H
, such that kc� pk1  r we have

kquant (c, p, r, b)� ck1 
r

2b � 1
, kQ · quant (c, p, r, b)�Q · ck1 

rHkQk1
2b � 1

.

4.1 Communication Complexity Upper Bounds for Cpl

We will begin with analyzing the class of problem Cpl, as defined in Def. 1. Before we proceed, let
us make an additional assumption.
Assumption 3. Assume that each fk(·) is non-negative in its domain; Further, assume that the

optimal objective value for problem (1) is zero, that is, there exists ✓⇤ 2 RD
such that f(✓⇤) = 0.

The above ‘zero loss’ assumption has been used by a number of recent works to characterize problems
with a large number of parameters, e.g., in overparameterized neural network [Liu et al., 2022, Nguyen
and Mondelli, 2020]; in optimization literature, this assumption is also used to improve the analysis
of gradient-based algorithms; see, e.g. [Razaviyayn et al., 2019].
Lemma 4.2. Suppose Assumption 2 – 3 are satisfied, then we have the following inequality:

krf(✓)k2 6 2L · f(✓), 8 ✓.

The above lemma shows that together with the PL condition, Assumptions 2, 3 imply:

2µ · f(✓)  krf(✓)k2  2L · f(✓), 8 ✓.

For convenience, throughout our analysis we set µ < 1, L > 1.

We will refer to the class of problems satisfying Assumption 1 to 3 as eCpl. We note that eCpl is a strict
subset of the class Cpl. Next, let us present our result for Cpl. The proof can be found in Appendix C.
Theorem 4.1. Suppose Assumptions 2 – 3 are satisfied. Consider using Alg. 1 to solve Cpl; set

⌘ = (2L
3
2 )�1, ⌧ = (

p
CD)�1, b = max

�
log2(

p
CD + 1), b0

�
, F̃ (x) = F (x) = x,

and C := max
�q

16L/µ2 + L
3
2 /µ, 100

�
. Then the following holds true:

f
�
✓t+1

�


⇣
1� µ/(8L

3
2 )
⌘
f
�
✓t
�
, 8 t = 0, 1, · · · .

Further, to compute an ✏-optimal solution satisfying (3), each agent is required to transmit:

8b ·D · µ�1L
3
2 log(f(✓0)/✏) bits/agent.

The quantization strategy at the first iteration (in Appendix C) requires b0 to be O
�
log(D)

�
, so we

can conclude b = O
�
log(D)

�
. Thus Theorem 4.1 gives the total communication complexity for each

agent as O
�
D log(D) · log( 1✏ )

�
, which matches the lower bound in Theorem 3.1, up to a gap log(D).

4.2 Communication Complexity Upper Bounds for Cop

Next, we develop algorithms for the distributed overparameterized problem defined in Def. 2. Note
that functions in the class Cop can be non-convex, therefore one may not be able to find an algorithm
that can solve the entire class of problems in polynomial time. Our strategy is to identify special cases
of Cop for which the analysis is possible. Again, although these problems are restrictions of Cop, we
do not expect the lower bound in Theorem 3.2 to be improved in either the dependency on N or on ✏.
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The Case for Quadratic Problems. Towards this end, let us consider an overparameterized quadratic
problem. To proceed, assume that each agent k has data tuple (Ak, bk) with Nk samples, where Ak 2

RNk⇥D is the feature matrix, and bk 2 RNk⇥1 is the label. Denote A := [A1; · · · ;AK ] 2 RN⇥D,
where N =

PK
k=1 Nk. Suppose N < D. Then the generic problem (1) reduces to:

f(x) =
1
2
kA✓ � bk2 =

1
2

KX

k=1

kAk✓ � bkk2. (4)

Assuming that each Ak has full row rank, then the above problem is a special case of Cop.

Next, we specialize Alg. 1. Recall that the lower bound derived in Theorem 3.2 is independent of D,
so we cannot directly apply the algorithm we used for the class Cpl, in which each agent transmits a
dimension D vector at every iteration. To proceed, let us consider the following linear compression

scheme, in which we use a matrix B of size H ⇥D to compress (resp. decompress) the gradients
that get transmitted (resp. received), where H is a fixed positive constant satisfying N 6 H ⌧ D. In
particular, let us specialize the two processing operators in Alg. 1 as: F (x) = Bx, F̃ (y) = B>y.
Further, define �max(·) and �min(·) (resp. smax(·) and smin(·)) as the largest and smallest eigenvalues
(resp. singular values) for a matrix. Then we have the following result; see Appendix D for proof.
Theorem 4.2. Consider using Alg. 1 to solve the quadratic problem (4), with A being full row rank.

Choose B such that rank(BA>) = N ; set ⌘ = �minZ)
�2
max(Z) ; set b and C according to (30), and choose

F̃ (·) and F (·) as F (x) = Bx, F̃ (y) = B>y. Then the following holds true:

f(✓t+1)  (1� 1/24)f(✓t),

where  is the condition number of the matrix Z := AB>BA>
given by (Z) := �max(Z)

�min(Z) . Further,

to compute an ✏-optimal solution (3), each agent is required to transmit:

2b · 4
·H log(f(✓0)/✏) bits/agent. (5)

In Theorem 4.2, it is required that matrix BA> is full rank, and this can be satisfied with probability
1 if we choose B to be a random matrix. Further, the convergence rate depends on the condition
number (Z). Although we have showed the per iteration communication cost can be reduced to H
by linear compression, it is not clear yet whether the dimension D can affect the value of (Z). In
the following, we show (Z) is independent of D; The proof can be found in Appendix E.

Proposition 1. Consider the matrices A and B in Theorem 4.2, and define Z := AB>BA>
. Suppose

each entry in B satisfies Bhj
i.i.d
⇠ N (0, 1), 8 h 2 [H], j 2 [D]. Then the following holds:

(1) The condition number (Z) is independent of D.
(2) Let A> = V ⌃W be the compact form of SVD, where V 2 RD⇥N

satisfies V TV = IN ;

⌃ 2 RN⇥N
is the diagonal matrix whose diagonal entries are singular values of A; and W 2 RN⇥N

is a unitary matrix. Then for any fixed A, we have

P
 
(Z) 6

✓
smax(⌃)
smin(⌃)

◆2

·
✓p

H +
p
N + tp

H �
p
N � t

◆2
!

> 1� e�t
2
/2.

Proposition 1 implies that, as long as the compression matrix is standard normal, then (Z) is
independent of D. This means that the total bits required for each agent, as provided in (8), will
only be dependent on N,H and log(f(✓0)/✏), but not on D. To further understand the dependency
of (Z) with N and H , let us treat the ratio between the largest and smallest singular values as

being fixed 1. Then set 2e�t2/2 = � > 0, we have t =
q
2 log( 2� ), so the upper bound for 

becomes (AA>) ·
p
H+

p
N+

p
2 log( 2

� )p
H�

p
N�

p
2 log( 2

� )
. Assuming that N > 4t2, H = 4N , then we can conclude

that P((Z)  49) � 1� �. Applying this result to (8), we can conclude that with probability 1� �,
the total number of bits transmitted by each agent is 8b · 4(ATA) ·N log(f(✓0)/✏). Similarly as in
Theorem 4.1, b is in the order of O(log(D)) (see Appendix C.). Therefore the total communication
complexity of each agent can be reduced to O

�
H log(D) log( 1✏ )

�
. When H = ⇥(N), then the

complexity bound matches the lower bound in Theorem 3.2, up to a gap O(log(D)). Additionally,
1This is reasonable, since even when analyzing strongly convex distributed problems, the dependency on the

condition number is unavoidable; see [Magnússon et al., 2020, Sec. III-C].

7



we note that by fixing the seed of random number generator, the random matrix B can be generated
by each agent locally, without needing to transmit any information.

Decentralized Algorithm. We propose a fully decentralized algorithm for solving (4) with a
communication complexity that approaches the lower bound in Theorem 3.2. Our idea is similar to
Alg. 1 that adopts a dimension reduction step for compression, yet we shall encapsulate the Quantize,
Communicate, Aggregation, Broadcast steps through a decentralized average consensus protocol
with support for quantized communication.

In particular, we consider a setting where K agents are represented as nodes on a connected graph
(V,E) with a doubly stochastic mixing matrix W 2 RK⇥K

+ . Observe the following fact:

Fact 1. Consider a set of vectors v1, . . . , vK 2 RH
held by K agents on (V,E). For any ✏ > 0, the

CHOCO-GOSSIP protocol [Koloskova et al., 2019] is described as the map:

v̄1, . . . , v̄K = CHOCO-GOSSIP(v1, . . . , vK ; ✏)

such that v̄k is the vector available at agent k satisfying kv̄k � K�1
PK

j=1 vjk
2
 ✏. Let ⇠ =

PK
k=1 kvk �K�1

PK
j=1 vjk

2
be the initial consensus error, the protocol requires at most

(82/�2!) log(⇠/✏) rounds of quantized communication,

where � = 1� |�2(W )| and ! 2 (0, 1] is controlled by the number of bits in the quantizer. Details

about the CHOCO-GOSSIP protocol can be found in Appendix F.1.

We replace line 5–line 8 in Alg. 1 by CHOCO-GOSSIP to yield the decentralized algorithm:

Algorithm 2 Decentralized Gradient Descent with Compressed Comm. via Linear Compression
1: Input: step size ⌘; initial iterate ✓0 2 RD.
2: Initialize: ✓0i = ✓̄0, 8i 2 [K]
3: for t in 0, . . . , T � 1 do
4: Compute: Each agent compute the compressed local gradient gtk = F (rfk(✓tk)).
5: Consensus: Agents exchange gradients (ḡt1, . . . , ḡtK) = CHOCO-GOSSIP(gt1, . . . , gtK ; ✏̄

t+1 ).
6: Update: Each agent updates ✓t+1

k = ✓tk � ⌘F̃ (ḡtk).
7: end for
8: Output: the last iterate ✓Ti

Theorem 4.3. Consider using Alg. 2 to solve the quadratic problem (4), with A being full row

rank. Choose B such that rank(BA>) = N ; set ⌘ = �min(Z)
4�2

max(Z) , and choose F̃ (·) and F (·) as

F (x) = Bx, F̃ (y) = B>y. For any T � 1, the following holds true:

f(✓Tk ) 
�
1� 1/42

�T
f(✓̄0) +O(✏̄2), k = 1, . . . ,K.

where  was defined in Theorem 4.2. Moreover, suppose that A,B are constructed as in Proposition 1,

to compute an ✏-optimal solution (3), each agent is required to transmit:

O

 
2H logH

�2
⇥
log

1

✏
+ log

�
1 +

p
D +

p
H +

p
log 1/⇣

n�2
max(Z)

�⇤
log

1

✏

!
bits,

with probability at least 1� ⇣.

Proposition 1 shows that the condition number  is O(1). To satisfy rank(BA>) = N , we need
H � N . Altogether, this yields the communication complexity O(N log(N) log(D) log(1/✏)2) to
match Theorem 3.2 up to a log(D) factor.

The Case of Overparameterized Neural Network. We now explore the possibility of extending
the analysis of quadratic problems to a specific overparameterized neural network, still belonging
to class Cop. We will customize Alg. 1 to partially compress the gradients of the loss function. Our
idea is to design F (·) (resp. F̃ (·)) so that we compress (resp. decompress) the gradient with respect
to the parameters in the widest layer to O(N) bits, while directly quantize the remaining gradients.
Note that for a few popular network architectures such as Neural Tangent Kernel (NTK) [Huang
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et al., 2021], the widest layer contains most of the parameters ⌦(N4). Therefore, compressing these
parameters into O(N) bits already represents significant communication . We will leave the design
and analysis of more aggressive schemes which compress the parameters of all layers for future work.

To proceed, let us first state the structure of the network. Let X 2 RN⇥n0 denote the data sample; let
a(·) be an activation function; let Ol 2 RN⇥nl as the output of each layer, which can be expressed as

Ol =

8
<

:

X l = 0
a (Ol�1Wl) l 2 [L� 1]
OL�1WL l = L

,

where Wl 2 Rnl�1⇥nl is the weight matrix in l-th layer. Further, denote OL,k as the output of the
network for k-th agent. Let ✓ = (Wl)Ll=1 collect all the weights. Then objective function becomes

f(✓) =
KX

k=1

fk(✓) =
1

2

KX

k=1

kOL,k � ykk
2. (6)

Further, we define the vectorized gradient of each layer as ul = vec(rWlf(✓)) and ul,k for each
agent. Now we describe the assumptions on the network.
Assumption 4. (Pyramidal network topology) Let n1 � N and n2 � n3 � . . . � nL = 1.

Assumption 5. (Activation function) Fix ⌫ 2 (0, 1) and ⇢ > 0. Let a satisfy that: (i)a0(x) 2 [⌫, 1],
(ii) |a(x)| 6 |x| for every x 2 R, and (iii) a0 is ⇢-Lipschitz.

As showed in [Nguyen and Mondelli, 2020], with Assumption 4 and 5, objective (6) belongs to Cop.
With the above Pyramidal structure, layer l = 2 is the widest layer and contains the largest number of
parameters, denoted as u2 2 Rn1⇥n2 . As mentioned above, we will design F and F̃ to compress and
decompress u2. To proceed, Let us choose B = In2 ⌦ B̃ 2 RHn2⇥n1n2 where B̃ 2 RH⇥n1 , such
that N 6 H ⌧ n1. Then F and F̃ are defined as:

F (ul) =

8
><

>:

0 l = 1,

Bul l = 2,

ul l > 3,

F̃ (F (ul)) =

8
><

>:

0 l = 1,

B>Bul l = 2,

ul l > 3.

(7)

This means that we compress the parameters in the second layer, and perform usual gradient descent
for the layers l � 3; further, the parameters in the first layer is left frozen at its initialization. Note
that we freeze the first layer for some technical reasons, but layer freezing itself is a useful technique
to accelerate the training in practice, which can provide strong generalization ability [Yosinski et al.,
2014, Advani et al., 2020].

Let us denote O0
1 as the output of the first hidden layer at initialization. We have the following result.

Its proof as well as the expressions for various constants, can be found in Appendix G.
Theorem 4.4. (Informal) Consider using Alg. 1 to solve the quadratic problem (6), with X being

full row rank. Suppose ✓0 is initialized properly (see Appendix G for details). Choose B̃ such as

rank(B̃O0
1
>
) = N ; choose F̃ (·) and F (·) as in (7). Then there exists stepsize ⌘, constant �, C, b

such that to compute an ✏-optimal solution (6), each agent is required to transmit:

4b
⌘�

· (Hn2 +
L�1X

l=2

nlnl+1) log(f(✓
0)/✏) bits/agent, (8)

where ⌘,� are related to X, ⌫, ⇢ and singular values of the weight matrices at initialization.

Theorem 4.4 shows that if we choose H = ⇥(N), and when n1 is very large, then the total
communication complexity can be reduced by a factor of n1/H .

Preliminary Numerical Experiments. We conclude by presenting a numerical experiment for the
UCI Tom’s Hardware2 dataset using Alg. 2 where we applied blog(t+100)c rounds of communication
at the t-th iteration for the CHOCO-GOSSIP subroutine; see Appendix F.1. We consider a ring network
with K = 5 agents, each one has 500 or 1000 samples (thus making N = 2500, or N = 5000).

2Available: https://archive.ics.uci.edu/ml/datasets/Buzz+in+social+media+
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Figure 1: Overparameterized Kernel Regression with Alg. 2. Both figures show statistics of 5 random seeded
runs. (Left) Training MSE against the number of bit transmitted on the whole network. (Right) Communication
cost to achieve 10�4 MSE on training dataset, compared over different dimensions of kernel features.

We construct D-dimensional features from the dataset as NTK features [Bietti and Mairal, 2019].
In Fig. 1, we train a least square regression model in the overparameterized regime. We observe
that the communication cost needed is proportional to the number of samples, instead of the feature
dimension. Particularly, our results indicate that the communication cost required to reach a target
train MSE (of 10�4) is proportional to the number of training samples.
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