
A Related Works
In this section, we provide background on quantum graph learning and graph neural networks that
have the potential to be trained using quantum computing.

A.1 Graph Kernel Neural Network
Graph kernel neural networks [17, 10, 18] is a class of graph learning method combining the properties
of both GNNs and GKs. Forward process of the model tends to transmit node information like GNNs
[66], layer by layer, whereas the node (or graph) features live in the implicit reproducing kernel
Hilbert space (RKHS) of a specific kernel [40]. The mainstream of graph kernel neural networks
can be divided into completed and approximated approaches. For the former, the output is a kernel
matrix where each entry denotes the similarity of graph pairs, afterwards support vector machin is
used to perform classification or regression task. While the later generates the approximate feature of
the finite projected RKHS at the expense of information loss.

We consider the completed approaches for the basis of our proposed quantum graph learning model,
since the access to the explicit feature information requires measuring the relative quantum repre-
sentations, which incurs quantum collapse [33]. In the next section, we demonstrate that the graph
tangent kernel neural networks coincides with the condition of quantum parallel implementation by
introducing the quantum aggregation transformation and the quantum kernel estimation techniques.

A.2 Quantum Graph Learning
Quantum graph learning aims at leveraging quantum physics to extract graph structural information,
bringing up new possibilities for quantum computing applications. It is generally nontrivial to
analyze classical data under the regime of quantum computing, since the encoding and decoding
between classical vectors (or matrices) and their corresponding quantum states should be carefully
designed. In addition, encoding the irregular graph data and diverse structure topology may incur
different configurations of quantum models. Advanced contributions has developed some techniques
to overcome these issues. A hybrid graph learning method developed by [70, 16] encode the structure
information and generate a new adjacent matrix evaluating by the using quantum walk. The resulting
adjacent information captures the global topological arrangement information for graph substructures.
Adiabatic evolution [64] and conditional unitary [46] are applied to evolve the quantum systems
dependent on the underlying graph structure. In addition, the node attribute is encoded using
variational circuit [1] or a quantum random access memory [58]. Processing the encoded quantum
representation of the original graph can be realized via either a naive quantum algorithm [64] or a
hybrid method [11]. Then a post-processing operation is performed to further analyze the quantum
output. A brief review about quantum graph learning is illustrated in Fig. 1. Generally speaking, the
researchers exploit to encode the graph structure and node features in the quantum system through
various schemes, and then process the information through quantum layers and auxiliary classical
layers. Finally, the (quantum) results are decoded through post-processing. However, most quantum
graph learning models requires that adjustable parameters in the quantum algorithm need to be
updated frequently, where takes great computational overheads. Moreover, the classical components
in post-processing may dominate the performance of the model, thus weakening the role of the
quantum part. In this paper, We seek to establish a parameter-free quantum graph learning model to
maximize the efficacy of quantum computing.

We notice that there are researches which are abbreviated as QNTK [59, 42], similar to ours nominally.
But their definition is quite different from ours. The motivation of these two papers is to analyze the
trainability and expressive power of variational quantum circuits through NTK. In contrast, in our
work, QNTK is a metric measuring the similarity of two input graphs. In this context, NTK is the
kernel that captures the dynamics of infinite-width GNNs, as well as the multi-head attention where
the number of heads and the dimension of output go to infinity.

B More Analysis

B.1 Quantum Access Memory

Theorem 1 Let |Xp⟩ = 1
∥Xp∥

∑d−1
q=0 Xpq|j⟩ denotes the amplitude encoding of the p-th row of data

X ∈ Rn×d. There exists a data structure to store the entries of X into the QRAM which is stated as
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Table 3: Statistic information of the used datasets.
Dataset MUTAG PROTEINS PTC NCI1 IMDB-B IMDB-M ENZYMES BZR COX2

size 188 1113 344 4110 1000 1500 600 405 467
classes 2 2 2 2 2 3 6 2 2
attr. dim. - - - - - - 18 3 3
avg. nodes 18 39 26 30 20 13 32.6 35.8 41.2
avg. edges 20 73 51 32 97 66 62.1 38.3 43.5

i) |p⟩ |0⟩ → |p⟩ |Xp⟩

ii) |0⟩ → 1
∥X∥F

∑
p ∥Xp∥ |p⟩

in time T for p ∈ [n]. Using the binary tree QRAM architecture proposed by [35], the time T to store
and readout a new element scale logarithmically with respect to both n and d.

B.2 Inner Product Estimation

Theorem 2 There exists a quantum operation A that evaluates the inner product of two quantum
representations with respect to their d-dimensional classical vectors in time O(log d).

Proof. By introducing an auxiliary register, with the initial state |p⟩|q⟩ 1√
2
(|0⟩ + |1⟩)|0⟩, the map

1√
2
(|p⟩|q⟩|0⟩|0⟩ + |p⟩|q⟩|1⟩|0⟩) → 1√

2
(|p⟩|q⟩|0⟩| |Xp⟩⟩ + |p⟩|q⟩|1⟩| |Xq⟩⟩) can be performed in

O(log d) for two quantum representations |Xp⟩ and |Xq⟩ with respect to their classical vectors
Xp ∈ Rd and Xq ∈ Rd. Applying a Hadamard gate on the third register, the state becomes

1

2
|p⟩|q⟩ (|0⟩ (|Xp⟩+ |Xq⟩) + |1⟩ (|Xp⟩ − |Xq⟩)) . (24)

The probability of measuring 0 on the third register is given by Ppq =
1+⟨Xp|Xq⟩

2 . Thus the state
defined by Eq. 24 can be reformulated as |p⟩|q⟩

(√
Ppq |0, gpq⟩+

√
1− Ppq

∣∣1, g′pq〉) where |gpq⟩
and

∣∣g′pq〉 are garbage states.

B.3 Amplitude Estimation

Theorem 3 Given a unitary operator U such that U : |0⟩ 7→ √
p|y⟩|0⟩+

√
1− p |y′⟩ |1⟩ in time T ,

where p > 0 is the probability of measuring 0, it is possible to obtain the state |y⟩|0⟩ using O( T√
p )

queries to U , or to estimate p with relative error δ using O( T
δ
√
p ) queries to U . The detailed proof

can be found in [9].

B.4 Median Evaluation

Theorem 4 Consider a unitary U : |0⊗m⟩ 7→
√
α|v, 1⟩ +

√
1− α|g, 0⟩ for some 1/2 ≤ α ≤ 1 in

time T . There exits a quantum algorithm that, for any ∆ > 0 and for any 1/2 < α0 ≤ α, produce a
state |ψ⟩ such that ∥|ψ⟩ −

∣∣0⊗mL
〉
|x⟩∥ ≤

√
2∆ for some integer L in time

2T

⌈
log(1/∆)

2 (|α0| − 1/2)
2

⌉
. (25)

Refer to [65] for a detailed proof.

C Additional clarification of the proposed model

C.1 Definition of the infinite-width GNN and multi-head attention

GNTK is a generalization of NTK from infinite-width fully connected neural network to graph
neural network, which is a well-established approach in recent literature and thus we miss some
detailed explanation in our paper for space saving (and also due to the complexity of the details which
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otherwise will cost a lot of space), and the details can be found in [17]. Here we give an intuitive
illustration.

Consider a general GNN with the neighborhood feature aggregation function

ĥl
u :=

∑
v∈N (u)∪{u}

h(l−1)
v ,

and the central node feature update function (R fully connected layers)

hl
u :=

√
cσ
dlR
σ

(
Wl

R

√
cσ
dlR−1

σ

(
Wl

R−1 · · ·
√
cσ
dl1

· σ
(
Wl

1ĥ
l
u

)))
,

where hl
u denotes the feature vector of node u in the l-th layer, N (u) denotes the neighborhood of

node u, Wl
r ∈ Rdl

r×dl
r+1 is the weight matrix (r = 1, . . . , R), cσ is a scaling factor. The infinite-

width of GNN means that the output dimension dlr of Wl
r goes to infinity for r = 1, . . . , R and

l = 1, . . . , L.

Apart from the infinite-width GNN, the infinite-width transformer, which is exploited by us to
enhance the GNTK, has also been investigated in [26]. Here we briefly explain what an infinite-width
transformer looks like. Consider a single attention layer

Qh = HWh
Q,K

h = HWh
K ,V

h = HWh
V ,

Gh =
QhKh⊤

√
s

, Ĥh = ζ
(
Gh
)
Vh,

in Eq. 10, where H ∈ Rn×d is the node feature matrix and we ignore the superscript and the subscript
for simplicity. Qh, Kh, Vh ∈ Rd×d′

are weight matrices corresponding to Query, Key and Value,
respectively. s is a scaling factor. The square matrix Gh ∈ Rn×n can be viewed as a matrix whose
element corresponds to the similarity of each pair of nodes. Then the operation Ĥh = ζ

(
Gh
)
Vh

transforms the node features of the last layer to the next layer depending on the node similarity. For a
multi-head attention (transformer) layer, the equation is given as

transformer(H) = concat(Ĥ1||Ĥ2|| · · · ||ĤH)WO,

where WO ∈ RHd′×d′′
is the weight matrix. The infinite-width transformer means that the output

dimension d′ of Qh, Kh, Vh, the output dimension d′′ of WO, and the number of heads H go to
infinity.

C.2 Our contributions beyond the quantum speedup

Although the current scale of quantum hardware can not support the application of large-scale
quantum algorithms, it still can not stop the widespread attention of academia and industry to
quantum computing, especially in quantum machine learning [46, 19]. We hope that our model can
provide technical guidance for future research, and better exploit the immense benefits of quantum
computing even in a classic simulation condition.

Apart from quantum speedup, there are additional contributions of our proposed model, which have
been illustrated in Line 66 to Line 80 in the introduction section. And we hope that this novel
graph learning model can bridge the gap between graph neural tangent kernel methods and attention
mechanism. Here we briefly give an illustration.

Better performance compared with state-of-art graph models. The numerical results in Tab. 1
and Tab. 2 demonstrate that our model (AttentionGNTK) outperforms GNTK on 7 out of 10 datasets,
reflecting that the introduced infinite-width multi-head attention is useful and can better capture
distinct properties between different graphs. Furthermore, we compare our model with another
quantum-inspired graph learner QS-CNN. Our model surpasses QS-CNN on 4 out of 6 datasets and
performs similarly on the rest 2 datasets. It shows the superiority of our model in quantum graph
learning.
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Table 4: Running time comparison between different models.

MUTAG NCI1 IMDB-B IMDB-M

GIN 22 sec 67 min 19 min 24 min
GNTK 9 sec 18 min 4 min 7 min
Ours 14 sec 21 min 4 min 9 min

More robust compared with GNNs when the number of layers becomes larger. As illustrated
in Tab. 5, when the number of layers is larger than 5 (but less than 10), Our model is more resistant to
the oversmooth problem than GIN.

Fewer layers for reaching the peak of classification accuracy compared with GNTK. As
illustrated in Tab. 6, our model (attentionGNTK) reaches the peak of classification accuracy when
the number of layers is small, while GNTK needs more layers to reach, indicating that our model is
easier to capture the global structure information of the graph.

D Additional Experiments and Discussion

D.1 Running time comparison

We supplement the training time of our model on four selected datasets and compare it with two other
models. To make a fair comparison, we set the layers of all the models to 2. All the experiments are
performed on a workstation with a single machine with 1TB memory, one physical CPU with 28
cores Intel® Xeon® W-3175X CPU @ 3.10GHz, and a single GPU (Nvidia Quadro RTX 8000). The
results are shown in Tab. 4. Although the speedup introduced by the quantum algorithm depends on
the quantum devices, it shows that our proposed model still has a computational overhead reduction
when training on classic computers. The running time is slightly higher than that of GNTK which is
a lack of attention mechanism. It is noticed that our model. The runtime of our model is apparently
faster than that of GIN.

It is worth mentioning that the quadratic quantum speedup will be realized when the quantum
hardware becomes more feasible.

D.2 Model sensitivity to the number of layers

In the main body of the paper, we report the best classification accuracy of the model when the
the number of layers L is selected from {2, 4, 6, 8}. We compare the graph classification accuracy
bewteen GIN and our model at the same number of layers and the results are given in Tab. 5 and
Tab. 6. The number in parentheses in the table indicates the number of layers.

From Tab. 5, it is shown that our model (AttentionGNTK) is more robust compared with GIN when
the number of layers becomes larger. The main reason is that an additional feature aggregation, e.g.,
the transformer, can slow down the convergence rate, which is consistent with the observations in
[29] that connectivity enhancement can help wide and deep GNNs to avoid a discrepancy between
prediction and the ground truth.

While in Tab. 6, the results empirically demonstrate that our model (attentionGNTK) reaches the
peak of classification accuracy when the number of layers is small, while GNTK needs more layers
to reach, indicating that our model is easier to capture the global structure information of the graph.
This could be interpreted from the theoretical perspective. The transformer (Eq. 12) captured the
semantic information between each pair of (connected and disconnected) nodes with similar features.
Consider G = QK⊤

√
s

in Eq. 10, where Q and K are linear transformation of the node feature matrix
and we ignore the superscript and the subscript for simplicity. The G can be viewed as a matrix
whose element corresponds to the similarity of each pair of nodes. Then the operation Ĥ = ζ (G)V
transforms the node features of the last layer to the next layer depending on the node similarity. This
enables the model to make better use of the graph structure to transmit information and perceive
topology information over long distances.
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Table 5: Classification accuracy between GIN [67] and ours with respect to different layers.

GIN(4) Ours(4) GIN(6) Ours(6) GIN(8) Ours(8)

MUTAG 87.6 ± 6.2 89.1 ± 7.8 88.5 ± 5.6 90.0 ± 8.5 86.2 ± 6.4 88.4 ± 7.4
PROTEINS 75.5 ± 3.0 75.0 ± 4.1 74.3 ± 3.0 76.1 ± 3.8 72.8 ± 3.5 74.2 ± 4.4
PTC 62.8 ± 5.0 64.9 ± 5.3 62.0 ± 6.2 66.2 ± 5.1 61.2 ± 7.1 63.4 ± 6.6
NCI1 82.3 ± 3.6 84.1 ± 1.2 80.1 ± 2.4 83.8 ± 1.2 77.2 ± 3.3 82.3 ± 2.2
IMDB-B 73.2 ± 4.1 75.7 ± 2.8 74.4 ± 6.0 76.9 ± 4.3 72.1 ± 5.2 75.1 ± 4.0
IMDB-M 51.7 ± 3.7 52.0 ± 4.1 52.0 ± 2.6 51.9 ± 3.7 48.2 ± 4.3 50.3 ± 4.5

Table 6: Classification accuracy between GNTK [17] and ours with respect to different layers.

GNTK(4) Ours(4) GNTK(6) Ours(6) GNTK(8) Ours(8)

PTC 62.9 ± 7.2 64.9 ± 5.3 63.5 ± 6.8 66.2 ± 5.1 65.2 ± 7.9 63.4 ± 6.6
NCI1 83.6 ± 2.1 84.1 ± 1.2 84.0 ± 0.9 83.8 ± 1.2 82.9 ± 1.8 82.3 ± 2.2
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