
Dynamic Graph Neural Networks Under
Spatio-Temporal Distribution Shift

(Appendix)

A Notations

Notations Descriptions

G = (V, E) A graph with the node set and edge set
Gt = (Vt, Et) Graph slice at time t

Xt,At Features and adjacency matrix of a graph at time t
G1:t, Y t,G1:t,Yt Graph trajectory, label and their corresponding random variable
G1:t
v , yt,G1:t

v ,yt Ego-graph trajectory, the node’s label and their corresponding random variable
f(·), g(·) Predictors
P,P Pattern and its corresponding random variable
m(·) Function to select structures and features from ego-graph trajectories
do(·) do-calculus
ϕ(·) Function to find invariant patterns

d The dimensionality of node representation
q,k,v Query, key and value vector
N t(u) Dynamic neighborhood of node u at time t

mI ,mV ,mf Structural mask of invariant and variant patterns, and featural mask
ztI(u), z

t
V (u) Summarizations of invariant and variant patterns for node u at time t

AggI(·), AggV (·) Aggregation functions for invariant and variant patterns
ht
u Hidden embeddings for node u at time t
ℓ Loss function

L,Lm,Ldo Task loss, mixed loss and invariance loss

B More Details on Section 3.1

Background of Assumption 1. It is widely adopted in out-of-distribution generalization literature [1,
2, 3, 4, 5, 6, 7] about the assumption that the relationship between labels and some parts of features
is invariant across data distributions, and these subsets of features with such properties are called
invariant features. In this paper, we use invariant patterns PI to denote the invariant structures and
features. From the causal perspective, we can formulate the data-generating process in dynamic
graphs with a structural causal model (SCM) [8, 9], PV → G← PI → y and PV ← PI , where the
arrow between variables denotes casual relationship, and the subscript v and superscript t are omitted
for brevity. PV → G ← PI denotes that variant and invariant patterns construct the ego-graph
trajectories observed in the data, while PI → y denotes that invariant patterns determine the ground
truth label y, no matter how the variant patterns change inside data across different distributions.
Sometimes, the correlations between variant patterns and labels may be built by some exogenous
factors like periods and communities. In some distributions, PV ← PI would open a backdoor
path [9] PV ← PI → y so that variant patterns PV and labels y are correlated statistically, and this
correlation is also called spurious correlation. If the model highly relies on the relationship between
variant patterns and labels, it will fail under distribution shift, since such relationship varies across
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(a) COLLAB (b) Yelp (c) Transaction

Figure 1: Average neighbor degrees in the graph slice as time goes.

(a) COLLAB (b) Yelp (c) Transaction

Figure 2: Number of links in the graph slice as time goes.

distributions. Hence, we propose to help the model focus on invariant patterns to make predictions
and thus handle distribution shift.

Connnections in Remark 1.To eliminate the spurious correlation between variant patterns and
labels, one way is to block the backdoor path by using do-calculus to intervene variant patterns.
By applying do-calculus on one variable, all in-coming arrows(causal relationship) to it will be
removed [9] and the intervened distributions will be created. In our case, the operator do(P V ) will
cut the causal relationship from invariant patterns to variant patterns, i.e. disablingP V  P I and
then blocking the backdoor pathP V  P I ! y . Hence, the model can learn the direct causal
effects from invariant patterns to labels in the intervened distributionsp(y ; G jdo(P V )) , and the risks
should be the same across these intervened distributions. Therefore we can minimize the variance of
empirical risks under different intervened distributions to help the model focus on the relationship
between invariant patterns and labels. On the other hand, if we have the optimal predictorf �

� 1
and

pattern �nder� �
� 2

according to Eq.(3), then the variance term in Eq.(4) is minimized as the variant
patterns will not affect the predictions off �

� 1
� � �

� 2
across different intervened distributions.

C Additional Experiments

C.1 Distribution Shifts in Real-world Datasets

We illustrate the distribution shifts in the real-world datasets with two statistics, number of links and
average neighbor degrees [10]. Figure 1 shows that the average neighbor degrees are lower in test
data compared to training data. Lower average neighbor degree indicates that the nodes have less
af�nity to connect with high-degree neighbors. Moreover, in COLLAB, the test data has less history
than training data, i.e. the graph trajectory is not always complete in training and test data distribution.
This phenomenon of incomplete history is common in real-world scenarios, e.g. not all the users join
the social platforms at the same time. Figure 2 shows that the number of links and its trend also differ
in training and test data. In COLLAB, #links of test data has a slower rising trend than training data.
In Yelp, #links of training and test data both have a drop during time 13-15 and rise again thereafter,
due to the outbreak of COVID-19, which strongly affected the consumers' behavior.
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Figure 3: Comparison of dif-
ferent intervention mechansim
on COLLAB dataset, where
DIDA-S only uses spatial in-
tervention andDIDA-T only
uses temporal intervention.

Figure 4: Comparison in terms
of training time for each epoch
on COLLAB dataset, where
'w/o I' means removing inter-
vention mechanism inDIDA .

(a) COLLAB (b) Yelp (c) Transaction (d) Synthetic

Figure 5: Sensitivity of hyperparameter� . The area shows the average AUC and standard deviations
in the test stage. The dashed line represents the average AUC of the best performed baseline.

C.2 Spatial or Temporal Intervention

We compare two other versions ofDIDA , whereDIDA-S only uses spatial intervention andDIDA-T
only uses temporal intervention. ForDIDA-S, we put the constraint that the variant patterns used
to intervene must come from the same timestamp in Eq.(9) so that the variant patterns across time
are forbidden for intervention. Similarly, we put the constraint that the variant patterns used to
intervene must come from the same node in Eq.(9) forDIDA-T . Figure 3 shows thatDIDA improves
signi�cantly over the other two ablated versions, which veri�es that it is important to take into
consideration both the spatial and temporal aspects of distribution shifts.

C.3 Ef�ciency of Intervention

ForDIDA andDIDA without intervention mechanism, we compare their training time for each epoch
on COLLAB dataset. As shown in Figure 4, the intervention mechanism adds few costs in training
time (lower than 5%). Moreover, asDIDA does not use the intervention mechanism in the test stage,
it does not add extra computational costs in the inference time.

C.4 Hyperparameter Sensitivity

We analyze the sensitivity of hyperparameter� in DIDA for each dataset. From Figure 5, we can see
that as� is too small or too large, the model's performance drops in most datasets. It shows that�
acts as a balance between howDIDA exploits the patterns and satis�es the invariance constraint.

3



Figure 6: Case study:DIDA 's attention scores for invariant patterns, which are shown in percentage
and marked red. Nodes and links represent users and transactions respectively. Links with smaller
attention scores are omitted for brevity. For each link, the direction denotes a selling behavior, and
it is tagged with the trading goods and transaction time on the link. For example, the link from B
to A with tagging `Day 12' and `T3P2' represents that user B sells user A three T-shirts and two
pants on day 12. The trading goods have four types: T, P, H, O represent T-shirt, Pants, Hoddie, and
Outerwear respectively. Based on the transactions in their dynamic neighborhood,DIDA predicts
whether user A will buy something from user B on day 17, and the dashed bounding box `T1P1'
refers to ground-truth trading goods.

C.5 Case Study

Figure 6 illustratesDIDA 's attention scores for invariant patterns. We use a well-trainedDIDA on
Transaction dataset and show the scores of the structural mask for invariant patterns, i.e.m I in Eq.(6).
In this case,DIDA predicts whether user A will buy something (`T1P1') from user B on day 17,
based on the transactions in their dynamic neighborhood. We have the following observations:

• Transactions with higher attention scores are more correlated with the transaction to predict. The
transactions with attention scores 28% and 21% include goods `T3P2' and `T2', which are closed
to the ground-truth trading goods `T1P1' from B to A on day 17. On the right side, similarly,
the transactions with attention scores 17%, 14% and 11% include goods `T3', `T1P3' and `T1',
which are closed to `T1P1' as well. In contrast, the transactions with other unrelated goods like
`H1' and `O1' have even smaller attention scores.

• Dynamic information is critical in the attention scores for invariant patterns. For the transactions
with attention scores 21% and 8% on the left side, they include goods `T2' and `P2' which are
both similar to `T1P1'. However, the latter's attention score is much lower than the former's. This
is because the latter happens much earlier than the former, andDIDA learns to attend to more
recent transactions to capture users' recent interest.

These observations indicate thatDIDA can summarize invariant patterns in dynamic neighborhood to
capture the users' interests in trading (user A as a recent T-shirt/Pants buyer and user B as a recent
T-shirt/Pants seller) and make predictions by matching the summarized interests.

D Reproducibility Details

D.1 Training & Evaluation

Hyperparameters. For all methods, the hidden dimension is set to 16, the number of layers is set
to 2. We adopt the Adam optimizer [11] with a learning rate0:01, weight decay 5e-7 and set the
patience of early stopping on the validation set as 50. For other hyperparameters, we adopt grid
search for the best parameters using the validation split. ForDIDA , we set the number of intervention
samples as 1000 for all datasets, and� as 1e-2,1e-2,1e-4,1e-1 for COLLAB, Yelp, Transaction, and
Synthetic dataset respectively.
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