
A Applications of distributed/federated minimax problems

In this section, we consider specific instantiations of (1) and (7). Two examples are presented: one is
federated generative adversarial networks, another is agnostic federated learning. We show that both
of them are special cases of the general framework considered in the paper.

A.1 Federated generative adversarial networks

In [50], the authors consider to train GANs in a federated way, where m agents with corresponding
local datasets cooperate to learn a common model which is essentially the model of centralized GAN.
Then, for each agent, its local objective function is defined by

Ri(x, y) = −Eξ∼Pi
[log ϕy(ξ)]− Eξ′∼Qi(x) [log(1− ϕy(ξ

′))]

where ϕy is the discriminator and Qi(x) is the distribution to generate fake data of the generator. And
the objective of the centralized GAN is given by

R(x, y) =
1

m

m∑
i=1

Ri(x, y)

when identical sample sizes are assumed. This is essentially the same as our formulation.

A.2 Agnostic federated learning

The framework of agnostic federated learning was first proposed and analyzed in [13]. where the
centralized model is leaned for any possible target distribution that is formed by a convex combination
of all agents’ local distributions. In particular, let Pi denote the distribution of agent i. Then, the target
distribution is formed by

∑m
i=1 λ

∗
iPi for some unknown λ∗ such that λ∗ ∈ Λ, where Λ represents a

simplex. Then, agnostic federated learning is aimed at learning a model θ∗ that performs best under
the worst case, i.e.,

θ∗ = argmin
θ∈Θ

{
R(θ,Λ) := max

λ∈Λ

m∑
i=1

λiRi(θ)

}
where Ri(θ) = Eξ∼Pi

[l(θ; ξ)] is the local population risk. The empirical version of the problem can
be derived similarly. Note that this formulation is essentially included by our problem.

B Proof of Proposition 1

Given (3), it is straightforward that

xt+1
i,K = DK

i (xt+1
i,0 , yt+1

i,0 ),

yt+1
i,K = AK

i (xt+1
i,0 , yt+1

i,0 ).

Noting (xt+1, yt+1) = 1
m

∑m
i=1(x

t+1
i,K , yt+1

i,K ) and (xt, yt) = (xt+1
i,0 , yt+1

i,0 ),

xt+1 =
1

m

m∑
i=1

DK
i (xt, yt),

yt+1 =
1

m

m∑
i=1

AK
i (xt, yt).

Further using limt→∞(xt, yt) = (x∗, y∗) gives

1

m

m∑
i=1

K−1∑
k=0

∇xfi(Dk
i (x

∗, y∗),Ak
i (x

∗, y∗)) = 0,

1

m

m∑
i=1

K−1∑
k=0

∇yfi(Dk
i (x

∗, y∗),Ak
i (x

∗, y∗)) = 0,

which completes the proof.
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C An illustrative example for Local SGDA with constant stepsizes

We illustrate the inexact convergence of local SGDA with constant stepzie through a simple instance
of (1) where only two agents cooperate to find a minimax point of f(x, y) by Local SGDA using full
gradient information. We further assume that each fi(x, y) is strongly-convex-strongly-concave and
Lipschitz smooth such that the minimax point is unique and linear convergence is possible to reach.
Specifically, we construct local objectives as follows:

f1(x, y) = x2 − y2 − (x− y)

f2(x, y) = 4x2 − 4y2 − 32(x− y)

where the minimax point is x∗ = y∗ =
(∑2

i=1 2i
2
)−1∑2

i=1(31i − 30). By Proposition 1, a
straightforward calculation gives

x∗
Local−SGDA =

(
2∑

i=1

K−1∑
k=0

2i2(1− 2ηxi
2)k

)−1 2∑
i=1

K−1∑
k=0

(31i− 30)(1− 2ηxi
2)k,

y∗Local−SGDA =

(
2∑

i=1

K−1∑
k=0

2i2(1− 2ηyi
2)k

)−1 2∑
i=1

K−1∑
k=0

(31i− 30)(1− 2ηyi
2)k.

In general x∗
FedGDA ̸= x∗, y∗FedGDA ̸= y∗ when K ≥ 2. Therefore, we see that Local SGDA has

incorrect fixed points when constant stepsizes are used even under deterministic scenarios.

In the sequel, we empirically show the effect of different numbers of local updates on the fixed
point. We consider cases with K = 1, K = 10, K = 20, K = 50. The stepsizes ηx and ηy
are set by ηx = ηy = 0.1 when K = 1 and by ηx = ηy = 0.001 for the remaining cases. The
initial points (x0, y0) for four cases are identical for the convenience of comparison. From Figure 3,
when K = 1 Local SGDA reduces to centralized GDA and converges to the minimax point (x∗, y∗)
linearly by strong-convexity-strong-concavity and Lipschitz smoothness assumptions. However, for
K = 10, 20, 50, given identical stepsizes, larger the number of local updates is, fewer communication
rounds are needed until convergence, but farther the limit points are from the optimal one. Another
point that is worthy to note is that convergence error between the minimax point and the fixed point
of Local SGDA can be too large to be neglected (even over 103 in Section 5), although the errors
shown in Figure 3 are relatively small.
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Figure 3: Local SGDA with constant stepsizes under different numbers of local updates
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D Convergence analysis of FedGDA-GT

D.1 Proof of Lemma 2

First, we introduce the definition of saddle point of f(x, y):
Definition 2. The point (x∗, y∗) is said to be a saddle point of f(x, y) if

f(x∗, y) ≤ f(x∗, y∗) ≤ f(x, y∗),∀x ∈ X , y ∈ Y.

Obviously, by Definitions 1 and 2, we know that any saddle point of f(x, y) is also a minimax point
of f(x, y). Then, any saddle point in the interior of X × Y must satisfy Lemma 1. Moreover, when
f(x, y) is strongly-convex-strongly-concave, we show that any minimax point is also a saddle point,
stated as follows:
Lemma 4. Suppose f(x, y) satisfies Assumptions 1 and 3. If (x∗, y∗) is a minimax point of f(x, y),
then it is also a saddle point of f(x, y). Moreover,

∇xf(x
∗, y∗) = ∇yf(x

∗, y∗) = 0 ⇐⇒ (x∗, y∗) is a saddle point of f(x, y).

Proof. By Assumption 1, we have

∇2
xxf(x, y) ⪰ µI, ∇2

yyf(x, y) ⪯ −µI, ∀x, y.
By Lemma 1 and Proposition 5 in [59], we obtain that under Assumptions 1 and 3,

∇xf(x
∗, y∗) = ∇yf(x

∗, y∗) = 0 ⇐⇒ (x∗, y∗) is a saddle point of f(x, y).

Noting that (x∗, y∗) is a minimax point implies ∇xf(x
∗, y∗) = ∇yf(x

∗, y∗) = 0 by Lemma 1, this
completes the proof.

Next, we provide the uniqueness statement of saddle point (x∗, y∗).
Lemma 5. Under Assumption 1, the saddle point (x∗, y∗) of f(x, y) is unique in X × Y .

Proof. By Assumption 1, it yields given any y ∈ Rq and α ∈ (0, 1),

f(αx+ (1− α)z, y) ≤ αf(x, y) + (1− α)f(z, y)− µ

2
α(1− α)∥z − x∥2, ∀x, z. (15)

Suppose there exists some saddle point (u∗, v∗) ̸= (x∗, y∗). Then f(x∗, y∗) = f(u∗, v∗) must hold.
Otherwise without loss of generality, assuming f(x∗, y∗) < f(u∗, v∗), by the definition of saddle
points, the fact f(x∗, v∗) ≤ f(x∗, y∗) < f(u∗, v∗) contradicts f(u∗, v∗) ≤ f(x∗, v∗).

Then, by (15) and Definition 2,

f(x∗, y∗) ≤ f(αx∗ + (1− α)u∗, y∗) < αf(x∗, y∗) + (1− α)f(u∗, y∗)

≤ αf(x∗, y∗) + (1− α)f(u∗, v∗),

which implies f(x∗, y∗) < f(u∗, v∗), contradicting f(x∗, y∗) = f(u∗, v∗). This completes the
proof.

Finally, combining Lemmas 4 and 5 gives Lemma 2.

D.2 Technical Lemmas

Before the convergence proof of Theorem 1, we need several technical lemmas.
Lemma 6. (Relaxed triangle inequality) Let v1, . . . , vn be n vectors in Rd. Then,∥∥∥∥∥

n∑
i=1

vi

∥∥∥∥∥
2

≤ n

n∑
i=1

∥vi∥2.

Lemma 7. Let Fi(z) = (∇xfi(x, y),−∇yfi(x, y)) where z = (x, y). Under Assumption 1, Fi(·) is
µ-strongly monotone, ∀i = 1, . . . ,m, which means

⟨Fi(z)− Fi(z
′), z − z′⟩ ≥ µ∥z − z′∥2, ∀z, z′ ∈ Rp+q.
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Proof. Let gi(x, y) = fi(x, y)− µ
2 ∥x∥

2 + µ
2 ∥y∥

2 and Gi(z) = (∇xgi(x, y),−∇ygi(x, y)), where
z = (x, y). From Assumption 1, it is obvious that gi(x, y) is convex-concave. Then, Fi(z) is
µ-strongly monotone is equivalent to

⟨Gi(z)−Gi(z
′), z − z′⟩ ≥ 0, ∀z, z′ ∈ Rp+q.

Given the convex-concave property of gi(x, y), we have for any z1 = (x1, y1), z2 = (x2, y2),

gi(x2, y1) ≥ gi(x1, y1) + ⟨∇xgi(x1, y1), x2 − x1⟩,
−gi(x1, y2) ≥ −gi(x1, y1)− ⟨∇ygi(x1, y1), y2 − y1⟩,
gi(x1, y2) ≥ gi(x2, y2) + ⟨∇xgi(x2, y2), x1 − x2⟩,

−gi(x2, y1) ≥ −gi(x2, y2)− ⟨∇ygi(x2, y2), y1 − y2⟩.

Adding these four inequalities gives

⟨∇xgi(x1, y1)−∇xgi(x2, y2), x1 − x2⟩ − ⟨gi(x1, y1)− gi(x2, y2), y1 − y2⟩ ≥ 0,

which essentially indicates ⟨Gi(z1)−Gi(z2), z1 − z2⟩ ≥ 0. This completes the proof.

Lemma 8. For any µ-strongly monotone and L-Lipschitz continuous operator F (·), there exists
some λ ∈ (0, 1) such that given any η ∈ (0, 2µ/L2),

∥u− v − η(F (u)− F (v))∥ ≤ λ∥u− v∥, ∀u, v.

Proof.

∥u− v − η(F (u)− F (v))∥2 = ∥u− v∥2 + η2∥F (u)− F (v)∥2 − 2η⟨F (u)− F (v), u− v⟩
≤ ∥u− v∥2 + η2L2∥u− v∥2 − 2ηµ∥u− v∥2

= (1− η(2µ− ηL2))∥u− v∥2 (16)

where Lemma 7 is used.

By setting λ = 1 − η(2µ − ηL2), we obtain λ ∈ (0, 1), ∀η ∈ (0, 2µ/L2), which completes the
proof.

D.3 Proof of Theorem 1

In this section, we formally prove Theorem 1.

Define z = (x, y), Fi(z) = (∇xfi(x, y),−∇yfi(x, y)), F (z) = (∇xf(x, y),−∇yf(x, y)). By
definition, F (z) = 1

m

∑m
i=1 Fi(z). Denote ProjZ(·) = ProjX×Y(·).

We focus on the updates within one outer iteration t and may selectively drop the superscript t in the
following analysis for notational convenience. Then according to Algorithm 2, we obtain

zi,K = zi,0 − η

K−1∑
k=0

(
Fi(zi,k)− Fi(z

t) + F (zt)
)

= zi,0 − η

K−1∑
k=0

Fi(zi,k) + ηK(Fi(z
t)− F (zt)).

Note that zt = 1
m

∑m
i=1 zi,0 and zt+1 = ProjZ

(
1
m

∑m
i=1 zi,K

)
, it yields

zt+1 = ProjZ

(
1

m

m∑
i=1

zi,0 −
η

m

m∑
i=1

K−1∑
k=0

Fi(zi,k) +
ηK

m

m∑
i=1

(Fi(z
t)− F (zt))

)

= ProjZ

(
zt − η

m

m∑
i=1

K−1∑
k=0

Fi(zi,k)

)
. (17)
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Then, we have

∥zt+1 − z∗∥2 ≤

∥∥∥∥∥zt − z∗ − η

m

m∑
i=1

K−1∑
k=0

Fi(zi,k)

∥∥∥∥∥
2

= ∥zt − z∗∥2 +

∥∥∥∥∥ η

m

m∑
i=1

K−1∑
k=0

Fi(zi,k)

∥∥∥∥∥
2

︸ ︷︷ ︸
τ1

−2η⟨ 1
m

m∑
i=1

K−1∑
k=0

Fi(zi,k), z
t − z∗⟩︸ ︷︷ ︸

τ2

(18)

where we use the fact that ∥ProjZ(z1)− ProjZ(z2)∥ ≤ ∥z1 − z2∥ and z∗ = (x∗, y∗).

Next, we will bound τ1. By noting F (z∗) = 0, we have

τ1 =
η2

m2

∥∥∥∥∥
m∑
i=1

K−1∑
k=0

Fi(zi,k)

∥∥∥∥∥
2

=
η2

m2

∥∥∥∥∥
m∑
i=1

K−1∑
k=0

(Fi(zi,k)− Fi(z
∗))

∥∥∥∥∥
2

(a)

≤ η2

m

m∑
i=1

∥∥∥∥∥
K−1∑
k=0

(Fi(zi,k)− Fi(z
∗))

∥∥∥∥∥
2

(b)

≤ η2K

m

m∑
i=1

K−1∑
k=0

∥∥Fi(zi,k)− Fi(z
t) + Fi(z

t)− Fi(z
∗)
∥∥2

(c)

≤ η2K

m

m∑
i=1

K−1∑
k=0

2L2
(∥∥zi,k − zt

∥∥2 + ∥∥zt − z∗
∥∥2)

=
2η2L2K

m

m∑
i=1

K−1∑
k=0

∥∥zi,k − zt
∥∥2 + 2η2L2K2

∥∥zt − z∗
∥∥2 (19)

where (a) and (b) follow from the relaxed triangle inequality, and (c) follows from Assumption 2.
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Then we will derive a bound for τ2.

τ2 = −2η⟨ 1
m

m∑
i=1

K−1∑
k=0

Fi(zi,k), z
t − z∗⟩

= −2η⟨ 1
m

m∑
i=1

K−1∑
k=0

Fi(zi,k)− Fi(z
t) + Fi(z

t), zt − z∗⟩

= −2η⟨ 1
m

m∑
i=1

K−1∑
k=0

Fi(zi,k)− Fi(z
t), zt − z∗⟩ − 2ηK⟨F (zt), zt − z∗⟩

(a)

≤ 2η

∥∥∥∥∥ 1

m

m∑
i=1

K−1∑
k=0

Fi(zi,k)− Fi(z
t)

∥∥∥∥∥∥∥zt − z∗
∥∥− 2ηK⟨F (zt), zt − z∗⟩

(b)

≤ 2η

m

m∑
i=1

K−1∑
k=0

∥Fi(zi,k)− Fi(z
t)∥∥zt − z∗∥ − 2ηK⟨F (zt), zt − z∗⟩

(c)

≤ 2ηL

m

m∑
i=1

K−1∑
k=0

∥zi,k − zt∥∥zt − z∗∥ − 2ηK⟨F (zt)− F (z∗), zt − z∗⟩

(d)

≤ 2ηL

m

m∑
i=1

K−1∑
k=0

∥zi,k − zt∥∥zt − z∗∥ − 2ηµK∥zt − z∗∥2 (20)

where (a) follows from the Cauchy-Schwartz inequality; (b) follows from the triangle inequality; (c)
follows from Assumption 2; (d) follows from Lemma 7.

From (19) and (20) we observe that both bounds are relevant to ∥zi,k − zt∥, which indicates the drift
between local models and the global model caused by multiple local updates before the communica-
tion. However, this drift can be bounded by the correction techniques of Algorithm 2:

∥zi,k+1 − zt∥ = ∥zi,k − zt − η(Fi(zi,k)− Fi(z
t))− ηF (zt)∥

≤ ∥zi,k − zt − η(Fi(zi,k)− Fi(z
t))∥+ η∥F (zt)∥

≤ λ∥zi,k − zt∥+ η∥F (zt)∥

for some 0 < λ < 1 with 0 < η < 2µ
L2 by Lemma 8. It further indicates for any 1 ≤ k ≤ K,

∥zi,k − zt∥ ≤ λk∥zi,0 − zt∥+ ηk∥F (zt)∥
≤ ηK∥F (zt)∥
≤ ηKL∥zt − z∗∥ (21)

by noting zi,0 = zt and
∑k−1

j=0 λ
j ≤ k.

Combining (18), (19) and (21) gives

∥zt+1 − z∗∥2 ≤ (1 + 2η2L2K2 − 2ηµK)∥zt − z∗∥2 + 2(ηLK)4∥zt − z∗∥2 + 2(ηLK)2∥zt − z∗∥2

=
(
1− 2(ηµK − 2η2L2K2 − η4L4K4)

)
∥zt − z∗∥2.

Let h(η) = 2(ηµK − 2η2L2K2 − η4L4K4). Given 0 < η ≤ 1
2µK , h(η) < 1. Moreover,

h(η)

2η
= µK − 2ηL2K2 − η3L4K4

which is a monotonically decreasing function with respect to η with limη→0
h(η)
2η = µK > 0 and

limη→∞
h(η)
2η = −∞. Then, we conclude that there exists some η1 > 0 such that h(η) > 0,

∀0 < η < η1. By defining η0 = min{2µ/L2, 1/(2µK), η1}, it yields h(η) ∈ (0, 1), ∀η ∈ (0, η0).
Defining ρ(η) = 1− h(η) completes the proof.
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D.4 Analysis of homogeneous local objectives

In this section, we analyze the convergence properties of FedGDA-GT under homogeneous setting.
In fact, when all agents have identical objective functions, i.e., fi(x, y) = f(x, y),∀i = 1, . . . ,m,
the convergence rate can be at least as K times faster as that in Theorem 1, which is formally stated
by the following proposition:
Proposition 2. Suppose Assumptions 1, 2, 3 are satisfied and fi(x, y) = f(x, y),∀i = 1, . . . ,m. Let
{(xt, yt)}∞t=0 be a sequence generated by Algorithm 2. Then, choosing η = µ/L2, we have

∥xt − x∗∥2 + ∥yt − y∗∥2 ≤ (1− κ−2)Kt
(
∥x0 − x∗∥2 + ∥y0 − y∗∥2

)
,∀t = 0, 1, . . .

where κ = L/µ is the condition number of f(x, y). Moreover, we have 1− κ2 ≤ ρ(η),∀η ∈ (0, η0)
where η0 is defined in Theorem 1.

Proof. As we stated before, Algorithm 2 reduces to conventional GDA under homogeneous setting.
Then, for any l ≥ 0, by the same techniques of Lemma 8, we have

∥zl+1 − z∗∥2 ≤ (1− 2ηµ+ η2L2)∥zl − z∗∥2.

Setting η = µ/L2, 1− 2ηµ+ η2L2 reaches the smallest value, which is 1− κ−2. Next, we prove
that κ−2 ≥ h(η),∀η > 0. Note that

h(η) = 2(ηµK − 2η2L2K2 − η4L4K4) ≤ 2η(µK − ηL2K2) ≤ 1

2
κ−2 < κ−2.

Thus, we have ρ(η) := 1− h(η) ≥ 1− κ−2,∀η > 0, which completes the proof.

To gain the intuition behind Proposition 2, we note that when fi(x, y) = f(x, y), ∇xfi(x, y) =
∇xf(x, y) and ∇yfi(x, y) = ∇yf(x, y). Then local updates in Algorithm 2 reduce to xt+1

i,k+1 =

xt+1
i,k − η∇xf(x

t+1
i,k , yt+1

i,k ), similar for y. Since at the beginning all agents start at the same point
(x0, y0), it guarantees that for any t, (xt

i,k, y
t
i,k) = (xt

j,k, y
t
j,k),∀i, j ∈ {1, . . . ,m} and ∀k =

0, . . . ,K − 1. Thus, Algorithm 2 is equivalent to the centralized GDA in this homogeneous setting,
where the global model is improved by K times in one communication round.

E Analysis of generalization properties of minimax learning problems

In this section, we provide the formal proofs of the results in Section 4. Our proofs are based on the
following technical tools.
Definition 3. (Growth function) The growth function ΠH : N → N for the hypothesis set H is
defined by

ΠH(n) = max
ξ1,...,ξn

∣∣{(h(ξ1), . . . , h(ξn)) : h ∈ H}
∣∣

where ξ1, . . . , ξn are samples drawn according to some distribution.

Definition 4. (VC-dimension) The VC-dimension of hypothesis set H is defined by

VCdim(H) = max{n : ΠH(n) = 2n}

which measures the size of the largest set of points that can be shattered by H.

Lemma 9. (Massart’s lemma) Let V ⊆ Rn be a finite set such that r = maxv∈V ∥v∥. Then,

Eσ

 1

n
sup
v∈V

n∑
j=1

σjvj

 ≤
r
√

2 log |V |
n

where vj denotes the jth entry of v, each σj is drawn independently from {−1, 1} uniformly.

Lemma 10. (Sauer’s lemma) Suppose the VC-dimension of hypothesis set H is d. Then for any
integer n ≥ d,

ΠH(n) ≤
(en
d

)d
.
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We further introduce McDiarmid’s inequality.

Lemma 11. (McDiarmid’s inequality) Let X1, . . . , Xn are independent random variables with
Xi ∈ X ,∀i = 1, . . . , n. Suppose there exist some function f : Xn → R and positive scalars
c1, . . . , cn such that ∣∣f(x1, . . . , xk, . . . , xn)− f(x1, . . . , x

′
k, . . . , xn)

∣∣ ≤ ck

for all k = 1, . . . , n and for any realizations x1, . . . , xn, x
′
k ∈ X . Denote f(X1, . . . , Xn) by f(S).

Then, for any ϵ > 0,

P [f(S)− E[f(S)] ≥ ϵ] ≤ exp

(
−2ϵ2∑n
j=1 c

2
j

)
,

P [f(S)− E[f(S)] ≤ −ϵ] ≤ exp

(
−2ϵ2∑n
j=1 c

2
j

)
.

Then, we are ready to give the proofs of results in Section 4.

E.1 Proof of Theorem 2

Let S = {S1, . . . ,Sm} be the collection of all local data sets. Given y ∈ Y , define

Φ(S) = sup
x∈X

{R(x, y)− f(x, y)} .

Let S ′ = {S ′
1, . . . ,S ′

m} be another data collection differing from S only by point ξ′i,j in S ′
i and ξi,j

in Si for some specific i. Then,

Φ(S ′)− Φ(S) = sup
x∈X

{R(x, y)− f ′(x, y)} − sup
x∈X

{R(x, y)− f(x, y)}

≤ sup
x∈X

{R(x, y)− f ′(x, y)− (R(x, y)− f(x, y))}

= sup
x∈X

{f(x, y)− f ′(x, y)}

= sup
x∈X

 1

mn

n∑
j=1

l(x, y; ξi,j)−
1

mn

n∑
j=1

l(x, y; ξ′i,j)


≤ 1

mn
Mi(y).

Applying McDiarmid’s inequality gives that for any c > 0,

P [Φ(S)− E[Φ(S)] ≥ c] ≤ exp

 −2c2∑m
i=1

∑n
j=1

(
Mi(y)
mn

)2
 = exp

(
−2c2m2n∑m
i=1 M

2
i (y)

)
.

Setting δ = exp
(

−2c2m2n∑m
i=1 M2

i (y)

)
, we obtain c =

√∑m
i=1

M2
i (y)

2m2n log 1
δ . Then, with probability at least

1− δ,

sup
x∈X

{R(x, y)− f(x, y)} ≤ E
[
sup
x∈X

{R(x, y)− f(x, y)}
]
+

√√√√ m∑
i=1

M2
i (y)

2m2n
log

1

δ
.
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By similar techniques of [29], we have for any y ∈ Y ,

Eξ∼P [Φ(S)] = Eξ∼P

[
sup
x∈X

{R(x, y)− f(x, y)}
]

= Eξ∼P

[
sup
x∈X

{Eξ′∼P [f ′(x, y)− f(x, y)]}
]

≤ Eξ,ξ′∼P

[
sup
x∈X

{f ′(x, y)− f(x, y)}
]

= E
σ

 E
ξ,ξ′∼P

sup
x∈X

 1

mn

m∑
i=1

n∑
j=1

σi,j(l(x, y; ξ
′
i,j)− l(x, y; ξi,j))




≤ 2E
σ

 E
ξ∼P

sup
x∈X

 1

mn

m∑
i=1

n∑
j=1

σi,j l(x, y; ξi,j)




= 2R(X , y)

by noting ξ and ξ′ are drawn from the same distribution and σ is Rademacher variable. Thus, we
have given y ∈ Y , with probability at least 1− δ,

sup
x∈X

{R(x, y)− f(x, y)} ≤ 2R(X , y) +

√√√√ m∑
i=1

M2
i (y)

2m2n
log

1

δ
.

Since Y is compact, every open cover of Y has a finite subcover. Then, we have
∣∣Yϵ

∣∣ < ∞. Taking
the union over Yϵ, it yields for any x ∈ X and y ∈ Yϵ, with probability at least 1− δ,

R(x, y) ≤ f(x, y) + 2R(X , y) +

√√√√ m∑
i=1

M2
i (y)

2m2n
log

|Yϵ|
δ

.

By the definition of Yϵ, for any y ∈ Y , there exists a y′ ∈ Yϵ such that
R(x, y)−R(x, y′) ≤ Ly∥y − y′∥ ≤ Lyϵ

f(x, y′)− f(x, y) ≤ Ly∥y − y′∥ ≤ Lyϵ

by Lipschitz continuity of l in y. Thus, for any ϵ > 0, x ∈ X and y ∈ Y , with probability at least
1− δ, the following inequality holds:

R(x, y) ≤ f(x, y) + 2R(X , y) +

√√√√ m∑
i=1

M2
i (y)

2m2n
log

|Yϵ|
δ

+ 2Lyϵ,

which completes the proof of Theorem 2.

E.2 Proof of Corollary 1

From Theorem 2, it is obvious that with probability at least 1− δ for any x ∈ X , taking the maximum
of Y gives

R(x, y) ≤ max
y∈Y

f(x, y) + 2R(X , y) +

√√√√ m∑
i=1

M2
i (y)

2m2n
log

|Yϵ|
δ

+ 2Lyϵ.

Since the above inequality holds for any y ∈ Y , by again taking the maximum over Y on the left-hand
side, we obtain for any x ∈ X , with probability at least 1− δ,

Q(x) ≤ max
y∈Y

f(x, y) + 2R(X , y) +

√√√√ m∑
i=1

M2
i (y)

2m2n
log

|Yϵ|
δ

+ 2Lyϵ

≤ g(x) + 2max
y∈Y

{R(X , y)}+

√√√√max
y∈Y

{
m∑
i=1

M2
i (y)

2m2n

}
log

|Yϵ|
δ

+ 2Lyϵ

which completes the proof.
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E.3 Proof of Lemma 3

First, for any fixed y ∈ Y , define the growth function for the feasible set X :

Πy
X (N) = max

ξ1,...,ξN

∣∣{(l(x, y; ξ1), . . . , l(x, y; ξN )) : x ∈ X}
∣∣,

where N is the total number of samples drawn from the global distribution P . Essentially, the growth
function Πy

X (N) characterizes that given y ∈ Y , the maximum number of distinct ways to label N
points.

Then for any y ∈ Y , define a set V y of vectors in Rmn as

V y = {[l(x, y; ξi,j)] : ξi,j ∼ P, ∀i = 1, . . . ,m, j = 1, . . . , n} .

For any v ∈ V y , we have

∥v∥ =

√√√√ m∑
i=1

n∑
j=1

|l(x, y; ξi,j)|2 ≤

√√√√ m∑
i=1

nM2
i (y).

Then, by Massart’s lemma, for any y ∈ Y , it yields

R(X , y) ≤

√√√√ m∑
i=1

M2
i (y)

2 log |V y|
m2n

.

Moreover, noting that for any y ∈ Y , |V y| ≤ Πy
X (mn) by the definition of V y. Then, by applying

Sauer’s lemma, we have

Πy
X (mn) ≤

(emn

d

)d
for all mn ≥ d. By taking the maximum over Y on both sides of (22), we directly obtain (12).

F Code of the experiments

The datasets and the implementation of the experiments in Section 5 can be found through the
following link: https://github.com/Starrskyy/FedGDA-GT.
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