
rewards rright(s)rleft(s)

task labels
without failures L L L L L R R R R R

states

task labels
with failures L F F F F F F F F F R

100 101 102

number of episodes

0

1

re
wa

rd
s

tasks = {left, right}

tasks = {left, right, fail}

Figure 6: Relabeling with failures. (Left) On a 1D gridworld, we want to learn policies that move far left
or far right. To study the effect of labeling some states as failures, we compare versions of OCBC (left-center)
where all states are treated as success for the left/right task, versus (left-bottom) where some states are treated as
failures. We evaluate performance using the average reward (left-top). (Right) Labeling some states as failures
decreases bias but increases variance: the resulting policies perform worse in the low-data setting but better in
the high-data setting.

A Should you relabel with failed outcomes?

While our results show that OCBC may or may not yield a better policy, they also suggest that the
choice of tasks E and the distribution of commanded tasks pe(e) affect the performance of OCBC.
When a user wants to apply an OCBC method, they have to choose the set of tasks, which states will
be labeled with which tasks, and which tasks will be commanded for data collection. For example,
suppose that a human user wants to learn policies for navigating left and right, as shown in Fig. 6.
Should every state be labeled as a success for the left or right task, or should some states be labeled
as failures for both tasks? If some states are labeled as failures, should the policy be commanded to
fail during data collection?

Our two-step decomposition of OCBC provides guidance on this choice. Using a task for data
collection means that the policy for that task will be included in the average policy at the next
iteration. So one should choose the commanded task distribution so that this average policy is a good
prior for the tasks that one wants to solve. Assuming that a user does not want to learn a policy for
failing, then the task efail should not be commanded for data collection.

Even if the failure task is never commanded for data collection, π(a | s, efail), should you relabel
experience using this failure task? In effect, this question is about how to construct the set of tasks,
E . If a task will never be commanded (i.e., pe(e) = 0), then relabeling experience using that task is
equivalent to discarding that experience. Indeed, prior work has employed similar procedures for
solving reward-maximization problems, discarding experience that receives rewards below some
threshold (Oh et al. [24], the 10% BC baseline in Chen et al. [3], Emmons et al. [6]). The decisions
to throw away data and the choice of how much data to discard amount to a bias-variance trade off.
Discarding a higher percentage of data (i.e., labeling more experience with failure tasks) means that
the remaining data corresponds to trials that are more successful. However, discarding data shrinks
the total amount of data available for imitation, potentially increasing the variance of the resulting
policy estimators. Thus, the amount of experience to relabel with failed outcomes should depend on
the initial quantity of data; more data can be labeled as a failure (and hence discarded) if the initial
quantity of data is larger.

We demonstrate this effect in a didactic experiment shown in Fig. 6. On a 1-dimensional gridworld,
we attempt to learn policies for moving right and left. We consider two choices for labeling: label
every state as a success for the left/right task (except the initial state), or label only the outermost
states as successes for the left/right task and label all the other states as failures. Fig. 6 (left) visualizes
this choice, along with the task rewards we will use for evaluation. Labeling many states as failure
results in discarding many trials, but increases the success rate of the remaining trials. The results
(Fig. 6 (right)) show that the decision to include a “failure” task can be useful, if OCBC is provided
with enough data. In the low-data regime, including the “failure” task results in discarding too much
of the data, decreasing performance.

14

B Filtered Relabeling

0 1 2
environment steps 1e5

0.0

0.5

1.0

su
cc

es
s

pointmass empty

=
= 0.1
= 0.01

0 1 2
environment steps 1e5

pointmass empty
(biased goals)

Figure 7: Filtered relabeling.

Our analysis in Sec. 4 suggested that some expe-
rience should not be relabeled with some tasks.
Specifically, to prove convergence (Lemma 4.1),
normalized OCBC must discard experience if
the importance weights β(τ |e′)

β(τ |e) are too large or
too small. We ran an experiment to study the
effect of the clipping parameter, ϵ. For this ex-
periment, we used the “pointmass rooms” task.
We ran this experiment twice, once using an
initially-random dataset and once using a biased
goals dataset (as in Fig. 5). We expected to find that filtered relabeling had a negligible effect when ϵ
was large, but would hurt performance when ϵ was small (because it reduces the effective dataset
size).

We show results in Fig. 7, finding that filtered relabeling does not decrease performance. On the
surface, these results are surprising, as they indicate that throwing away many training examples
does not decrease performance. However, our theory in Sec. 4 suggests that those transitions with
very large or small importance weights may preclude convergence to the optimal policy. So, in the
balance, throwing away potentially-harmful examples might be beneficial, even though it decreases
the total amount of experience available for training.

C Analysis

C.1 Proof that Reweighting Performs Policy Improvement

Proposition C.1. Let a behavior policy β(a | s) and reward function r(s, a) be given. Let Qβ denote
the corresponding Q-function. Define the reweighted policy as

π̃(a | s) ≜ Qβ(a | s)β(a | s)∫
Qβ(a′ | s)β(a′ | s)da′

.

Then this reweighting step corresponds to policy improvement:

Eπ̃

[
Qβ(s, a)

]
≥ Eβ

[
Qβ(s, a)

]
.

Proof. Let state s be given. We start by substituting the definition of reweighted policy and then
applying Jensen’s inequality:

Eπ̃

[
Qβ(s, a)

]
=

∫
π̃(a | s)Qβ(s, a)da

=

∫
Qβ(a | s)β(a | s)∫

Qβ(a′ | s)β(a′ | s)da′
Qβ(s, a)da

=

∫
(Qβ(s, a))2β(a | s)da∫
Qβ(a | s)β(a | s)da

=
Eβ [(Q

β(s, a))2]

Eβ [Qβ(s, a)]

≥ Eβ [Q
β(s, a)]2

Eβ [Qβ(s, a)]

= Eβ [Q
β(s, a)].

C.2 Normalized OCBC performs Policy Improvement

In this section, we prove that normalized OCBC performs policy improvement (Lemma 4.1)

15

Proof. Our proof will proceed in two steps. The first step analyzes Q-values. Normalized OCBC
uses Q-values from the average policy, but we need to analyze the task-conditioned Q-values to
prove policy improvement. So, in the first step we prove that the Q-values for the average policy
and task-conditioned policies are similar. Then, in the second step, we prove that using approximate
Q-values for policy iteration yields an approximately-optimal policy. This step is a direct application
of prior work [2].

Step 1. The first step is to prove that the average Q-values are close to the task-conditioned Q-values.
Below, we will use Re(τ) ≜

∑∞
t=0 γ

tre(st, at):∣∣∣Qβ(·|·,e)(s, a, e)−Qβ(·|·,e′)(s, a, e)
∣∣∣ = ∣∣∣∣∫ β(τ | s, a, e)Re(τ)dτ −

∫
β(τ | s, a, e′)Re(τ)dτ

∣∣∣∣
=

∣∣∣∣∫ (
β(τ | s, a, e)− β(τ | s, a, e′)

)
Re(τ)dτ

∣∣∣∣
=

∣∣∣∣∫ β(τ | s, a, e)
(
1− β(τ | s, a, e′)

β(τ | s, a, e)

)
Re(τ)dτ

∣∣∣∣
≤

∫ ∣∣∣∣β(τ | s, a, e)(1− β(τ | s, a, e′)
β(τ | s, a, e)

)∣∣∣∣ dτ ·max
τ
|Re(τ)dτ |

≤
∫

β(τ | s, a, e)
∣∣∣∣1− β(τ | s, a, e′)

β(τ | s, a, e)

∣∣∣∣ dτ · 1
= Eβ(τ |s,a,e)

[∣∣∣∣1− β(τ | s, a, e′)
β(τ | s, a, e)

∣∣∣∣]
≤ ϵ.

The first inequality is an application of Hölder’s inequality. The second inequality comes from
the fact that re(s, a) ∈ [0, 1 − γ], so the discounted some of returns satisfies Re(τ) ∈ [0, 1]. The
final inequality comes from how we perform the relabeling. Thus, we have the following bound on
Q-values:

Qβ(·|·,e)(s, a, e)− ϵ ≤ Qβ(·|·,e′)(s, a, e) ≤ Qβ(·|·,e)(s, a, e) + ϵ. (5)

Since Q-values for the average policy are a convex combination of these Q-values (Qβ(·|·)(s, a) =∫
Qβ(·|·,e′)(s, a, e)pβ(e′ | s, a)de′), this inequality also holds for the Q-values of the average policy:

Qβ(·|·,e)(s, a, e)− ϵ ≤ Qβ(·|·)(s, a, e) ≤ Qβ(·|·,e)(s, a, e) + ϵ. (6)

Step 2. At this point, we have shown that normalized OCBC is equivalent to performing policy
iteration with an approximate Q-function. In the second step, we employ [2, Proposition 6.2] to argue
that policy iteration with an approximate Q-function converges to an approximately-optimal policy:

lim sup
k→∞

∥V π∗(·|·,e) − V πk(·|·,e)∥∞ ≤
2γ

(1− γ)2
ϵ. (7)

The L-∞ norm means that this inequality holds for the values of every state. Thus, it also holds for
states sampled from the initial state distribution p0(s0):

lim sup
k→∞

∣∣∣Es0∼p0(s0)

[
V π∗(·|·,e)(s0)

]
− Es0∼p0(s0)

[
V πk(·|·,e)(s0)

]∣∣∣ ≤ 2γ

(1− γ)2
ϵ. (8)

The value of the initial state is simply the expected return of the policy:

lim sup
k→∞

∣∣∣∣∣Eπ∗(τ |e)

[∞∑
t=0

γtre(st, at)

]
− Eπk(τ |e)

[∞∑
t=0

γtre(st, at)

]∣∣∣∣∣ ≤ 2γ

(1− γ)2
ϵ. (9)

Rearranging terms, we observe that normalized OCBC converges to an approximately-optimal policy:

lim sup
k→∞

Eπk(τ |e)

[∞∑
t=0

γtre(st, at)

]
≥ max

π∗(·|·,e)
Eπ∗(τ |e)

[∞∑
t=0

γtre(st, at)

]
− 2γ

(1− γ)2
ϵ. (10)

16

0 1 2 3
0

1

2

start

Figure 8: Gridworld environment used for the experiment in Fig. 4

D Experimental Details

We have released a Jupyter notebook4 for reproducing all of the small-scale experiments (Fig-
ures 2, 3, 4 and 6). This notebook runs in less than 60 seconds on a standard CPU workstation.

The comparison with GCSL was done by changing a few lines of code in the official GCSL imple-
mentation5 to support training a second (marginal) policy. We used all the default hyperparameters.
We ran five random seeds for each of these experiments, and error bars denote the standard deviation.

Original tasks (Fig. 5 (Left)). This experiment was run in the online setting, following Ghosh et al.
[9]. The pseudocode for these tasks is:

replay_buffer = ReplayBuffer()
policy = RandomInitPolicy()
for t in range(num_episodes):

experience = Collect(policy, original_goal_distribution)
replay_buffer.extend(experience)
policy = UpdatePolicy(policy, replay_buffer)

results = Evaluate(policy, original_goal_distribution)

For this experiment, we evaluated the policies in two different ways: sampling actions from the
learned policy, and taking the argmax from the policy distribution. We found that GCSL performed
better when sampling actions, and normalized OCBC performed better when taking the argmax; these
are the results that we reported in Fig. 5 (Left). For the biased experiments, we used the “sampling”
approach for both GCSL and normalized OCBC.

Biased actions (Fig. 5 (Center)). This experiment was run in the offline setting. For data collection,
we took a pre-trained GCSL policy and sampled an suboptimal action (uniformly at random) with
probability 95%; with probability 5%, we sampled the argmax action from the GCSL policy. The
pseudocode for these tasks is:

replay_buffer = ReplayBuffer()
while not replay_buffer.is_full():

if env.is_done():
s = env.reset()

action_probs = expert_policy(s)
best_action = argmax(action_probs)
if random.random() < 0.95:

a = random([a for a in range(num_actions) if a != best_action])
else:

a = best_action
replay_buffer.append((s, a))
s = env.step(a)

policy = RandomInitPolicy()
for t in range(num_episodes):

4https://github.com/ben-eysenbach/normalized-ocbc/blob/main/experiments.ipynb
5https://github.com/dibyaghosh/gcsl

17

policy = UpdatePolicy(policy, replay_buffer)
results = Evaluate(policy, original_goal_distribution)

Biased goals (Fig. 5 (Right)). This experiment was run in the online setting. We introduced a bias
to the goal space distribution of the environments by changing the way the goal is sampled. We used
this biased goal distribution for both data collection and evaluation. The pseudocode for these tasks
is:

policy = RandomInitPolicy()
replay_buffer = ReplayBuffer()
for t in range(num_episodes):

if not replay_buffer.is_full():
experience = Collect(policy, biased_goal_distribution)
replay_buffer.extend(experience)

policy = UpdatePolicy(policy, replay_buffer)
results = Evaluate(policy, biased_goal_distribution)

As the goal distribution for each environment is different, the respective bias introduced is different
for each task:

• Pusher: The four dimensional goal includes the (x, y) positions of the hand and the puck.
Instead of sampling for both positions independently, we just sample the puck-goal position
and set the hand-goal position to be the same as the puck-goal position.

• Door: The 1-dimensional goal indicates the angle to open the door. We bias the goal space
to just sample the goals from one half of the original goal space.

• Pointmass Rooms: The goal is 2-dimensional: the (x, y) position of the goal. We sample the
x uniformly from [−0.85, 0.85] (the original range is [−1, 1]), and then set the y coordinate
of the goal equal to the x coordinate of the goal.

• Pointmass Empty: The goal is 2-dimensional: the (x, y) position of the goal. We sample
the x coordinate uniformly from [−0.9,−0.45], and set the y coordinate of the goal equal to
the x coordinate of the goal.

• Lunar: The goal is 5-dimensional. We sample the x coordinate (g[0]) uniformly from
[-0.3,0.3]. The y coordinate (g[1]) is fixed to 0. The lander angle (g[2]) is fixed to its
respective g_low. The last two values in the goal space(g[3], g[4]) are fixed to be 1,
which implies that the ground-contact of legs is True at the goal location.

18

