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Abstract

In the early visual system, high dimensional natural stimuli are encoded into the
trains of neuronal spikes that transmit the information to the brain to produce
perception. However, is all the visual scene information required to explain the
neuronal responses? In this work, we search for answers to this question by
developing a joint model of the natural visual input and neuronal responses using
the Information Bottleneck (IB) framework that can represent features of the input
data into a few latent variables that play a role in the prediction of the outputs. The
correlations between data samples acquired from published experiments on ex-vivo
retinas are accounted for in the model by a Gaussian Process (GP) prior. The
proposed IB-GP model performs competitively to the state-of-the-art feedforward
convolutional networks in predicting spike responses to natural stimuli. Finally,
the IB-GP model is used in a closed-loop iterative process to obtain reduced-
complexity inputs that elicit responses as elicited by the original stimuli. We found
three properties of the retina’s IB-GP model. First, the reconstructed stimuli from
the latent variables show robustness in spike prediction across models. Second,
surprisingly the dynamics of the high-dimensional stimuli and RGCs’ responses are
very well represented in the embeddings of the IB-GP model. Third, the minimum
stimuli consist of different patterns: Gabor-type locally high-frequency filters, on-
and off-center Gaussians, or a mixture of both. Overall, this work demonstrates that
the IB-GP model provides a principled approach for joint learning of the stimuli
and retina codes, capturing dynamics of the stimuli-RGCs in the latent space which
could help better understand the computation of the early visual system.

1 Introduction

A fundamental challenge in neuroprosthetics is finding the proper input to a sensory or motor system
that yields a desired functional output. This is achieved naturally by the underlying physiological
circuit in an unimpaired system. For example, in the vision system, when an image is formed onto
the photoreceptors, the electrical neural activity is processed by several layers of neurons within the
retina, and a train of electrical neural spikes is sent to the visual cortex via the optic nerve producing
a perception of the visual scene. However, one can ask: is it possible to reduce the complexity of
the input stimuli and still obtain the same functional behavior? In other words, what are the reduced
spatiotemporal stimuli that elicit the same responses as those of the higher-dimensional original
inputs? These are important questions both for understanding the neural computations of the retina
and possibly for designing visual prosthesis in which minimal information stimuli that optimally
drive neurons may prove beneficial [36, 18, 22].

In this work, we focus on the natural vision system and search for answers to these questions. Our
system consists of the spatiotemporal stimuli impinging on the photoreceptors in the retina up to the
spiking responses emitted by the Retinal Ganglion Cells (RGCs). Linear-nonlinear (LN) [11] and
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Figure 1: Overview of the IB-GP model of the retina responses. Batches of T high-dimensional
stimuli are encoded into a low-dimensional space and decoded back to the batches of N neuronal
response trains of length T . The latent space consists of L latent vectors. Each latent vector zl is
modeled by a GP prior to account for the sample correlations in the original space.

generalized linear models (GLMs) [25, 26] were proposed for encoding of the retinal neural codes.
Although successful for artificial stimuli such as white noise, they could not faithfully describe RGCs’
responses to natural stimuli [15]. The convolutional neural network (CNN) model of McIntosh et al.
[21] was the first model capable of such computation. This was followed by other efforts such as
employing recurrent neural networks [5] or variants of CNNs [20]. Although high-dimensional in
nature, neural activity can be well explained by low-dimensional representations [12, 14, 28]. This
opens up the possibility of using models that learn a latent representation of data, such as VAEs
[16] and ICAs [19]. Accordingly, latent dynamical methods that inspect sources of low-dimensional
structure in the neural response have recently gained growing interest [17, 35].

Inspired by the Deep Variational Information Bottleneck (DVIB) [2, 9], we introduce the Information
Bottleneck Gaussian Process (IB-GP), a latent space model that can extract the principal features
of the joint stimuli-responses distribution that are sufficient for predicting the retina responses. The
schematic of the IB-GP is depicted in Fig. 1. This model is a variational approximation to the original
Information Bottleneck framework of Tishby et al. [31]. The objective of IB is to obtain a reduced
representation of the input source that preserves maximum information about the output response.
DVIB assumes the IB’s latent codes are i.i.d. This is a poor assumption for the retina dataset. The
reason for this is two-fold. First, while observing a scene, images captured by the retina are naturally
very similar. Second, during fixation, the eyes undergo dynamic movements that shift the gaze’s
center. Therefore, incorporating the temporal correlations among data samples should provide a
better model. Accordingly, IB-GP uses a Gaussian Process prior to modeling the retina dataset.

Our contributions to this work are:

• A probabilistic model: We propose IB-GP, a new model for the RGC’s spike train in response to
the complex natural visual stimuli using the IB framework. The model integrates a GP prior into
the IB latent code that can learn the temporal dynamics of the data in a lower dimension space.
This model shows competitive performance compared to the state-of-the-art feedforward CNN
models of the retina tested on real-world experimental data.

• Latent dynamics analysis: We analyze the latent space of the proposed model and extract low-
dimensional dynamics consistent with the high-dimensional data dynamics. We show that the
extracted dynamics are more predictive of the neural responses compared to dynamics extracted by
a model with no temporal prior constraint.

• Closed loop image synthesis: Utilizing the IB-GP model, which only allows principal features of
the input stimuli to pass the bottleneck, the original input stimuli are pruned to contain the minimum
information required for producing the RGC responses. The resulting complexity-reduced stimuli
could be used for the next round of measurements in an iterative process.
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In the following, we start by reviewing the related work in section 2, the general setting of the problem
and our model are presented in section 3, and the closed-loop stimuli optimization procedure is
outlined in section 4. Experiments and results are presented in sections 5 and 61. Finally, the results
are discussed in section 7.

2 Related work

In the RGC modeling literature, our work is the closest to McIntosh et al. [21], in which a CNN is
used to model the responses of RGCs to a set of input stimuli. Despite the simplicity of this approach,
the feedforward CNNs for image classification or regression cannot be directly utilized to extract
the principal features of the stimuli contributing to the neural responses. On the other hand, latent
neural models such as [17, 23, 29] are primarily applied to cortical recordings to learn sources of
neural variability in the motor cortex data. Unlike our model, which directly relates the stimuli to
the neural responses, the stimuli in those lines of work are utilized as a guide star to disentangle
the latent factors. Therefore, these methods do not directly apply to modeling the RGC response to
input stimuli. In the closed-loop physical system input optimization literature, our work is related
to [27, 30, 34, 4]. In particular, for neuroscience applications, authors in [4] control the activity of
the individual neuronal sites in V4 by optimizing individual input stimulation, whereas in our work,
thanks to the learned latent code of the entire population of the targeted neurons, all stimuli are
optimized together. In Shah et al. [30], the RGCs’ responses to electrical stimulation were optimized
by first developing a model for the electrical stimuli and the spiking probabilities and then using the
model for adaptive stimulation. The model is obtained by parameterizing the spike amplitude and
electrical stimulation threshold by a few parameters and then maximizing an evidence lower bound
on the spiking probabilities. Our work assumes no relevant relation between the input stimuli and the
spiking probabilities. Instead, the relevant parts of the input for predicting the output are discovered
automatically.

3 Methods

Below, we introduce the IB-GP method, which models the neural activities by learning the latent
space underlying the stimuli and RGCs’ responses. We also summarize additional methods, including
a variant of our proposed method that we used for evaluating the IB-GP model.

3.1 IB-GP model

Notation and problem formulation The input stimuli dataset X ∈ RM×T consists of T consecu-
tive spatial inputs of size M , i.e. X = [xM,1, xM,2, · · · , xM,T ], that are projected in the retina at a
constant rate to elicit count responses of the form Y ∈ NN×T , where Y = [yN,1, yN,2, · · · , yN,T ]
and N denotes the number of RGCs. With the above assumptions, we formulate the problem as
finding the latent variables Z ∈ RL×T that have maximal mutual information I(Z,Y) with targets
Y. We note that Z is comprised of T consecutive data points, i.e. Z = [zL,1, zL,2, · · · , zL,T ] where
T ≤ T . Also Z is simultaneously constrained to have minimal mutual information with X. Therefore,
the constraint optimization problem can be written as

LIB = max
ζ

[
IIB ]

where
IIB = I(Z,Y; ζ)− βI(Z,X; ζ) . (1)

ζ designates the parameters of the model, i.e. θ and ϕ, (notation henceforth dropped for brevity)
and β is a variable to adjust the amount of reduced and preserved information in Z. To obtain these
latent variables, we approximate their posterior distribution with a parametric stochastic encoder
pϕ(Z|X). Due to the spatio-temporal nature of the data, assumption of data independence along the
time dimension is not valid. The same is true in the latent space. To account for this fact, we assume
a posterior of the form:

pϕ(Z|X) =

L∏
l=1

N (zl|µl
ϕ(X),Σl

ϕ(X)) (2)

1Code for reproducing the results are provided in Appendix 9.
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where zl denotes the l-th latent vector of size T . In Eq. 2, µl
ϕ ∈ RT and Σl

ϕ ∈ RT ×T are the mean
and covariance matrix of a multi-variate normal distribution that are functions of the inputs. We
choose the structure of the covariance of the multivariate normal distribution in Eq. 2 to reflect the
time correlations in the data. Hence, similar to previous work [3, 7, 13], we construct the Σl

ϕ in our
model by the product of bidiagonal matrices:

[Σl
ϕ]

−1 = VT
l Vl + I where [Vl]ττ ′ =

{
vlττ ′ τ ′ ∈ {τ, τ + 1}
0 o.w.

(3)

We note that the simple GP kernel assumption makes the computation required for drawing samples
from pϕ linear in time [3]. Expanding the IB objective in Eq. 1 (details in the Appendix 1), we have:

IIB =

∫
dY dZ p(Y,Z) log

p(Y|Z)
p(Y)

− β

∫
dX dZ p(X,Z) log

pϕ(Z|X)

p(Z)
(4)

Although all terms in the RHS of Eq. 4 are fully defined, computing marginal distributions p(Z) and
p(Y|Z) may be intractable. We use a variational approximation for p(Y|Z) that is parameterized with
θ. On the other hand, the prior on the latent variables, i.e. p(Z), is modeled using GPs. In particular,
we assume a GP prior on Z defined as a multivariate normal:

ρ(Z) =
L∏

l=1

N (zl|0,K) (5)

where ρ is the variational approximation for the prior and K is the covariance function that models
the temporal correlations in the latent space. In more details, the covariance between the τ -th and the
τ ′-th samples is computed as Kττ ′ = K(τ, τ ′) where K is the kernel function. We used the Cauchy
kernel:

K(τ, τ ′) = σ2
(
1 +

(τ − τ ′)2

l2
)−1 (6)

where σ and l are the magnitude and temporal scales of the kernel function, respectively. Cauchy
kernels have proved successful in modeling of the time-series systems with multi-scale dynamics as
shown before [13]. Substituting the variational approximations of the intractable marginals in Eq. 4
and using the fact that the Kullback Leibler (KL) divergence is always positive, we obtain a lower
bound for the IB objective:

IIB ≥ 1

T

T∑
t=1

[
Epϕ(Z|x1:τ(t))[log qθ(yt|Z)]− βDKL[pϕ(Z|x1:τ(t))||ρ(Z)]

]
. (7)

where τ(t) is to represent time dependence up to time t. See Appendix 1 for more details.

3.2 Other models considered

Maximum likelihood feedforward CNN is used as a comparison baseline. We use the same CNN
network that was shown in the previous work to obtain state-of-the-art results on a larger version of
the Natural dataset [21]. The predicted outputs of the network are the averaged maximum likelihood
estimation of the retina responses given the input stimuli. Artificial noise is injected into the model
during optimization to account for the variability in retinal spiking.

IB-Disjoint optimizes the objective from Eq. 7 using the same training procedure as the original
method. The difference lies in that the IB-Disjoint assumes latent samples are temporally independent.
Accordingly, an isometric Gaussian distribution is employed as the prior in Eq. 7. This model is akin
to the standard Variational Auto-encoder [16], or vanilla DVIB [2] in which samples in the data and
latent space are assumed to be independent (no latent GP).

4 Closed loop stimulation

In this section, we take advantage of the model developed in the previous sections to devise an
algorithm that uses the prior recorded data to optimize the stimulation by iteration in subsequent
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measurements in a closed loop. Specifically, we assume the latent variables of the learned model,
henceforth referred to as the forward model, have captured the principal rules governing the underlying
biological system. We intend to find a transformed version of the original input stimuli that yields a
set of latent variables that produce the most correlated responses with the original target responses
in the subsequent round of measurements. Of course, the original stimuli themselves are one set of
solutions. However, this is not a useful transformation. Instead, we are interested in obtaining the best
transformation subject to a constraint on their complexity. Hence, we define a parametric function
fξ : RM×T → RM×T that maps the complex original stimuli X onto the transformed stimuli X∗.
Passing X∗ to the forward model, the parameter of the mapping functions, i.e. ξ, are optimized so
that the forward model’s output responses Y∗ are the most correlated with the original responses
Y. Denoting the original stimuli and responses as Xorig := X and Yorig := Y, the objective function
reads as:

min
ξ

D1(Yorig,Y∗) + α
[
D2(Xorig,X∗) +D3(X∗)

]
where:

X∗ = fξ(Xorig), Z∗ ∼ pϕ(.|X∗), Y∗ ∼ qθ(.|Z∗). (8)

Therein, pϕ and qθ are the encoder and decoder of the forward model trained on the prior data. D1

is a measure to ensure the closeness of the original target outputs and the responses of the forward
model to X∗. D2 is a similarity measure between the original and synthesized stimuli Xorig and X∗

which encourages the image synthesizer to focus on finding the essential features in the stimuli rather
than synthesizing entirely new solutions. Finally, D3 is used to constrain the synthesized stimuli X∗

to be smooth. Contributions of D2 and D3 to the total loss in Eq. 8 are tuned by hyperparameter α.
Two major mechanisms help to prevent fξ from being simply an identity mapping. One, during the
training of the fξ, the encoder’s latent variables Z∗ are masked by zeroing out all the latent variables
except for the most informative one. This way, Xorig is no longer the optimal solution that minimizes
the first term in the objective function. Two, fξ is implemented using an Autoencoder architecture
with a limited latent capacity. Finally, the optimized stimuli for subsequent rounds of measurements
can be obtained by the following procedure: (1) map the original stimuli to the optimized stimuli
using mapping fξ, (2) encode the new input X∗ to the posterior Z∗, (3) decode the latent variables,
(4) construct the metric D and backpropagate the error to fit fξ , (5) once converged, use the mapping
function to obtain the optimized stimuli X∗ (6) send new inputs X∗ to the true biological system (or
its model) and observe the new true system outputs, (7) to repeat the procedure, use the true system’s
new inputs and outputs to fine-tune the forward model and (8) repeat.

5 Experiments

5.1 Dataset

We focus on applying our model to the time-series dataset containing the 2D train of input stimuli
(images) entering the vision circuit of an example subject and the corresponding elicited count
responses of a group of neurons. Specifically, we use two real-world experimental datasets. The first
one, Natural dataset, contains natural scene images as input stimuli and spike trains from nine RGCs
in Salamander [21] 2. The second dataset, Brownian-movement, is a public dataset which contains
images with disc-like shapes having Brownian movements and the spike trains elicited in 91 Rat’s
RGCs [8].

5.2 Forward modeling

Training specifications We used the models outlined in section 3 to fit the neural activities and
input stimuli. The Natural dataset is from the Natural images from the birthplace of the human [32].
This dataset consists of Natural images in the wild that do not belong to any particular category. The
train set contains 3950 unique images (each unique image is jittered 100 times) of which 20% was
randomly chosen for validation. The test set contains 50 averaged repeated trials of novel stimuli

2The Natural dataset, used in this work, is a subset of the original dataset of [21] that was provided by the
authors therein. This dataset contained responses of only nine RGCs.
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where each unique image is jittered 100 times. One batch of the test data consists of 10 unique
images. We note that the output responses were first binned at 10 ms and then smoothed using a
Gaussian filter with a standard deviation equal to the bin size. The Brownian-movement dataset
contains 129600 pairs of input images and output spikes binned at 12.5 ms in the training set, of
which 20% was randomly chosen for validation. The test set contains 1800 novel stimuli. We varied
the number of neurons in the Brownian dataset for which we tested our model. We report the results
for nine neurons in the main paper and 15, 21, 27, 36 and 51 neurons in Appendix 5.

Models and evaluation metrics To account for the discrete nature of the output responses (count
time series), we employ a Poisson regression model for both IB-GP and IB-Disjoint decoder as
well as the feedforward CNN loss term, i.e. qθ(yt|Z) = Po(yt|fθ(Z)) where fθ is the parametric
network. We sweep the number of latent factors and the prior pressure constraint β for both IB-GP
and IB-Disjoint. For the Natural and Brownian datasets, the number of latents is swept between 1 to
15 (step 1) and 1 to 50 (step 5) variables, respectively. Except for the latent space of the IB-GP, which
requires more variables to model its covariance matrix, IB-GP and IB-Disjoint are implemented using
the same architectures. All hyperparameters in the training of the two models are fixed to be the same.
We perform a three-fold fitting of the models for the spike prediction results. We report the models’
Poisson negative log-likelihoods on the ground truth data. Moreover, we use the Pearson correlation
[6] between the ground truth data and the networks’ prediction as another metric for evaluating the
performance of the models. The architectures of the networks and the training setup are explained in
more details in Appendix 2.

Traversal analysis We perform traversal analysis on the latent space of IB-GP and IB-Disjoint
models to study the amount of information picked by each latent variable. To this end, the encoder
pϕ(Z|X) is fed with a batch of input stimuli to initialize the latents. In the IB-GP model, the l-th
latent is sampled from N (0,mK) where m is a multiplier that is traversed in the range [−3, 3] while
keeping all the other latents to their inferred values. The latent variables in the IB-Disjoint model are
sampled similarly but from the normal univariate distribution N (0,mI). The latents are then passed
to the decoder that reconstructs the output responses. The output responses of the traversed model are
then compared against the non-traversed responses.

5.3 Closed-loop image synthesis

We use both the IB-GP and IB-Disjoint with a latent size of 4. The prior constraint parameter β is
set to 0.05. These hyperparameters are chosen as a trade-off between the latent space compression
and RGCs’ neural activity fitting accuracy. The image synthesizer fξ is implemented using an
Autoencoder architecture [33] with a latent size of 15. The rationale for this choice of architecture is
explained in Appendix 2. To allow for multi-phase iterative optimization, we use a neural network as
the proxy for the true biological system trained on the Natural dataset. This model is trained once
and kept fixed. We use the feedforward CNN network of McIntosh et al. [21] as the true model in
order to rule out the possibility of obtaining correlated responses due to the similarity of the IB-GP
model and the true model. We optimize the stimuli in a three-phase closed-loop experiment. We used
the Poisson regression loss as the D1 measure in the objective function 8. The similarity measure D2

between the synthesized and original stimuli is computed using a Mean Squared Error (MSE). Total
Variation (TV) metric [10] is used as the D3 measure. We analyze the contributions of all measures
to the quality of the synthesized stimuli by sweeping the hyperparameter α.

6 Results

6.1 Forward modeling

RGC neural activity fitting Performances of the IB-GP, IB-Disjoint, and Feedforward CNN in
fittings to neural activities versus the number of latents for both Natural and Brownian datasets are
plotted in Figure 2. Figure 2a,b shows that IB-GP outperforms IB-Disjoint almost in all cases. For
a fixed β value, the performance of the IB-Disjoint is usually closer to that of the IB-GP with the
increase in the number of latents. This indicates that IB-GP learns neural activities with a fewer
number of latents. Similar is the case with β value decreasing to the extent where IB-Disjoint’s
performance reaches that of the IB-GP. For less constrained models, IB-Disjoint surpasses IB-GP
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Figure 2: Overview of the RGCs’ neural activity prediction accuracy for the IB-GP, IB-Disjoint, and
Feedforward CNN trained on the Natural and Brownian dataset. (a) Poisson negative log-likelihood
of the predicted neural responses and (b) Pearson correlation of the predicted and true spike responses
as a function of the number of latents for different values of the prior pressure constraint β for the
Natural dataset. (c, d) the same as (a,b) but for the Brownian dataset.

(refer to Appendix 4). Interestingly, IB-GP achieves good neural prediction performance for the
Natural dataset even with two latents. Figure 2c,d shows that for the Brownian dataset and larger
βs, IB-GP keeps its performance gap with IB-Disjoint for a large number of latents. This is due
to the strong correlation between the Brownian stimuli dataset (refer to Appendix 3 to observe
some examples of stimuli). Both IB-GP and IB-Disjoint outperform the Feedforward CNN when a
sufficient number of latents are used (∼ 3 latents and β < 0.033) for Natural and (∼ 10 latents and
β < 0.01) for the Brownian dataset. 3

Comparison of the IB-GP and IB-Disjoint learned dynamics In Figure 3, we analyze the learned
dynamics of the IB-GP and IB-Disjoint trained under the same conditions on the Natural dataset
(results for the Brownian dataset are in Appendix 5). For β = 0.05 and 15 latents, performances
of the IB-GP and IB-Disjoint in prediction of RGCs’ responses are similar (correlation ∼ 0.45 vs.
∼ 0.43, respectively). Nevertheless, the amount of information picked by latents in each model varies
significantly. To show this, we perform a traversal analysis of the latents and report the variability in
the output responses for each traversed latent in Figure 3(a,d). The KL divergence for each latent
is also plotted. As observed in the figure, IB-GP lumps most of the information required to explain
the neural responses in one factor. In comparison, this information is spread over five factors in
IB-Disjoint. Analyzing the dynamics of the latents in each model can provide further insight. Figure
3(b,e) visualizes the inferred dynamics of the most informative latent in each model after reducing
the dimension to 2 with T-SNE. As observed in the figure, the dynamics of the most informative
latent in the IB-GP have 50 clusters. Strikingly, these 50 clusters correspond to the 50 unique stimuli
in the dataset. The test set consists of 5 batches in which each batch has 10 unique images (each
jittered 100 times). Each batch is colored differently in the figure. Auto-Correlation (AC) plots of the
latents corroborate these findings. As evident from Figure 3(c,f), AC of the most informative latent in
the IB-GP closely follows the statistics of the true and predicted responses of the model (averaged
over all neurons). While the AC of the IB-Disjoint’s predicted responses is similar to that of the true
responses, the AC of its latents is very different. To demonstrate the efficacy of the IB-GP model in
fitting the RGCs’ responses, neural activity predictions of both models are shown in Figure 3 (g,h).
Refer to Appendix 6 for a more detailed interpretation of IB-GP’s latent dynamics.

3We should emphasize that the hyperparameters of all three networks were not optimized to achieve the best
results. Proposing a retina model that outperforms all the other methods is not the main focus of the work; for
that requires much further experimentation.
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Figure 3: Analysis of the IB-GP (first row) and IB-Disjoint’s (second row) learned dynamics evaluated
on the Natural images in the test dataset. Third row plots examples of the RGCs’ neural responses
obtained by the IB-GP (left) and IB-Disjoint (right). (a,d) The average prediction accuracy of the
IB-GP and IB-Disjoint, measured by the Pearson correlation, is shown as a flat line. The variability in
the accuracy of the model for traversed latent factors is depicted as blue shades. Averaged normalized
KL divergence of each latent is also plotted. (b,e) The temporal information of the most informative
latent variable from (a,d) are visualized after reducing the dimensions to 2 with T-SNE. Each color
denotes one batch of the test set. (c,f) AC of the most informative latent is compared against those of
the true temporal activity and the model’s predicted responses averaged over the number of neurons.
(g,h) Neural activity prediction of the models for some example cells. Numbers show the correlation
of the predicted responses with the true activities.

6.2 Closed loop image synthesis

Figure 4 reports the training results of the closed-loop experiment after the first round of measurements.
Both the IB-GP and IB-Disjoint are used as the forward model in the training of the image synthesizer.
We consider two scenarios when tuning the hyperparameters in the objective function of the image
synthesizer. Scenario one: the image synthesizer is trained only to reduce the complexity of the
original stimuli independently from the RGCs’ responses (dropping the D1 term in the objective
function of the image synthesizer). In this scenario, we also consider the case where the TV
smoothness constraint is dropped. These are important cases because they answer this valid question:
can a simple dimensionality-reduction technique be used for synthesizing images that elicit responses
correlated with the original ones? Scenario Two: the image synthesizer is trained in conjunction with
RGCs’ responses (α ̸= 0). Figure 4(a, b) plot the Pearson correlation and negative log-likelihood of
the RGCs’ responses predicted by the true model in response to the stimuli obtained by the image
synthesizer network for the two scenarios. The TV loss of the obtained synthesized stimuli in each case
is plotted in Figure 4c. As can be observed in the Figure 4d, dimensionality reduction of the stimuli
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Figure 4: Summary of the closed-loop image synthesis experiment. The image synthesizer is trained
either with the forward model (joint training) or without the forward model in the loop (disjoint
training). We used both the IB-GP and IB-Disjoint as the forward model in the former case. In
the latter case, the synthesizer is trained only to reconstruct the high-dimensional stimuli without
incorporating any information from RGCs. The disjoint training is either subject to a smoothness
constraint on the reconstructed images or with no constraint. (a) Poisson negative log-likelihood
and (b) Pearson correlation for the RGC neural activity predictions. (c) TV loss for the synthesized
stimuli. Performances of the original stimuli in the true model are depicted as a flat black line. Joint
training with IB-GP with α = 0.1 as the forward model achieves the best performance among all
cases. (d) Examples of the synthesized images in all scenarios. IB-GP synthesized images contain
particular patterns that are within the RFs of cells. The RFs of the neurons are depicted at scale.

without neural information results in non-smoothed images (column 2) or smoothed images (column
3) but poor RGC response accuracy (rightmost results in Fig. 4a-c). On the contrary, incorporating
RGC neural information obtains synthesized stimuli with excellent smoothness and significant RGC
response accuracy (Fig. 4a-c and columns 5,6 in F4d). These results demonstrate the robustness of
the proposed algorithm in finding synthesized images that provide accurate responses. Strikingly,
when IB-GP is used as the forward model in the closed-loop experiment, complex curvature shapes
appear in the synthesized images. Expectedly, these shapes appear where the neurons’ receptive
field is located. The receptive fields (RFs) of the neurons, obtained by Spike-triggered Average
(STA) analysis [1], are also shown in the figure. Finally, we continue the optimization of the image
synthesizer for the IB-GP model with hyperparameter α = 0.1 for another two rounds. The Pearson
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correlation of the synthesized stimuli in all three rounds reads as: 0.353, 0.366, and 0.361. Details
of the iterative optimization and evolution of the synthesized images in each phase are explained in
Appendix 6. The last row in the Figure 4d shows a failure mode of the image synthesizer algorithm.
We tested the image synthesizer (trained on the Natural dataset) on the white noise data. As seen
from the figure, IB-Disjoint provides a superior synthesized image than other methods. This is in line
with our observations that the IB-GP model fails to fit neural data elicited by the white noise. More
results are available in Appendix 8.

7 Discussion

This work presents the IB-GP model, a latent space variational model that learns a low-dimensional
representation of the Natural stimuli and RGCs’ responses. We observed that the IB formulation of
the neural activity fitting allows learning of a low-dimensional representation of the stimuli and RGC
responses which is more predictive than the feedforward models. We demonstrated that incorporating
a temporal prior on the latent space of the IB model factorizes the sources of neural variability into
fewer latents. The Latent analysis of the model revealed the superior performance of the IB-GP to IB-
Disjoint with no temporal prior on the latents. We observed that the dynamics of the high-dimensional
stimuli and RGCs’ responses were very well represented in the embeddings of the IB-GP model.

The model was then used in a closed-loop experiment to synthesize stimuli that elicit neuronal
responses as those elicited by the original complex stimuli. Previously published work in the
literature also looked into closed-loop image synthesis, mainly to find optimal stimuli that maximally
activate neurons in the retina [24], or more recently in V1 and V4 regions in the mouse [34, 4]. The
goal is to obtain spatial features that do not necessarily resemble the original stimuli but still elicit the
same responses. This allows us to correctly use the resources available, for example, by placing the
stimulation energy at suitable locations and with the correct spatiotemporal features. We observed
various types of optimal stimuli for the Natural dataset, such as Gabor-like filters, on- and off-center
Gaussians, or a mixture of both.

Given the promising results demonstrating the usefulness of the model, the IB-GP model has some
limitations too. First, it is unclear what type of temporal prior is sufficient for the best factorization
of latents. Although the Cauchy kernel has proved efficient in modeling multi-scale dynamics [13],
it might be that other temporal kernels, a combination of several kernels, or even spatio -temporal
kernels [9] could improve disentangling of the latents. Second, we observed the failure mode of the
IB-GP model in the fitting of the white noise stimuli due to the lack of temporal correlation. Third,
computing the covariances of the IB-GP’s prior is computationally intensive, especially for the long
temporal datasets. This might also be a possible negative societal impact of our work, resulting in a
large carbon footprint.
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