
Instance-Dependent Near-Optimal Policy

Identification in Linear MDPs via Online Experiment

Design

Andrew Wagenmaker
⇤

& Kevin Jamieson
†

Paul G. Allen School of Computer Science & Engineering
University of Washington

Seattle, WA 98195

Abstract

While much progress has been made in understanding the minimax sample com-
plexity of reinforcement learning (RL)—the complexity of learning on the “worst-
case” instance—such measures of complexity often do not capture the true difficulty
of learning. In practice, on an “easy” instance, we might hope to achieve a com-
plexity far better than that achievable on the worst-case instance. In this work we
seek to understand the “instance-dependent” complexity of learning near-optimal
policies (PAC RL) in the setting of RL with linear function approximation. We
propose an algorithm, PEDEL, which achieves a fine-grained instance-dependent
measure of complexity, the first of its kind in the RL with function approximation
setting, thereby capturing the difficulty of learning on each particular problem
instance. Through an explicit example, we show that PEDEL yields provable gains
over low-regret, minimax-optimal algorithms and that such algorithms are unable
to hit the instance-optimal rate. Our approach relies on a novel online experiment
design-based procedure which focuses the exploration budget on the “directions”
most relevant to learning a near-optimal policy, and may be of independent interest.

1 Introduction

In the PAC (Probably Approximately Correct) reinforcement learning (RL) setting, an agent is tasked
with exploring an unknown environment in order to learn a policy which maximizes the amount of
reward collected. In general, we are interested in learning such a policy using as few interactions
with the environment (as small sample complexity) as possible. We might hope that the number of
samples needed would scale with the difficulty of identifying a near-optimal policy in our particular
environment. For example, in a “hard” environment, we would expect that more samples might be
required, while in an “easy” environment, fewer samples may be needed.

The RL community has tended to focus on developing algorithms which have near-optimal worst-

case sample complexity—sample complexities that are only guaranteed to be optimal on “hard” in-
stances. Such algorithms typically have complexities which scale, for example, as O(poly(d,H)/✏2),
for d the dimensionality of the environment, H the horizon, and ✏ the desired level of optimality.
While we may be able to show this complexity is optimal on a hard instance, it is unable to distinguish
between “hard” and “easy” problems. The scaling is identical for two environments as long as the
dimensionality and horizon of each are the same—no consideration is given to the actual difficulty
of the problem—and we therefore have no guarantee that our algorithm is solving the problem with
complexity scaling as the actual difficulty. Indeed, as recent work has shown (Wagenmaker et al.,

⇤ajwagen@cs.washington.edu
†jamieson@cs.washington.edu

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

ajwagen@cs.washington.edu
jamieson@cs.washington.edu

2021b), this is not simply an analysis issue: worst-case optimal algorithms can be very suboptimal on
“easy” instances.

Towards developing algorithms which overcome this, we might instead consider the instance-

dependent difficulty—the hardness of solving a particular problem instance—and hope to obtain a
sample complexity scaling with this instance-dependent difficulty, thereby guaranteeing that we solve
“easy” problems using only a small number of samples, but still obtain the worst-case optimal rate on
“hard” problems. While progress has been made in understanding the instance-dependent complexity
of learning in RL, the results are largely limited to environments with a finite number of states and
actions. In practice, real-world RL problems often involve large (even infinite) state-spaces and, in
order to solve such problems, we must generalize across states. To handle such settings, the RL
community has turned to function approximation-based methods, which allow for provable learning
in large state-space environments. However, while worst-case optimal results have been shown, little
is understood on the instance-dependent complexity of learning in these settings.

In this work we aim to bridge this gap. We consider, in particular, the linear MDP setting, and
develop an algorithm which provably learns a near-optimal policy with sample complexity scaling
as the difficulty of each individual instance. Furthermore, by comparing to our instance-dependent
measure of complexity, we show that low-regret algorithms are provably suboptimal for PAC RL in
function approximation settings. Our algorithm relies on a novel online experiment design-based
procedure—adapting classical techniques from linear experiment design to settings where navigation

is required to measure a particular covariate—which may be of independent interest.

1.1 Contributions

Our contributions are as follows:

• We propose an algorithm, PEDEL, which learns an ✏-optimal policy with instance-dependent
sample complexity scaling as (up to H factors):

HX

h=1

inf
⇡exp

max
⇡2⇧

k�⇡,hk
2
⇤�1

⇡exp,h

(V ?

0 � V
⇡

0)2 _ ✏2
·

⇣
d+ log

1

�

⌘

for �⇡,h the “average feature vector” of policy ⇡, ⇤⇡exp,h the expected covariance of the policy
⇡exp, and V

?

0 � V
⇡

0 the “policy gap”. We show that PEDEL also has worst-case optimal dimension-
dependence—its sample complexity never exceeds eO(d2H7

/✏
2)—but that on “easy” instances it

achieves complexity much smaller than the worst-case optimal rate.

• It is well-known that low-regret algorithms achieve the worst-case optimal rate for PAC RL.
We construct an explicit example, however, where the instance-dependent complexity of PEDEL
improves on the complexity of any low-regret algorithm by a factor of the dimensionality, providing
the first evidence that low-regret algorithms are provably suboptimal on “easy” instances for PAC
RL in function approximation settings.

• We develop a general experiment design-based approach to exploration in MDPs, which allows
us to focus our exploration in the directions most relevant to learning near-optimal policies. Our
approach is based on the key observation that, while solving an experiment design in an MDP would
require knowledge of the MDP dynamics, we can approximately solve one without knowledge of
the dynamics by running a regret minimization algorithm on a carefully chosen reward function,
inducing the correct exploration.

2 Related Work

The sample complexity of RL has been studied for decades (Kearns & Singh, 1998; Brafman &
Tennenholtz, 2002; Kakade, 2003). The two primary problems considered are the regret minimization
problem (where the goal is to obtain large online reward) and the PAC policy identification problem
(where the goal is to find a near-optimal policy using as few samples as possible), which is the focus
of this work. In the tabular RL setting, the question of obtaining worst-case optimal algorithms is
nearly closed (Dann & Brunskill, 2015; Dann et al., 2019; Ménard et al., 2020; Zhang et al., 2020).
As such, in this section we focus primarily on results in the RL with function approximation literature,
as well as results on instance-dependent RL.

2

Sample-Efficient RL with Linear Function Approximation. To generalize beyond MDPs with
a finite number of states and acions, the RL community has considered function approximation,
replacing the tabular model with more powerful settings that allow for generalization across states.
Such settings have been considered in classical works (Baird, 1995; Bradtke & Barto, 1996; Sutton
et al., 1999; Melo & Ribeiro, 2007), yet these works do not provide polynomial sample complexities.
More recently, there has been intense interest in obtaining polynomial complexities for general
function classes (Jiang et al., 2017; Du et al., 2021; Jin et al., 2021; Foster et al., 2021), and, in
particular, linear function classes (Yang & Wang, 2019; Jin et al., 2020; Wang et al., 2019; Du et al.,
2019; Zanette et al., 2020a,b; Ayoub et al., 2020; Jia et al., 2020; Weisz et al., 2021; Zhou et al., 2020,
2021; Zhang et al., 2021; Wang et al., 2021).

In the linear MDP setting, the state-of-the-art in PAC RL is the work of Wagenmaker et al. (2022),
which proposes a computationally efficient algorithm achieving a complexity of O(d2H5

/✏
2) for

the more general reward-free RL problem, and shows a matching lower bound of ⌦(d2H2
/✏

2) for
the PAC RL problem. While this result obtains tight dimension-dependence, it is still worst-case,
and offers no insight on the instance-dependent complexity. Other works of note in this category are
(Jin et al., 2020; Zanette et al., 2020b; Zhou et al., 2020), which establish regret guarantees in the
setting of linear MDPs and the related setting of linear mixture MDPs. Jin et al. (2020) and Zanette
et al. (2020b) obtain regret guarantees of O(

p
d3H4K) and O(

p
d2H4K), respectively, though the

approach of Zanette et al. (2020b) is computationally inefficient. Via an online-to-batch conversion
(Jin et al., 2018), these algorithms achieve PAC complexities of O(d3H4

/✏
2) and O(d2H4

/✏
2). In

the setting of linear mixture MDPs, Zhou et al. (2020) show a regret bound of O(
p
d2H3K) and a

matching lower bound, yielding the first provably tight and computationally efficient algorithms for
RL with function approximation.

Instance-Dependent RL. Much of the recent work on instance-dependent RL has focused on
the tabular setting. Ok et al. (2018) provide an algorithm which achieves asymptotically optimal
instance-dependent regret, yet it is computationally inefficient. Simchowitz & Jamieson (2019)
show that standard optimistic algorithms achieve regret bounded as O(

P
s,a,h

logK

�h(s,a)
), for �h(s, a)

the value-function gap, a result later refined by (Xu et al., 2021; Dann et al., 2021). Obtaining
instance-dependent guarantees for policy identification has proved more difficult, yet a variety of
results do exist (Zanette et al., 2019; Jonsson et al., 2020; Marjani & Proutiere, 2020; Marjani et al.,
2021). In the tabular setting, the most comparable work to ours is that of Wagenmaker et al. (2021b),
which propose a refined instance-dependent measure of complexity, the gap-visitation complexity,
and show that it is possible to learn an ✏-optimal policy with complexity scaling as the gap-visitation
complexity. While the gap-visitation complexity is shown to be tight in certain settings, no general
lower-bounds exist. Towards obtaining sharp guarantees, Tirinzoni et al. (2022) show that in the
simpler setting of deterministic MDPs, a quantity similar in spirit to the gap-visitation complexity is
tight, providing matching upper and lower bounds.

In the setting of RL with function approximation, to our knowledge, only two existing works
obtain guarantees that would be considered “instance-dependent”. Wagenmaker et al. (2021a) show a
“first-order” regret bound of O(

p
d3H3V ?

0 K), where V
?

0 is the value of the optimal policy on the
particular MDP under consideration. He et al. (2020) show that standard optimistic algorithms achieve
regret guarantees of O(d

3
H

5 logK

�min
) and O(d

2
H

5 log3
K

�min
) in the settings of linear MDPs and linear

mixture MDPs, respectively, for �min the minimum value-function gap. While both these works
do obtain instance-dependent results, the instance-dependence is rather coarse, depending on only a
single parameter (V ?

0 or �min)—our goal will instead be to obtain more refined instance-dependent
guarantees.

Experiment Design in Sequential Environments. Experiment design is a well-developed subfield
of statistics, and a full survey is beyond the scope of this work (see Pukelsheim (2006) for an
overview). We highlight several works on experiment design in sequential environments that are
particularly relevant. First, the work of Fiez et al. (2019) achieves the instance-optimal rate for
best-arm identification in linear bandits and relies on an adaptive experiment design-based. The
approach of Fiez et al. (2019), as well as the related work of Soare et al. (2014), provides inspiration
for our algorithm—in some sense PEDEL can be seen as a generalization of the RAGE algorithm to
problems with horizon greater than 1. Concurrent to our work, the RAGE algorithm was extended to
the setting of contextual bandits in Li et al. (2022), achieving the instance-optimal rate. Second, the
work of Wagenmaker et al. (2021c) provides an experiment design-based algorithm in the setting

3

of linear dynamical systems, and show that it hits the optimal instance-dependent rate for learning
in such systems. While their results are somewhat more general, they specialize to the problem of
identifying a near-optimal controller for the LQR problem—thereby solving the PAC RL problem
optimally in the special case of quadratic losses and linear dynamical systems. It is not clear, however,
if their approach generalizes beyond linear dynamical systems. Finally, while the current work was
in preparation, Mutny et al. (2022) proposed an approach to solving experiment design problems
in MDPs. To our knowledge, this is the only existing work that directly considers the problem of
experiment design in MDPs. However, they make the simplifying assumption that the transition
dynamics are known, which essentially reduces their problem to a computational one—in contrast,
our approach handles the much more difficult setting of unknown dynamics, and shows that efficient
experiment design is possible even in this more difficult setting. We remark as well that our online
experiment design approach is somewhat related to several existing algorithms (Hazan et al., 2019;
Zahavy et al., 2021).

3 Preliminaries

We let k�k2A = �>A�, k · kop denote the matrix operator norm (matrix 2-norm), and k · kF denote
the Frobenius norm. eO(·) hides absolute constants and log factors of the arguments. . denotes
inequality up to constants. E⇡ and P⇡ denote the expectation and probability measure induced
by playing some policy ⇡ in our MDP. We let �h,⌧ := �(sh,⌧ , ah,⌧) denote the feature vector
encountered at step h of episode ⌧ (and similarly define rh,⌧).

Markov Decision Processes. In this work, we study episodic, finite-horizon, time inhomogeneous
Markov Decision Processes (MDPs), denoted by a tuple, M = (S,A, H, {Ph}

H

h=1, {⌫h}
H

h=1). We
let S denote the state space, A the action space, H the horizon, {Ph}

H

h=1 the transition kernel,
and {⌫h}

H

h=1 the reward distribution, where Ph(·|s, a) 2 4S denotes the distribution over the next
state when playing action a in state s at step h, and ⌫h(s, a) 2 4[0,1] denotes the corresponding
distribution over reward. We overload notation and let ⌫h(s, a) also refer to the expected reward. We
assume that every episode starts in state s1, and that {Ph}

H

h=1 and {⌫h}
H

h=1 are initially unknown.
Let ⇡ = {⇡h}

H

h=1 denote a policy mapping states to distributions over actions, ⇡h : S ! 4A.
When ⇡ is deterministic, we let ⇡h(s) denote the action policy ⇡ takes at (s, h). An episode begins
at state s1. The agent takes action a1 ⇠ ⇡1(s1), transitions to state s2 ⇠ P1(·|s1, a1), and receives
reward r1(s1, a1) ⇠ ⌫1(s1, a1). In s2, the agent chooses a new action a2 ⇠ ⇡2(s2), and the process
repeats. After H steps, the episode terminates, and the agent restarts at s1.

In general, we are interested in learning policies that collect a large amount of reward. We
can quantify the performance of a policy in terms of the value function. In particular, the Q-
value function, Q

⇡

h
(s, a), denotes the expected reward that will be obtained if we are in state

s at step h, play action a, and then play policy ⇡ for the remainder of the episode. Formally,
Q

⇡

h
(s, a) := E⇡[

P
H

h0=h
rh0(sh0 , ah0)|sh = s, ah = a]. The value function is similarly defined as

V
⇡

h
(s) := E⇡[

P
H

h0=h
rh0(sh0 , ah0)|sh = s]. For deterministic policies, V ⇡

h
(s) = Q

⇡

h
(s,⇡h(s)). We

denote the optimal Q-value function by Q
?

h
(s, a) = sup

⇡
Q

⇡

h
(s, a) and the optimal value function by

V
?

h
(s) = sup

⇡
V

⇡

h
(s), where the suprema is taken over all policies, both deterministic and stochastic.

We define the value of a policy as V ⇡

0 = V
⇡

1 (s1)—the expected reward policy ⇡ achieves over an
entire episode—and say a policy ⇡ is optimal if V ⇡

0 = V
?

0 . For some set of policies ⇧ (which may
not contain an optimal policy), we let V ?

0 (⇧) := sup
⇡2⇧ V

⇡

0 .

PAC Reinforcement Learning. In PAC RL, the goal is to identify some policy b⇡ using as few
episodes as possible, such that, with probability at least 1� �,

V
?

0 � V
b⇡
0 ✏.

We say that such a policy is ✏-optimal, and an algorithm with such a guarantee on every environment
and reward function is (✏, �)-PAC. We will also refer to this problem as “policy identification”.

3.1 Linear MDPs

In this work, we are interested in the setting where the state space could be infinite, and the learner
must generalize across states. In particular, we consider the linear MDP model defined as follows.

4

Definition 3.1 (Linear MDPs (Jin et al., 2020)). We say that an MDP is a d-dimensional linear MDP,
if there exists some (known) feature map �(s, a) : S ⇥A! Rd, H (unknown) signed vector-valued
measures µh 2 Rd over S , and H (unknown) reward vectors ✓h 2 Rd, such that:

Ph(·|s, a) = h�(s, a),µh(·)i, E[⌫h(s, a)] = h�(s, a),✓hi.

We will assume k�(s, a)k2 1 for all s, a; and for all h, k|µh|(S)k2 = k
R
s2S |dµh(s)|k2

p
d

and k✓hk2
p
d.

Linear MDPs encompass, for example, tabular MDPs, but can also model more complex settings,
such as feature spaces corresponding to the simplex (Jin et al., 2020), or the linear bandit problem.
Critically, linear MDPs allow for infinite state-spaces, as well as generalization across states—rather
than learning the behavior in particular states, we can learn in the d-dimensional ambient space. Note
that the standard definition of linear MDPs, for example as given in Jin et al. (2020), assumes the
rewards are deterministic, while we assume the rewards are random but that their means are linear.
We still assume, however, that the random rewards, rh(s, a), are contained in [0, 1] almost surely.

For a given policy ⇡, we define the feature-visitation at step h, the expected feature vector
policy ⇡ encounters at step h, as �⇡,h := E⇡[�(sh, ah)]. Note that this is a direct generalization
of state-visitations in tabular RL—if our MDP is in fact tabular, [�⇡,h]s,a = P⇡[sh = s, ah = a],
so the feature visitation vector corresponds directly to the state visitations. Note also that we
can write the value of a policy as V

⇡

0 =
P

H

h=1h�⇡,h,✓hi. Denote the average feature vector
induced by ⇡ in a particular state s as �⇡,h(s) = Ea⇠⇡h(·|s)[�(s, a)]. We also define ⇤⇡,h :=
E⇡[�(sh, ah)�(sh, ah)>], the expected covariance of policy ⇡ at step h, �?

min,h = sup
⇡
�min(⇤⇡,h)

the largest achievable minimum eigenvalue at step h, and �
?

min = minh �?

min,h. We will make the
following assumption.
Assumption 1 (Full Rank Covariates). In our MDP, �

?

min > 0.

We remark that Assumption 1 is analogous to other explorability assumptions found in the RL with
function approximation literature (Zanette et al., 2020c; Hao et al., 2021; Agarwal et al., 2021).

To reduce uncertainty in directions of interest, we will be interested in optimizing over the set of
all realizable covariance matrices on our particular MDP. To this end, define ⌦h := {E⇡⇠![⇤⇡,h] :
! 2 ⌦⇡} for ⌦⇡ the set of all valid distributions over Markovian policies (both deterministic and
stochastic). We can think of ⌦h, then, as the set of covariance matrices realizable by distributions
over policies at step h.

4 Near-Optimal Policy Identification in Linear MDPs

We are now ready to state our algorithm, PEDEL.

PEDEL Description. PEDEL is a policy-elimination-style algorithm. It takes as input some set of
policies, ⇧, and proceeds in epochs, maintaining a set of active policies, ⇧`, such that all ⇡ 2 ⇧` are
guaranteed to satisfy V

⇡

0 � V
?

0 (⇧)� 4✏`, for ✏` = 2�`. After running for dlog 4
✏
e epochs, it returns

any of the remaining active policies, which will be guaranteed to have value at least V ?

0 (⇧)� ✏.
In order to ensure ⇧` only contains 4✏`-optimal policies, sufficient exploration must be performed

at every epoch to refine the estimate of each policy’s value. While works such as Wagenmaker
et al. (2022) have demonstrated how to efficiently traverse a linear MDP and collect the necessary
observations, existing exploration procedures are unable to obtain the instance-dependent complexity
we desire. To overcome this, PEDEL relies on a novel online experiment design procedure to ensure
exploration is focused only on the directions necessary to evaluate the current set of active policies.

In particular, one can show that, if we have collected some covariates ⇤h,`, the uncertainty in
our estimate of the value of policy ⇡ at step h scales as k b�`

⇡,h
k⇤�1

h,`

, for b�`

⇡,h
the estimated feature-

visitation for policy ⇡ at epoch `. To reduce our uncertainty at each round, we would therefore like
to collect covariates such that k b�`

⇡,h
k⇤�1

h,`

. ✏`. Collecting covariates which satisfy this using the
minimum number of episodes of exploration possible involves solving the experiment design:

inf
⇤exp2⌦h

max
⇡2⇧`

k b�`

⇡,h
k
2
⇤�1

exp
. (4.1)

1Note that Kh,` is random and is the number of episodes Algorithm 2 runs for.

5

Algorithm 1 Policy Learning via Experiment Design in Linear MDPs (PEDEL)
1: input: tolerance ✏, confidence �, policy set ⇧
2: `0 dlog2

d
3/2

H
e, ⇧`0 ⇧, b�1

⇡,1 Ea⇠⇡1(·|s1)[�(s1, a)], 8⇡ 2 ⇧

3: for ` = `0, `0 + 1, . . . , dlog 4
✏
e do

4: ✏` 2�`, �` 64H4 log 4H2|⇧`|`2
�

5: for h = 1, 2, . . . , H do

6: Solve (4.1) by running Algorithm 2, collect data1
{(�h,⌧ , rh,⌧ , sh+1,⌧)}

Kh,`

⌧=1 such that:

max
⇡2⇧`

k b�`

⇡,h
k
2
⇤�1

h,`

 ✏
2
`
/�` for ⇤h,`

PKh,`

⌧=1 �h,⌧�
>
h,⌧

+ 1/d · I

7: for ⇡ 2 ⇧` do // Estimate feature-visitations for active policies
8: b�`

⇡,h+1

⇣PKh,`

⌧=1 �⇡,h+1(sh+1,⌧)�>
h,⌧

⇤�1
h,`

⌘
b�`

⇡,h

9: b✓`

h
 ⇤�1

h,`

PKh,`

⌧=1 �h,⌧rh,⌧ // Estimate reward vectors
10: // Remove provably suboptimal policies from active policy set

⇧`+1 ⇧`\

n
⇡ 2 ⇧` : bV ⇡

0 < sup
⇡02⇧`

bV ⇡
0

0 � 2✏`
o

for bV ⇡

0 :=
P

H

h=1h
b�`

⇡,h
, b✓`

h
i

11: if |⇧`+1| = 1 then return ⇡ 2 ⇧`+1

12: return any ⇡ 2 ⇧`+1

Note that this design has the form of an XY-experiment design (Soare et al., 2014). Solving (4.1) will
produce covariance ⇤exp which reduces uncertainty in relevant feature directions. However, to solve
this design we require knowledge of which covariance matrices are realizable on our particular MDP.
In general we do not know the MDP’s dynamics, and therefore do not have access to this knowledge.
To overcome this and solve (4.1), in Section 5 we provide an algorithm, Algorithm 2, that is able to
solve (4.1) in an online manner without knowledge of the MDP dynamics by running a low-regret
algorithm on a carefully chosen reward function.

Estimating Feature-Visitations. We remark briefly on the estimation of the feature-visitations on
Line 8. If we assume that {�h,⌧}

Kh,`

⌧=1 is fixed and that all randomness is due to sh+1,⌧ , then it is easy
to see that, using the structure present in linear MDPs as given in Definition 3.1,

E[
PKh,`

⌧=1 �⇡,h+1(sh+1,⌧)�
>
h,⌧

⇤�1
h,`

] =
PKh,`

⌧=1

�R
�⇡,h+1(s)dµh(s)

>�h,⌧

�
�>

h,⌧
⇤�1

h,`

=
R
�⇡,h+1(s)dµh(s)

>
.

By Definition 3.1, we have �⇡,h+1 =
�R

�⇡,h+1(s)dµh(s)>
�
�⇡,h. Comparing these, we see that

our estimator of �⇡,h+1 on Line 8 is (conditioned on {�h,⌧}
Kh,`

⌧=1) unbiased, assuming b�`

⇡,h
⇡ �⇡,h.

4.1 Main Results

We have the following result on the performance of PEDEL.
Theorem 1. Consider running PEDEL with some set of Markovian policies ⇧ on any linear MDP

satisfying Definition 3.1 and Assumption 1. Then with probability at least 1� �, PEDEL outputs a

policy b⇡ 2 ⇧ such that V
b⇡
0 � V

?

0 (⇧)� ✏, and runs for at most

C0H
4
·

HX

h=1

inf
⇤exp2⌦h

max
⇡2⇧

k�⇡,hk
2
⇤�1

exp

max{V ?

0 (⇧)� V
⇡

0 ,�⇧
min, ✏}

2
·

⇣
log |⇧|+ log

1

�

⌘
+ C1

episodes, with C0 = log 1
✏
· poly log(H, log 1

✏
), C1 = poly

�
d,H,

1
�
?

min
, log 1

�
, log 1

✏
, log |⇧|

�
,

�⇧
min := V

?

0 (⇧)�max⇡2⇧:V ⇡

0 <V
?

0 (⇧) V
⇡

0 , and ⌦h the set of covariance matrices realizable on our

MDP.

The proof of Theorem 1 is given in Appendix B. Theorem 1 quantifies, in a precise instance-
dependent way, the complexity of identifying a policy b⇡ with value at most a factor of ✏ from the

6

value of the optimal policy in ⇧. At a high level, the complexity measure can be thought of as
quantifying the difficulty of exploring the MDP so as to eliminate suboptimal policies. k�⇡,hk⇤�1

exp

quantifies the difficulty of collecting data necessary to eliminate policy ⇡ (in particular, �⇡,h is the
direction we need to explore to learn about the performance of policy ⇡, and ⇤�1

exp quantifies how
easily we can reach directions in the MDP to do this), while V ?

0 (⇧)� V
⇡

0 quantifies how suboptimal
policy ⇡ is, and therefore how many samples are needed to distinguish it from the optimal policy in
the class. Thus, rather than scaling only with factors such as d and ✏, our complexity scales with
instance-dependent quantities—the covariance matrices we can obtain and the feature vectors we
expect to observe on our particular MDP, and the policy gaps on our MDP. Our complexity measure
has a close resemblance to the complexity measure for best-arm identification in linear bandits found
in Fiez et al. (2019), but generalizes it to problems with long horizon where navigation is required.

Theorem 1 holds for an arbitrary set of policies, yet, in general, we are interested in learning
a policy which has value within a factor of ✏ of the value of the optimal policy on the MDP, V ?

0 .
Such a guarantee is immediately attainable by applying Theorem 1 with a policy set ⇧ such that
sup

⇡2⇧ V
⇡

0 � V
?

0 �✏. The following result shows that it is possible to construct such a set of policies,
and therefore learn a globally near-optimal policy.

Corollary 1. There exists a set of policies ⇧✏ such that log |⇧✏|
eO(dH2

· log 1/✏) and, for any

linear MDP satisfying Definition 3.1, sup
⇡2⇧✏

V
⇡

0 � V
?

0 � ✏. If we run PEDEL with ⇧ ⇧✏, then

with probability at least 1� �, it returns a policy b⇡ such that V
b⇡
0 � V

?

0 � 2✏, and runs for at most

C0H
4
·

HX

h=1

inf
⇤exp2⌦h

max
⇡2⇧✏

k�⇡,hk
2
⇤�1

exp

max{V ?

0 � V
⇡

0 , ✏}2
·

⇣
dH

2 + log
1

�

⌘
+ C1

episodes, for C0 = poly log(d,H,
1
✏
).

Note that the policy set constructed in Corollary 1, ⇧✏, is guaranteed to contain an ✏-optimal policy for
any linear MDP. Thus, this result states that without any prior knowledge of our MDP, PEDEL can be
applied to find an ✏-optimal policy. While Theorem 1 and Corollary 1 quantify the instance-dependent
complexity of learning, it is natural to ask what the worst-case complexity of PEDEL is. The following
result provides such a bound.
Corollary 2. For any linear MDP satisfying Definition 3.1, inf⇤exp2⌦h

max⇡2⇧✏
k�⇡,hk

2
⇤�1

exp
 d,

so the sample complexity of Algorithm 1 when run with ⇧ ⇧✏ is no larger than

eO
✓
dH

5(dH2 + log 1/�)

✏2
+ C1

◆
.

Corollary 2 shows that PEDEL has worst-case optimal dimension dependence, matching the lower
bound of ⌦(d2H2

/✏
2) given in Wagenmaker et al. (2022), up to H and log factors2.

Remark 4.1 (Performance on Linear Contextual Bandits). Corollary 1 applies directly to linear
contextual bandits by setting H = 13. To our knowledge, this is the first instance-dependent result on
PAC policy identification in linear contextual bandits. Furthermore, Corollary 2 shows that we also
obtain a worst-case complexity of eO(d2/✏2) on linear contextual bandits, which is the optimal rate
(Wagenmaker et al., 2022).

4.2 Low-Regret Algorithms are Suboptimal for PAC RL in Large State-Spaces

We next show that there are problems on which the instance-dependent complexity of PEDEL improves
on the worst-case lower bound shown in Wagenmaker et al. (2022), thereby demonstrating that we do
indeed obtain favorable complexities on “easy” instances.
Proposition 2. For any d > 2, there exists a d-dimensional linear MDP with H = 2 such that

with probability 1 � �, PEDEL identifies an ✏-optimal policy on this MDP after running for only

eO
� log d/�

✏2
+ poly(d, log 1

�
, log 1

✏
)
�

episodes.

The complexity given in Proposition 2 is a factor of d2 better than the worst-case lower bound of
⌦(d2/✏2). While this shows that PEDEL yields a significant improvement over existing worst-case

2We remark that the focus of this work is on instance-dependence and dimension-dependence, not in
optimizing H factors, and we leave improving our H dependence for future work.

3We describe the exact mapping to linear contextual bandits in Appendix B.3.

7

lower bounds on favorable instances, it is natural to ask whether the same complexity is attainable
with existing algorithms, perhaps by applying a tighter analysis. Towards answering this, we will
consider a class of low-regret algorithms and an online-to-batch learning protocol.
Definition 4.1 (Low-Regret Algorithm). We say that an algorithm is a low-regret algorithm if its
expected regret is bounded as, for all K:

E[RK] =
P

K

k=1E[V
?

0 � V
⇡k

0] C1K
↵ + C2

for some constants C1, C2, and ↵ 2 (0, 1).
Protocol 4.1 (Online-to-Batch Learning). The online-to-batch protocol proceeds as follows:

1. The learner plays a low-regret algorithm satisfying Definition 4.1 for K episodes.
2. The learner stops at a (possibly random) time K, and, using the observations it has collected in

any way it wishes, outputs a policy b⇡ it believes is ✏-optimal.

In general, by applying online-to-batch learning, one can convert a regret guarantee of C1K↵+C2

to a PAC complexity of O((C1
✏
)

1
1�↵ + C2

✏
) (Jin et al., 2018), allowing low-regret algorithms such as

that of Zanette et al. (2020b) to obtain the minimax-optimal PAC complexity of O(d2H4
/✏

2). The
following result shows, however, that this protocol is unable to obtain the instance-optimal rate.
Proposition 3. On the instance of Proposition 2, for small enough ✏, any learner that is (✏, �)-PAC

and follows Protocol 4.1 with stopping time K must have E[K] � ⌦
�
d·log 1/�

✏2

�
.

Together, Proposition 2 and Proposition 3 show that running a low-regret algorithm to learn a
near-optimal policy in a linear MDP is provably suboptimal—at least a factor of d worse than the
instance-dependent rate obtained by PEDEL. While a similar observation was recently made in the
setting of tabular MDPs (Wagenmaker et al., 2021b), to our knowledge, this is the first such result in
the RL with function approximation setting, implying that, in this setting, low-regret algorithms are
insufficient for obtaining optimal PAC sample complexity. As standard optimistic algorithms are also
low-regret, this result implies that all such optimistic algorithms are also suboptimal.

4.3 Tabular and Deterministic MDPs

To relate our results to existing results on instance-dependent RL, we next turn to the setting of tabular
MDPs, where it is assumed that S := |S| <1, A := |A| <1. Define:

�h(s, a) = V
?

h
(s)�Q

?

h
(s, a), w

⇡

h
(s, a) = P⇡[sh = s, ah = a].

�h(s, a) denotes the value-function gap, and quantifies the suboptimality of playing action a in state
s at step h and then playing the optimal policy, as compared to taking the optimal action in (s, h).
w

⇡

h
(s, a) denotes the state-action visitation distribution for policy ⇡, and quantifies how likely policy

⇡ is to reach (s, a) at step h. Note that [�⇡,h](s,a) = w
⇡

h
(s, a). We obtain the following corollary.

Corollary 3. In the setting of tabular MDPs, PEDEL outputs an ✏-optimal policy with probability at

least 1� �, and has sample complexity bounded as

eO
⇣P

H

h=1 inf
⇡exp

max
⇡2⇧

max
s,a

H
4

w
⇡exp
h

(s,a)
min

n
1

w
⇡

h
(s,a)�h(s,a)2

,
w

⇡

h
(s,a)

�min(⇧)2 ,
w

⇡

h
(s,a)
✏2

o
(SH + log 1

�
) + C1

⌘
,

for C1 = poly
�
S,A,H,

1
minh mins sup

⇡
w

⇡

h
(s) , log

1
�
, log 1

✏

�
and ⇧ the set of all deterministic policies.

For tabular MDPs, the primary comparable result on instance-dependent policy identification is
that obtained by Wagenmaker et al. (2021b), which introduces a different measure of complexity,
the gap-visitation complexity, and an algorithm, MOCA, with sample complexity scaling as the
gap-visitation complexity. The following result shows that the complexity PEDEL obtains on tabular
MDPs and the gap-visitation complexity do not have a clear ordering.
Proposition 4. Fix any ✏ 2 (0, 1/2) and S � log2(1/✏). Then there exist tabular MDPs M1 and

M2, each with H = 2, S states, and O(S) actions, such that:

• On M1, the complexity bound of PEDEL given in Corollary 3 scales as poly(S, log 1/�), while

the gap-visitation complexity scales as ⌦(1/✏2).

• On M2, the complexity bound of PEDEL given in Corollary 3 scales as ⌦(1/✏2), while the

gap-visitation complexity scales as poly(S, log 1/�).

8

The lack of ordering between the two complexity measures arises because, on some problem
instances, it is easier to learn in policy-space (as PEDEL does), while on other instances, it is easier
to learn near-optimal actions on individual states directly, and then synthesize these actions into
a near-optimal policy (the approach MOCA takes). This difference arises because, in the former
instance, the minimum policy gap is large (V ?

0 � V
⇡

0 = ⌦(1) for every deterministic policy ⇡ 6= ⇡
?),

while in the latter instance, the minimum policy gap is small, but all value-function gaps are large,
satisfying �h(s, a) = ⌦(1) for all a 6= argmax

a2A Q
?

h
(s, a) and all s and h. Thus, on the former

instance, it is much easier to learn over the space of policies, while on the latter it is much easier
to learn optimal actions in individual states. Resolving this discrepency with an algorithm able to
achieve the “best-of-both-worlds” is an interesting direction for future work.

Deterministic MDPs. Finally, we turn to the simplified setting of tabular, deterministic MDPs.
Here, for each (s, a, h), there exists some s

0 such that Ph(s0|s, a) = 1. We still allow the rewards to
be random, however, so the agent must still learn in order to find a near-optimal policy. Following
the same notation as the recent work of Tirinzoni et al. (2022), let ⇧sah = {⇡ deterministic : s

⇡

h
=

s, a
⇡

h
= a}, where s

⇡

h
and a

⇡

h
are the state and action policy ⇡ will be in at step h (note that these

quantities are well-defined quantities for deterministic policies). Also define the deterministic return

gap as �̄h(s, a) := V
?

0 �max⇡2⇧sah
V

⇡

0 , and let �̄min := mins,a,h:�̄h(s,a)>0 �̄h(s, a) in the case
when there exists a unique optimal deterministic policy, and �̄min := 0 otherwise. We obtain the
following.
Corollary 4. In the setting of tabular, deterministic MDPs, PEDEL outputs an ✏-optimal policy with

probability at least 1� �, and has sample complexity bounded as

eO

H

4
·

HX

h=1

X

s,a

1

max{�̄h(s, a), �̄min, ✏}
2
· (H + log 1

�
) + poly

�
S,A,H, log 1

�
, log 1

✏

�
!
.

Up to H and log factors and lower-order terms, the rate given in Corollary 4 matches the instance-
dependent lower bound given in Tirinzoni et al. (2022)4. Thus, we conclude that, in the setting
of tabular, deterministic MDPs, PEDEL is (nearly) instance-optimal. While Tirinzoni et al. (2022)
also obtain instance-optimality in this setting, their algorithm and analysis are specialized to tabular,
deterministic MDPs—in contrast, PEDEL requires no modification from its standard operation.

5 Online Experiment Design in Linear MDPs

As described in Section 4, to reduce our uncertainty and explore in a way that only targets the relevant
feature directions, we must solve an XY-experiment design problem of the form:

inf
⇤exp2⌦h

max
�2�
k�k2

⇤�1
exp

. (5.1)

This is not, in general, possible to solve without knowledge of the MDP dynamics. In this section
we describe our approach to solving (5.1) without knowledge of the MDP dynamics by relying on a
low-regret algorithm as an optimization primitive.

Approximating Frank-Wolfe via Regret Minimization. Given knowledge of the MDP dynamics,
we could compute ⌦h directly, and apply the celebrated Frank-Wolfe coordinate-descent algorithm
(Frank & Wolfe, 1956) to solve (5.1). In this setting the Frank-Wolfe update for (5.1) is:

�t = argmin�2⌦h
hr⇤(max�2� k�k2⇤�1)|⇤=⇤t

,�i, ⇤t+1 = (1� �t)⇤t + �t�t (5.2)
for step size �t. Standard Frank-Wolfe analysis shows that this update converges to a near-optimal
solution to (5.1) at a polynomial rate. However, without knowledge of ⌦h, we are unable to solve for
�t and run the Frank-Wolfe update.

Our critical observation is that the minimization over ⌦h in (5.2) can be approximated without
knowledge of ⌦h by running a low-regret algorithm on a particular objective. Some calculation
shows that (except on a measure-zero set, assuming � is finite) r⇤(max�2� k�k2⇤�1)|⇤=⇤t

=

�⇤�1
t
e�t
e�>
t
⇤�1

t
for e�t = argmax�2� k�k

2
⇤�1

t

. If � = ⇤⇡,h = E⇡[�h�>
h
] for some ⇡, we have

hr⇤(max�2� k�k2⇤�1)|⇤=⇤t
,�i = �tr(⇤�1

t
e�t
e�>
t
⇤�1

t
⇤⇡,h) = �E⇡[(�>

h
⇤�1

t
e�t)2].

4The lower bound of Tirinzoni et al. (2022) depends on a slightly different (but nearly equivalent) minimum
gap term, �̄h

min. Similar to our upper bound, the upper bound of Tirinzoni et al. (2022) scales with �̄min instead
of �̄h

min. We offer a more in-depth discussion of this point in Appendix B.3.

9

Now, if we run a low-regret algorithm on the (deterministic) reward ⌫
t

h
(s, a) = (�(s, a)>⇤�1

t
e�t)2

for a sufficiently large number of episodes K, we will be guaranteed to collect reward at a rate close
to that of the optimal policy, which implies we will collect some data {�h,⌧}

K

⌧=1 such that
K

�1
· e�>

t
b�K
e�t := K

�1
P

K

⌧=1(�
>
h,⌧

⇤�1
t
e�t)2 ⇡ sup

⇡
E⇡[(�>

h
⇤�1

t
e�t)2]. (5.3)

However, this implies the covariates we have collected, b�K , approximately minimize (5.2). In other
words, running a low-regret algorithm on ⌫

t

h
allows us to obtain covariates which approximate the

Frank-Wolfe update—without knowledge of ⌦h, we can solve the Frank-Wolfe update by running a
low-regret algorithm, and therefore solve (5.1). This motivates Algorithm 2.

Algorithm 2 Online Frank-Wolfe via Regret Minimization (informal)
1: input: uncertain feature directions �, step h, regularization ⇤0 � 0
2: K0 sufficiently large number of episodes to guarantee (5.3) holds
3: Run any policy for K0 episodes, collect data {�h,⌧}

K0
⌧=1, set ⇤1 K

�1
0

P
K0

⌧=1 �h,⌧�>
h,⌧

4: for t = 1, . . . , T � 1 do

5: e�t argmax�2� k�k
2
(⇤t+⇤0)�1 , ⌫t

h
(s, a) (�(s, a)>(⇤t +⇤0)�1 e�t)2

6: Run low-regret algorithm on ⌫
t

h
for K0 episodes, collect covariates b�t

K0

7: Set ⇤t+1 (1� �t)⇤t + �tK
�1
0
b�t

K0
for �t = 1

t+1

8: return: covariates TK0⇤T =
P

T�1
t=1

b�t

K0
+⇤1

Theorem 5 (informal). Consider running Algorithm 2 with some ⇤0 � 0. Then with properly chosen

settings of K0 and T , we can guarantee that, with probability at least 1� �, we will run for at most

N 20 ·
inf⇤exp2⌦h

max�2� k�k2(⇤exp+⇤0)�1

✏exp
+ poly

�
d,H, k⇤�1

0 kop, log |�|, log 1/�
�

episodes, and return covariance b⇤N satisfying max�2� k�k2(b⇤N+N⇤0)�1
 ✏exp.

Note that this rate is essentially optimal, up to constants and lower-order terms. If we let !?

exp

denote the distribution over policies which minimize (5.1), then to collect covariance b⇤N such that
max�2� k�k2(b⇤N+N⇤0)�1

 ✏exp, in expectation, we would need to play ⇡ ⇠ !
?

exp for at least

inf
⇤exp2⌦h

max
�2�
k�k2(⇤exp+⇤0)�1 · ✏

�1
exp

episodes, which is the same scaling as obtained in Theorem 5.
In practice, we instead run Algorithm 2 on a smoothed version of the objective in (5.1). We

provide a full definition of Algorithm 2 with exact setting of T and K0 in Appendix C. Theorem 5 is
itself a corollary of a more general result, Theorem 8, given in Appendix C, which shows our Frank-
Wolfe procedure can be applied to minimize any smooth experiment-design objective—for example,
collecting covariates which optimally maximize the minimum eigenvalue, E-optimal design.

6 Conclusion

In this work, we have shown that it is possible to obtain instance-dependent guarantees in RL
with function approximation, and that our algorithm, PEDEL, yields provable gains over low-regret
algorithms. As the first result of its kind in this setting, it opens several directions for future work.

The computational complexity of PEDEL scales as poly(d,H,
1
✏
, |⇧|, |A|, log 1

�
). In general, to

ensure ⇧ contains an ✏-optimal policy, |⇧| must be exponential in problem parameters, rendering
PEDEL computationally inefficient. Furthermore, the sample complexity of PEDEL scales with �

?

min,
the “hardest-to-reach” direction. While this is not uncommon in the literature, we might hope that
if a direction is very difficult to reach, learning in that direction should not be necessary, as we are
unlikely to ever encounter it. Obtaining an algorithm with a similar instance-dependence but that is
computationally efficient and does not depend on �

?

min is an interesting direction for future work.
Extending our results to the setting of general function approximation is also an exciting direction.

While our results do rely on the linear structure of the MDP, we believe the online experiment-design
approach we propose could be generally applicable in more complex settings. As a first step, it could
be interesting to extend our approach to the setting of Bilinear classes (Du et al., 2021), which also
exhibits a certain linear structure.

10

Acknowledgements

The work of AW was supported by an NSF GFRP Fellowship DGE-1762114. The work of KJ was
funded in part by the AFRL and NSF TRIPODS 2023166.

References

Agarwal, N., Chaudhuri, S., Jain, P., Nagaraj, D., and Netrapalli, P. Online target q-learning with
reverse experience replay: Efficiently finding the optimal policy for linear mdps. arXiv preprint

arXiv:2110.08440, 2021.

Ayoub, A., Jia, Z., Szepesvari, C., Wang, M., and Yang, L. Model-based reinforcement learning with
value-targeted regression. In International Conference on Machine Learning, pp. 463–474. PMLR,
2020.

Baird, L. Residual algorithms: Reinforcement learning with function approximation. In Machine

Learning Proceedings 1995, pp. 30–37. Elsevier, 1995.

Bradtke, S. J. and Barto, A. G. Linear least-squares algorithms for temporal difference learning.
Machine learning, 22(1):33–57, 1996.

Brafman, R. I. and Tennenholtz, M. R-max-a general polynomial time algorithm for near-optimal
reinforcement learning. Journal of Machine Learning Research, 3(Oct):213–231, 2002.

Dann, C. and Brunskill, E. Sample complexity of episodic fixed-horizon reinforcement learning.
arXiv preprint arXiv:1510.08906, 2015.

Dann, C., Li, L., Wei, W., and Brunskill, E. Policy certificates: Towards accountable reinforcement
learning. In International Conference on Machine Learning, pp. 1507–1516. PMLR, 2019.

Dann, C., Marinov, T. V., Mohri, M., and Zimmert, J. Beyond value-function gaps: Improved instance-
dependent regret bounds for episodic reinforcement learning. Advances in Neural Information

Processing Systems, 34, 2021.

Du, S. S., Kakade, S. M., Wang, R., and Yang, L. F. Is a good representation sufficient for sample
efficient reinforcement learning? arXiv preprint arXiv:1910.03016, 2019.

Du, S. S., Kakade, S. M., Lee, J. D., Lovett, S., Mahajan, G., Sun, W., and Wang, R. Bilinear classes:
A structural framework for provable generalization in rl. arXiv preprint arXiv:2103.10897, 2021.

Epasto, A., Mahdian, M., Mirrokni, V., and Zampetakis, E. Optimal approximation-smoothness
tradeoffs for soft-max functions. Advances in Neural Information Processing Systems, 33:2651–
2660, 2020.

Fiez, T., Jain, L., Jamieson, K. G., and Ratliff, L. Sequential experimental design for transductive
linear bandits. Advances in neural information processing systems, 32, 2019.

Foster, D. J., Kakade, S. M., Qian, J., and Rakhlin, A. The statistical complexity of interactive
decision making. arXiv preprint arXiv:2112.13487, 2021.

Frank, M. and Wolfe, P. An algorithm for quadratic programming. Naval research logistics quarterly,
3(1-2):95–110, 1956.

Freedman, D. A. On tail probabilities for martingales. the Annals of Probability, pp. 100–118, 1975.

Hao, B., Lattimore, T., Szepesvári, C., and Wang, M. Online sparse reinforcement learning. In
International Conference on Artificial Intelligence and Statistics, pp. 316–324. PMLR, 2021.

Hazan, E., Kakade, S., Singh, K., and Van Soest, A. Provably efficient maximum entropy exploration.
In International Conference on Machine Learning, pp. 2681–2691. PMLR, 2019.

He, J., Zhou, D., and Gu, Q. Logarithmic regret for reinforcement learning with linear function
approximation. arXiv preprint arXiv:2011.11566, 2020.

11

Jia, Z., Yang, L., Szepesvari, C., and Wang, M. Model-based reinforcement learning with value-
targeted regression. In Learning for Dynamics and Control, pp. 666–686. PMLR, 2020.

Jiang, N., Krishnamurthy, A., Agarwal, A., Langford, J., and Schapire, R. E. Contextual decision
processes with low bellman rank are pac-learnable. In International Conference on Machine

Learning, pp. 1704–1713. PMLR, 2017.

Jin, C., Allen-Zhu, Z., Bubeck, S., and Jordan, M. I. Is q-learning provably efficient? In Proceedings

of the 32nd International Conference on Neural Information Processing Systems, pp. 4868–4878,
2018.

Jin, C., Yang, Z., Wang, Z., and Jordan, M. I. Provably efficient reinforcement learning with linear
function approximation. In Conference on Learning Theory, pp. 2137–2143. PMLR, 2020.

Jin, C., Liu, Q., and Miryoosefi, S. Bellman eluder dimension: New rich classes of rl problems, and
sample-efficient algorithms. arXiv preprint arXiv:2102.00815, 2021.

Jonsson, A., Kaufmann, E., Ménard, P., Domingues, O. D., Leurent, E., and Valko, M. Plan-
ning in markov decision processes with gap-dependent sample complexity. arXiv preprint

arXiv:2006.05879, 2020.

Kakade, S. M. On the sample complexity of reinforcement learning. PhD thesis, UCL (University
College London), 2003.

Kaufmann, E., Cappé, O., and Garivier, A. On the complexity of best-arm identification in multi-
armed bandit models. The Journal of Machine Learning Research, 17(1):1–42, 2016.

Kearns, M. and Singh, S. Finite-sample convergence rates for q-learning and indirect algorithms.
Advances in neural information processing systems, 11, 1998.

Lattimore, T. and Szepesvári, C. Bandit algorithms. Cambridge University Press, 2020.

Li, Z., Ratliff, L., Nassif, H., Jamieson, K., and Jain, L. Instance-optimal pac algorithms for contextual
bandits. arXiv preprint arXiv:2207.02357, 2022.

Marjani, A. A. and Proutiere, A. Best policy identification in discounted mdps: Problem-specific
sample complexity. arXiv preprint arXiv:2009.13405, 2020.

Marjani, A. A., Garivier, A., and Proutiere, A. Navigating to the best policy in markov decision
processes. arXiv preprint arXiv:2106.02847, 2021.

McSherry, F. and Talwar, K. Mechanism design via differential privacy. In 48th Annual IEEE

Symposium on Foundations of Computer Science (FOCS’07), pp. 94–103. IEEE, 2007.

Melo, F. S. and Ribeiro, M. I. Q-learning with linear function approximation. In International

Conference on Computational Learning Theory, pp. 308–322. Springer, 2007.

Ménard, P., Domingues, O. D., Jonsson, A., Kaufmann, E., Leurent, E., and Valko, M. Fast active
learning for pure exploration in reinforcement learning. arXiv preprint arXiv:2007.13442, 2020.

Mutny, M., Janik, T., and Krause, A. Active exploration via experiment design in markov chains.
arXiv preprint arXiv:2206.14332, 2022.

Ok, J., Proutiere, A., and Tranos, D. Exploration in structured reinforcement learning. arXiv preprint

arXiv:1806.00775, 2018.

Pukelsheim, F. Optimal design of experiments. SIAM, 2006.

Simchowitz, M. and Jamieson, K. Non-asymptotic gap-dependent regret bounds for tabular mdps.
arXiv preprint arXiv:1905.03814, 2019.

Soare, M., Lazaric, A., and Munos, R. Best-arm identification in linear bandits. Advances in Neural

Information Processing Systems, 27, 2014.

12

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y. Policy gradient methods for reinforcement
learning with function approximation. Advances in neural information processing systems, 12,
1999.

Tirinzoni, A., Al-Marjani, A., and Kaufmann, E. Near instance-optimal pac reinforcement learning
for deterministic mdps. arXiv preprint arXiv:2203.09251, 2022.

Vershynin, R. Introduction to the non-asymptotic analysis of random matrices. arXiv preprint

arXiv:1011.3027, 2010.

Wagenmaker, A., Chen, Y., Simchowitz, M., Du, S. S., and Jamieson, K. First-order regret in
reinforcement learning with linear function approximation: A robust estimation approach. arXiv

preprint arXiv:2112.03432, 2021a.

Wagenmaker, A., Simchowitz, M., and Jamieson, K. Beyond no regret: Instance-dependent pac
reinforcement learning. arXiv preprint arXiv:2108.02717, 2021b.

Wagenmaker, A., Chen, Y., Simchowitz, M., Du, S. S., and Jamieson, K. Reward-free rl is no harder
than reward-aware rl in linear markov decision processes. arXiv preprint arXiv:2201.11206, 2022.

Wagenmaker, A. J., Simchowitz, M., and Jamieson, K. Task-optimal exploration in linear dynamical
systems. In International Conference on Machine Learning, pp. 10641–10652. PMLR, 2021c.

Wang, Y., Wang, R., Du, S. S., and Krishnamurthy, A. Optimism in reinforcement learning with
generalized linear function approximation. arXiv preprint arXiv:1912.04136, 2019.

Wang, Y., Wang, R., and Kakade, S. M. An exponential lower bound for linearly-realizable mdps
with constant suboptimality gap. arXiv preprint arXiv:2103.12690, 2021.

Weisz, G., Amortila, P., and Szepesvári, C. Exponential lower bounds for planning in mdps with
linearly-realizable optimal action-value functions. In Algorithmic Learning Theory, pp. 1237–1264.
PMLR, 2021.

Xu, H., Ma, T., and Du, S. S. Fine-grained gap-dependent bounds for tabular mdps via adaptive
multi-step bootstrap. arXiv preprint arXiv:2102.04692, 2021.

Yang, L. and Wang, M. Sample-optimal parametric q-learning using linearly additive features. In
International Conference on Machine Learning, pp. 6995–7004. PMLR, 2019.

Zahavy, T., O’Donoghue, B., Desjardins, G., and Singh, S. Reward is enough for convex mdps.
Advances in Neural Information Processing Systems, 34:25746–25759, 2021.

Zanette, A., Kochenderfer, M. J., and Brunskill, E. Almost horizon-free structure-aware best policy
identification with a generative model. In Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019.

Zanette, A., Brandfonbrener, D., Brunskill, E., Pirotta, M., and Lazaric, A. Frequentist regret bounds
for randomized least-squares value iteration. In International Conference on Artificial Intelligence

and Statistics, pp. 1954–1964. PMLR, 2020a.

Zanette, A., Lazaric, A., Kochenderfer, M., and Brunskill, E. Learning near optimal policies with
low inherent bellman error. In International Conference on Machine Learning, pp. 10978–10989.
PMLR, 2020b.

Zanette, A., Lazaric, A., Kochenderfer, M. J., and Brunskill, E. Provably efficient reward-agnostic
navigation with linear value iteration. Advances in Neural Information Processing Systems, 33:
11756–11766, 2020c.

Zhang, Z., Ji, X., and Du, S. S. Is reinforcement learning more difficult than bandits? a near-optimal
algorithm escaping the curse of horizon. arXiv preprint arXiv:2009.13503, 2020.

Zhang, Z., Yang, J., Ji, X., and Du, S. S. Variance-aware confidence set: Variance-dependent bound
for linear bandits and horizon-free bound for linear mixture mdp. arXiv preprint arXiv:2101.12745,
2021.

13

Zhou, D., Gu, Q., and Szepesvari, C. Nearly minimax optimal reinforcement learning for linear
mixture markov decision processes. arXiv preprint arXiv:2012.08507, 2020.

Zhou, D., He, J., and Gu, Q. Provably efficient reinforcement learning for discounted mdps with
feature mapping. In International Conference on Machine Learning, pp. 12793–12802. PMLR,
2021.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [N/A]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [N/A]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [N/A]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [N/A]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

	Introduction
	Contributions

	Related Work
	Preliminaries
	Linear MDPs

	Near-Optimal Policy Identification in Linear MDPs
	Main Results
	Low-Regret Algorithms are Suboptimal for PAC RL in Large State-Spaces
	Tabular and Deterministic MDPs

	Online Experiment Design in Linear MDPs
	Conclusion
	Technical Results
	Properties of Linear MDPs
	Feature-Visitations in Linear MDPs
	Constructing the Policy Class

	Policy Elimination
	Estimating Feature-Visitations and Rewards
	Correctness and Sample Complexity of Pedel
	Interpreting the Complexity
	Linear Contextual Bandits
	Tabular MDPs
	Deterministic, Tabular MDPs

	Experiment Design via Online Frank-Wolfe
	Experiment Design in MDPs with General Objective Functions
	Approximate Frank-Wolfe
	Online Frank-Wolfe via Regret Minimization
	Data Collection via Online Frank-Wolfe

	XY-Optimal Design
	Approximating Non-Smooth Optimal Design with Smooth Optimal Design
	Bounding the Smoothness
	Obtaining Well-Conditioned Covariates
	Online XY-Optimal Design

	Suboptimality of Optimistic Algorithms
	Linear Bandit Construction
	Additional Proofs

	Mapping to Linear MDPs

